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KAEDAH-KAEDAH ENTROPI-STABIL PENGEDARAN SISA UNTUK

SISTEM PERSAMAAN EULER

ABSTRAK

Kaedah pengedaran-sisa (RD) mempunyai pelbagai manfaat asas berbanding dengan

kaedah isipadu terhingga (FV) atau kaedah perbezaan terhingga (FD) secara khusus-

nya daripada segi permodelan fizik pelbagai dimensi, mencapai ketepatan yang tinggi

menggunakan stensil yang lebih kecil dan kurang sensitif terhadap perubahan grid.

Penyelidikan ini akan membangunkan kaedah RD pelbagai-dimensi yang mempunyai

sifat entropi-stabil untuk menyelesaikan sistem persamaan hiperbolik. Pertama, suatu

kaedah RD alternatif dicadangkan yang memenuhi pemuliharaan pembolehubah utama

secara semulajadi. Kemudian, suatu kaedah RD pelbagai-dimensi RD yang memenuhi

entropi-dipulihara dan entropi-stabil dibangunkan bermula dengan persamaan Burgers

dua dimensi. Ini diikuti dengan pembangunan kaedah yang sama untuk persamaan Eu-

ler dua dimensi. Analisis terperinci akan dijalankan ke atas kaedah tersebut daripada

segi entropi-stabil, keadaan positif pelbagai-dimensi dan kajian ralat pemangkasan un-

tuk menentukan ketepatan. Tambahan pula, kaedah baru ini akan dibuktikan sebagai

memenuhi syarat pemuliharaan secara automatik berbanding dengan kaedah RD yang

sedia ada yang memerlukan syarat purata ciri-ciri tertentu dalam setiap elemen dan

berbeza mengikut persamaan yang diselesaikan. Pembangunan kaedah entropi-stabil

RD yang terhad juga dilaksanakan dalam kajian ini. Eksperimen-eksperimen berangka

yang dijalankan untuk persamaan Burgers merangkumi aliran pengembangan dan alir-

an kejut diikuti dengan masalah-masalah dinamik gas secara subsonik, transonik dan

xx



supersonik. Malahan, kaedah-kaedah klasik RD seperti N, LDA dan PSI juga digu-

nakan dalam kajian sebagai perbandingan kepada kaedah entropi-stabil RD yang baru

ditemui. Keputusan eksperimen menunjukkan bahawa kaedah RD yang baru ini adalah

keseluruhannya sama baik dengan kaedah-kaedah klasik RD tetapi adalah lebih teguh

untuk pelbagai kes ujian.

xxi



ENTROPY-STABLE RESIDUAL DISTRIBUTION METHODS FOR SYSTEM

OF EULER EQUATIONS

ABSTRACT

Residual-distribution (RD) methods have fundamental benefits over finite volume (FV)

or finite difference (FD) methods particularly in mimicking multi-dimensional physics,

achieving higher order accuracy with much smaller stencils and less sensitivity to

grid changes. The aim of this study is to develop a multi-dimensional entropy-stable

residual distribution method to solve the hyperbolic system of equations. First, an al-

ternative residual-distribution method is proposed to ensure conservation of primary

variables is obtained by default. This is followed by introducing a new signal distri-

bution and multi-dimensional entropy-conserved and entropy-stable RD method start-

ing with the two-dimensional Burgers’ equation. The development is extended to the

two-dimensional Euler equations. There will be rigorous mathematical analyses on

entropy-stability, multi-dimensional positivity, and truncation error study to determine

the formal order-of-accuracy for the entropy stable methods. In addition, it will also

be shown that conservation is automatic with the new RD method unlike with the cur-

rent RD methods where conservation requires a strict set of characteristic-averaging

within the elements and different systems of equations would require a different type

of averaging. The developments of limited entropy-stable RD methods would also

be included herein. Numerical experiments for the Burgers’ equation include an ex-

pansion and a shock-tree problem followed by subsonic, transonic and supersonic gas

dynamics problem over various geometries for the Euler equations. Moreover, the

xxii


	Entropy-Stable Residual Distribution Methods for System of Euler Equations
	Front Matter
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	ABSTRAK
	ABSTRACT

