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REKA BENTUK III-NITRIDA MENERUSI PENGIRAAN PRINSIP 

PERTAMA 

 

ABSTRAK 

 Semikonduktor III-nitrida mempamerkan pelbagai ciri yang luar biasa, 

termasuk liputan spektrum frekuensi yang luas dan rintangan haus yang munasabah. 

Ini menjadikan mereka bahan yang sesuai dalam pelbagai aplikasi kejuruteraan. 

Disebabkan keistimewaan ini, kerja penyelidikan yang menyeluruh telah dijalankan 

ke atas sistem perduaan kumpulan ini sejak beberapa dekad yang lalu. Bagi kes 

komposit pertigaan, AlxGa1-xN dan InxGa1-xN telah dikaji secara menyeluruh 

manakala pendekatan yang sama tidak berlaku untuk AlxIn1-xN. Banyak kajian telah 

menunjukkan bahawa penggubalan kualiti AlxIn1-xN kristal adalah amat mencabar, 

disebabkan ketidaksepadanan ciri fizikal antara blok induk. Pengetahuan sedia ada 

mengenai campuran aluminium dan indium boleh memudahkan kerja pengadunan 

kristal ini. Dengan menggunakan pengiraan evolusi ab initio, pencarian menyeluruh 

untuk komposit stabil AlN-InN telah dilakukan. Pada mulanya, simulasi dijalankan 

pada tekanan atmosfera, dengan setiap struktur menjalani beberapa peringkat 

pengoptimuman melalui teori fungsian ketumpatan (density functional theory, DFT). 

Struktur optimum dipilih berdasarkan nilai kecergasan, iaitu entalpi pembentukan 

setiap sel unit (∆𝐻𝐴𝑙𝐼𝑛𝑁) manakala struktur kimia yang tidak munasabah (melanggar 

syarat kekangan) akan dibuang. Pada tekanan atmosfera, pengiraan menyeluruh 

melahirkan struktur Al4In2N6 (Cmc21) yang stabil secara termodinamik serta lima 

sebatian metastabil AlIn7N8 (P3m1), Al5InN6 (P31m), Al2In4N6 (Cc/Aa), Al3In3N6 

(Cm/Am) dan Al6In2N8 (P21). Pada 2.5 GPa, hanya Al7In2N9 (Cm) dan Al2In2N4 

(I4̅2d)  dikenalpasti. Struktur pada tekanan 5.0 GPa berkembang ke ortorombik 
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Al4In2N6 (Cmc21), dua tetragonal Al2In2N4 (I4̅2d) serta AlIN4N5 (I4̅) dan trigonal 

AlIn5N6 (R3) . Peningkanan tekanan luar melebihi 5.0 GPa didapati menjejaskan 

kestabilan AlxIn1-xN. Sifat asas fasa stabil dalam komposit AlxIn1-xN (atmosfera dan 

tekanan tinggi) kemudiannya disiasat dengan cara DFT dan teori usikan fungsian 

ketumpatan (density functional perturbation theory, DFPT), semuanya melibatkan 

penyelesaian hubungan Kohn-Sham. Selepas diperbetulkan dengan kaedah GW 

(Green’s function plus screened Coulomb interaction), semua struktur yang tertera di 

atas mempunyai jurang tenaga dalam julat 0.5-6.0 eV. Kestabilan mekanikal dan 

dinamik bagi kesemua aloi juga disiasat menerusi pengiraan parameter elastik bebas 

dan keluk sebaran fonon. Dengan mempertimbangkan kesan “banyak badan”, 

pengiraan optik ke atas fasa atmosfera menunjukkan bahawa indeks biasan had 

tenaga rendah semakin meningkat dengan penurunan komposisi Al. Had sifar 

kerentanan tak linear adalah 0.18-120.98 pm V-1, menandakan tahap kesan tak linear 

yang ketara. Tambahan itu, fasa-fasa ini secara intrinsik mempamerkan keluk 

Seebeck positif yang agak tinggi (199.1-284.6 μV K-1) dan ZT ~ 1.0 yang mengalami 

perubahan kecil dalam julat suhu yang luas 200K - 800K. Penambahan elemen berat 

seperti In didapati menurunkan kekonduksian haba dan seterusnya menjanakan 

faktor kuasa yang tinggi (0.019-0.345 W m-1 K-2). Walaupun penyuntikan lubang 

berjaya meningkatkan tahap pekali Seebeck bagi setiap fasa, kekonduksian elektrik 

mereka telah banyak terjejas, menyebabkan faktor kuasa yang lebih rendah. Bagi 

fasa tekanan tinggi, semua spesies yang dikaji menunjukkan anisotropi elastik yang 

agak besar dan kekerasan sederhana. Kekerasan Vickers simulasi mereka adalah di 

antara 9.4 GPa dan 21.6 GPa. 
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MATERIAL DESIGN OF III-NITRIDE TERNARY VIA FIRST PRINCIPLES 

