Material Design Of Iii-Nitride Ternary Via First Principles Calculations

Chang, Robin Yee Hui (2017) Material Design Of Iii-Nitride Ternary Via First Principles Calculations. PhD thesis, Universiti Sains Malaysia.

[img]
Preview
PDF
Download (1MB) | Preview

Abstract

III-nitride semiconductors exhibit an array of exceptional features, including broad coverage of spectral frequencies range and reasonable wear resistance, making them desirable materials in a variety of engineering applications. Due to these capabilities, extensive researching works have been carried out on their binary systems over the past few decades. In the case of ternary composites, AlxGa1-xN and InxGa1-xN are comprehensively studied while the same enthusiasm cannot be said for AlxIn1-xN. Numerous experimental studies have shown that the formulation of a quality AlxIn1-xN crystal is undeniably challenging, due to mismatch of certain physical properties between its parent blocks. Herein, by applying ab initio crossbreed evolutionary computations, extensive search for the thermodynamically and practically stable composites of AlN-InN was performed. Simulations were conducted at atmospheric pressure initially, with each structure underwent several stages of optimization via density functional theory, relaxing its cell shape and internal atoms. Optimized structures were selected based on a fitness value, which is the formation enthalpy per cell (Δ

Item Type: Thesis (PhD)
Subjects: Q Science > QC Physics > QC1 Physics (General)
Divisions: Pusat Pengajian Sains Fizik (School of Physics) > Thesis
Depositing User: Mr Aizat Asmawi Abdul Rahim
Date Deposited: 11 Jan 2021 03:07
Last Modified: 11 Jan 2021 03:07
URI: http://eprints.usm.my/id/eprint/48066

Actions (login required)

View Item View Item
Share