	Main Chapters
	 Introduction
	1.1 Overview
	1.2 Problem Statement
	1.3 Research Objective
	1.4 Scope of the Research
	1.5 Thesis Outline

	 Literature Review
	2.1 Introduction
	2.2 Residual Distribution Method
	2.2.1 Overview
	2.2.2 Classic RD Methods Properties
	2.2.2(a) Positivity (P)
	2.2.2(b) Linearity Preserving (LP)
	2.2.2(c) Order of Accuracy

	2.2.3 Multidimensional Upwinding
	2.2.4 Compactness of RD Stencil
	2.2.5 Minimal Sensitivity to Grid Distortion
	2.2.6 Issues with Conservation
	2.2.7 Issues with Advection-Diffusion

	2.3 Entropy Control
	2.3.1 Introduction
	2.3.2 Entropy Conservation
	2.3.3 Entropy Stability
	2.3.4 Entropy Consistency


	 Scalar Equations
	3.1 Introduction
	3.2 Linear Advection Equation
	3.2.1 Isotropic Signal Distribution
	3.2.2 Adding Artificial Terms To Isotropic Signal
	3.2.2(a) Achieving Cell Conservation

	3.2.3 Formal Order of Accuracy
	3.2.3(a) Right Running Grid Analogy
	3.2.3(b) Isotropic Grid Analogy
	3.2.3(c) General Truncation Error Analogy

	3.2.4 Positivity (P)
	3.2.5 Linearity Preserving (LP)

	3.3 Burgers' Equation
	3.3.1 Entropy-Control in 2D Burgers' Equation
	3.3.2 Entropy-Conserved Signal Distribution
	3.3.3 Adding Artificial Terms to the Entropy Conserved Signals
	3.3.4 Entropy-Stability Conditions
	3.3.5 An Attempt for Entropy-Stability Using a Linearized Approach
	3.3.5(a) N Recovery
	3.3.5(b) LDA Recovery
	3.3.5(c) Direct Approach
	3.3.5(d) Simplified Approach
	3.3.5(e) Minmod Limiter

	3.3.6 Alternative Entropy-Stable Approach
	3.3.6(a) Low Order
	3.3.6(b) High Order
	3.3.6(c) Limited Approach


	3.4 Time Integration
	3.5 Grid Generation
	3.6 Boundary Conditions
	3.7 Platform

	 System of Euler Equations
	4.1 Overview
	4.2 Entropy Conservation
	4.3 Adding Artificial Signals
	4.4 Entropy Stable Condition
	4.5 Entropy-Stable Residual Distribution Approach
	4.5.1 Baseline Approach
	4.5.2 High Order Approach I: Uniform Approach
	4.5.3 High Order Approach II: Additional Entropy Wave Generation
	4.5.4 High Order Approach III: Including Limiters

	4.6 Grid Generation
	4.7 Boundary Condition

	 Result And Discussion
	5.1 The 2D Scalar Equation
	5.1.1 The 2D Linear Advection
	5.1.2 The 2D Burgers' Equations
	5.1.2(a) Expansion
	5.1.2(b) Shock-Tree Problem


	5.2 The 2D Euler Equations
	5.2.1 Ringleb Flow
	5.2.2 Flow over a Cylinder
	5.2.2(a) Subsonic Flow
	5.2.2(b) Transonic Flow
	5.2.2(c) Supersonic Flow

	5.2.3 Flow over an Airfoil
	5.2.3(a) Subsonic Flow
	5.2.3(b) Transonic Flow

	5.2.4 Supersonic Flow over a Wedge


	 Conclusion
	6.1 Summary
	6.2 Concluding Remarks
	6.3 Future Works

	References

	Appendices
	A Triangle Skewness and Aspect Ratio Analogy
	B Scaling Matrix for the Artificial Signal
	C Logarithmic Mean
	LIST OF PUBLICATIONS



