Entropy-Stable Residual Distribution Methods for System of Euler Equations

Chizari, Hossain (2016) Entropy-Stable Residual Distribution Methods for System of Euler Equations. PhD thesis, Universiti Sains Malaysia.

[img]
Preview
PDF - Submitted Version
Download (131kB) | Preview

Abstract

Kaedah pengedaran-sisa (RD) mempunyai pelbagai manfaat asas berbanding dengan kaedah isipadu terhingga (FV) atau kaedah perbezaan terhingga (FD) secara khususnya daripada segi permodelan fizik pelbagai dimensi, mencapai ketepatan yang tinggi menggunakan stensil yang lebih kecil dan kurang sensitif terhadap perubahan grid. Penyelidikan ini akan membangunkan kaedah RD pelbagai-dimensi yang mempunyai sifat entropi-stabil untuk menyelesaikan sistem persamaan hiperbolik. Pertama, suatu kaedah RD alternatif dicadangkan yang memenuhi pemuliharaan pembolehubah utama secara semulajadi. Kemudian, suatu kaedah RD pelbagai-dimensi RD yang memenuhi entropi-dipulihara dan entropi-stabil dibangunkan bermula dengan persamaan Burgers dua dimensi. Ini diikuti dengan pembangunan kaedah yang sama untuk persamaan Euler dua dimensi. Analisis terperinci akan dijalankan ke atas kaedah tersebut daripada segi entropi-stabil, keadaan positif pelbagai-dimensi dan kajian ralat pemangkasan untuk menentukan ketepatan. Tambahan pula, kaedah baru ini akan dibuktikan sebagai memenuhi syarat pemuliharaan secara automatik berbanding dengan kaedah RD yang sedia ada yang memerlukan syarat purata ciri-ciri tertentu dalam setiap elemen dan berbeza mengikut persamaan yang diselesaikan. Pembangunan kaedah entropi-stabil RD yang terhad juga dilaksanakan dalam kajian ini. Eksperimen-eksperimen berangka yang dijalankan untuk persamaan Burgers merangkumi aliran pengembangan dan aliran kejut diikuti dengan masalah-masalah dinamik gas secara subsonik, transonik dan supersonik. Malahan, kaedah-kaedah klasik RD seperti N, LDA dan PSI juga digunakan dalam kajian sebagai perbandingan kepada kaedah entropi-stabil RD yang baru ditemui. Keputusan eksperimen menunjukkan bahawa kaedah RD yang baru ini adalah keseluruhannya sama baik dengan kaedah-kaedah klasik RD tetapi adalah lebih teguh untuk pelbagai kes ujian. _________________________________________________________________________________________________________________________ Residual-distribution (RD) methods have fundamental benefits over finite volume (FV) or finite difference (FD) methods particularly in mimicking multi-dimensional physics, achieving higher order accuracy with much smaller stencils and less sensitivity to grid changes. The aim of this study is to develop a multi-dimensional entropy-stable residual distribution method to solve the hyperbolic system of equations. First, an alternative residual-distribution method is proposed to ensure conservation of primary variables is obtained by default. This is followed by introducing a new signal distribution and multi-dimensional entropy-conserved and entropy-stable RD method starting with the two-dimensional Burgers’ equation. The development is extended to the two-dimensional Euler equations. There will be rigorous mathematical analyses on entropy-stability, multi-dimensional positivity, and truncation error study to determine the formal order-of-accuracy for the entropy stable methods. In addition, it will also be shown that conservation is automatic with the new RD method unlike with the current RD methods where conservation requires a strict set of characteristic-averaging within the elements and different systems of equations would require a different type of averaging. The developments of limited entropy-stable RD methods would also be included herein. Numerical experiments for the Burgers’ equation include an expansion and a shock-tree problem followed by subsonic, transonic and supersonic gas dynamics problem over various geometries for the Euler equations. Moreover, the classical residual-distribution methods such as N, LDA, and PSI methods are studied in this research to provide direct comparisons with the new entropy-stable RD methods. Results of the new RD approach are comparable to the results of classic RD and FV methods, yet are more robust for a variety of test cases.

Item Type: Thesis (PhD)
Additional Information: full text is available at http://irplus.eng.usm.my:8080/ir_plus/institutionalPublicationPublicView.action?institutionalItemId=2039
Subjects: T Technology
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Divisions: Kampus Kejuruteraan (Engineering Campus) > Pusat Pengajian Kejuruteraan Aeroangkasa (School of Aerospace Engineering) > Thesis
Depositing User: Mr Mohd Jasnizam Mohd Salleh
Date Deposited: 11 Jun 2018 03:31
Last Modified: 11 Jun 2018 03:36
URI: http://eprints.usm.my/id/eprint/40740

Actions (login required)

View Item View Item
Share