Enhancement of Mechanical, Thermal and Dielectric Properties of Hybrid Carbon Nanotubes and Alumina in Epoxy Nanocomposites

Zakaria, Muhammad Razlan (2015) Enhancement of Mechanical, Thermal and Dielectric Properties of Hybrid Carbon Nanotubes and Alumina in Epoxy Nanocomposites. Masters thesis, Universiti Sains Malaysia.

[img]
Preview
PDF - Submitted Version
Download (293kB) | Preview

Abstract

Penambahan nanotiub karbon (CNT) dalam nanokomposit polimer telah memberikan cabaran kepada penyelidik disebabkan oleh taburannya dalam matriks polimer. Kajian ini memberikan fokus terhadap sebatian hibrid CNT-alumina yang dihasilkan melalui pemendapan wap kimia (CVD) yang digunakan untuk mempertingkatkan taburan dan menambah baik sifat-sifat mekanik, terma dan dielektrik bagi nanokomposit epoksi. Sebatian hibrid CNT-alumina telah berjaya disintesis melalui kaedah CVD dengan menggunakan pemangkin nikel di bawah atmosfera metana pada suhu 800 °C. Bagi tujuan perbandingan, campuran CNT-alumina secara fizikal juga disediakan dengan menggunakan kaedah pengisaran bebola bagi tujuan perbandingan. Nanokomposit epoksi terisi sebatian hibrid CNT-alumina dan CNT-alumina yang dicampurkan secara fizikal telah dicirikan berdasarkan muatan pengisi (iaitu 1% - 5%). Sebatian hibrid CNT-alumina masing-masing mempunyai saiz antara 10 – 30 nm dan 12 % berat karbon berdasarkan analisis medan pancaran mikroskop imbasan electron pancaran medan (FESEM), mikroskop pemancaran elektron resolusi tinggi (HRTEM) dan serakan tenaga sinar-x (EDX), manakala analisis pembelauan sinar-x (XRD) mendedahkan kewujudan fasa karbon antara beberapa fasa alumina. Penilaian bagi sebatian hibrid CNT-alumina terisi nanokomposit epoksi menunjukkan sifat-sifat mekanik, terma dan dielektrik yang lebih tinggi berbanding CNT-alumina yang dicampurkan secara fizikal serta terisi nanokomposit epoksi. Peningkatan ini berkaitan dengan taburan seragam sebatian hibrid CNT-alumina seperti yang diperhatikan daripada FESEM dan HRTEM. Penggunaan sebatian hibrid CNT-alumina terisi nanokomposit epoksi telah dibuktikan mampu untuk meningkatkan kekuatan tegangan sehingga 30%, modulus tegangan sebanyak 39%, kekuatan lenturan sebanyak 30%, modulus lenturan sebanyak 35%, kekerasan sebanyak 17%, konduktiviti terma sebanyak 20%, nilai suhu peralihan kaca sebanyak 25% dan pemalar dielektrik sebanyak 20% apabila dibandingkan dengan epoksi yang tulen. __________________________________________________________________________________________________________________________ The incorporation of carbon nanotube (CNT) in polymer nanocomposites has become challenges for researchers due to its dispersion in polymer matrix. This work focuses on CNT-alumina hybrid compound prepared via chemical vapor deposition (CVD) which is used to improve dispersion and enhance the mechanical, thermal and dielectric properties of epoxy nanocomposites. The CNT-alumina hybrid compound was successfully synthesized via CVD by using nickel catalyst under methane atmosphere at 800 °C. The physically mixed CNT-alumina was also prepared by ball milling method for comparison. The CNT-alumina hybrid compound and physically mixed CNT-alumina filled epoxy nanocomposites were characterized according to their filler loadings (i.e. 1% - 5%). The CNT-alumina hybrid compound had the size between 10 – 30 nm and 12 Wt % of carbon according to field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM) and energy dispersive x-ray (EDX) analysis respectively, while x-ray diffraction (XRD) revealed the existence of carbon phase among several phases of alumina. The CNT-alumina hybrid compound filled epoxy nanocomposites assessments showed higher mechanical, thermal and dielectric properties than the physically mixed CNT-alumina filled epoxy nanocomposites. This increase is associated with the homogeneous dispersion of CNT-alumina hybrid compound as observed from FESEM and HRTEM. It was demonstrated that the CNT-alumina hybrid compound filled epoxy nanocomposites are capable of increasing tensile strength by up to 30%, giving tensile modulus of 39%, flexural strength of 30%, flexural modulus of 35%, hardness of 17%, thermal conductivity of 20%, glass transition temperature value of 25% and dielectric constant of 20% when compared to a neat epoxy.

Item Type: Thesis (Masters)
Additional Information: full text is available at http://irplus.eng.usm.my:8080/ir_plus/institutionalPublicationPublicView.action?institutionalItemId=2037
Subjects: T Technology
T Technology > TN Mining Engineering. Metallurgy > TN263-271 Mineral deposits. Metallic ore deposits. Prospecting
Divisions: Kampus Kejuruteraan (Engineering Campus) > Pusat Pengajian Kejuruteraan Bahan & Sumber Mineral (School of Material & Mineral Resource Engineering) > Thesis
Depositing User: Mr Mohd Jasnizam Mohd Salleh
Date Deposited: 11 Jun 2018 03:24
Last Modified: 11 Jun 2018 03:24
URI: http://eprints.usm.my/id/eprint/40738

Actions (login required)

View Item View Item
Share