CALCULATIONS 

 

ABSTRACT 

 III-nitride semiconductors exhibit an array of exceptional features, including 

broad coverage of spectral frequencies range and reasonable wear resistance, making 

them desirable materials in a variety of engineering applications. Due to these 

capabilities, extensive researching works have been carried out on their binary 

systems over the past few decades. In the case of ternary composites, AlxGa1-xN and 

InxGa1-xN are comprehensively studied while the same enthusiasm cannot be said for 

AlxIn1-xN. Numerous experimental studies have shown that the formulation of a 

quality AlxIn1-xN crystal is undeniably challenging, due to mismatch of certain 

physical properties between its parent blocks. Herein, by applying ab initio 

crossbreed evolutionary computations, extensive search for the thermodynamically 

and practically stable composites of AlN-InN was performed. Simulations were 

conducted at atmospheric pressure initially, with each structure underwent several 

stages of optimization via density functional theory, relaxing its cell shape and 

internal atoms. Optimized structures were selected based on a fitness value, which is 

the formation enthalpy per cell (∆𝐻𝐴𝑙𝐼𝑛𝑁) and unrealistic chemical structures 

violating the constraints would be eliminated. Set at atmospheric pressure, the 

comprehensive calculations brought forth a thermodynamically stable structure 

Al4In2N6 (Cmc21) along with five metastable compounds in AlIn7N8 (P3m1), 

Al5InN6 (P31m), Al2In4N6 (Cc/Aa), Al3In3N6 (Cm/Am) and Al6In2N8 (P21). At 2.5 

GPa, only Al7In2N9 (Cm) and Al2In2N4 (I4̅2d) are identified. Candidate structures at 

5.0 GPa expanded to orthorhombic Al4In2N6 (Cmc21), two tetragonal Al2In2N4 
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(I4̅2d) plus AlIN4N5 (I4̅) and trigonal AlIn5N6 (R3). Increasing the pressure beyond 

5.0 GPa appears to upset the stability of AlxIn1-xN. Fundamental properties of stable 

phases within AlxIn1-xN composites (ambient and high pressures) were then 

investigated by means of density functional theory (DFT) and density functional 

perturbation theory (DFPT), mainly solving the Kohn-Sham equation. All structures 

are revealed to be mixed bonding direct band gap semiconductor with GW (Green’s 

function plus screened Coulomb interaction) corrected gap in the range of 0.5 – 6.0 

eV. Mechanical and dynamical stabilities of abovementioned alloys are further 

revealed by the computations of independent elastic parameters and phonon 

dispersion curves. By considering the many-body effects, optical calculations of 

atmospheric phases show that both low energy limit of real part and refractive index 

are increasing monotonically with a decrease in Al composition. Their zero limit 

nonlinear susceptibilities range from 0.18-120.98 pm V-1, denoting a noticeable level 

of nonlinear effect. Moreover, these phases intrinsically exhibit moderate positive 

Seebeck curves (199.1 – 284.6 µV K-1) and ZT close to unity that vary marginally 

over a broad temperature range of 200K – 800K, demonstrating sign of good bipolar 

effect tolerance. Addition of heftier element like In yields lower thermal 

conductivity, which in turn generates high power factor (0.019 – 0.345 W m-1 K-2) in 

these alloys. While holes doping enhances the peak Seebeck coefficient of each 

phase, their electrical conductivity has been greatly compromised, resulting in lower 

power factor. As for the pressure induced phases, all studied species demonstrate 

considerable elastic anisotropy and moderate hardness. Their simulated Vickers 

hardness ranges between 9.4 GPa and 21.6 GPa. In short, theoretical investigation of 

stable AlxIn1-xN phases could serve as the catalysis for future experimental synthesis 

of AlxIn1-xN system. 
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CHAPTER 1 INTRODUCTION 

1.1 Overview 

 Generally, AlxIn1-xN can be regarded as a mixed compound of aluminium 

nitride and indium nitride with properties characterized by proportion of aluminium to 

indium. Together with GaN, these two parent blocks (AlN and InN) are 

exemplifications of III-nitride binary alloys that have drawn enormous researching 

interests over the past two decades, largely due to their stand-out properties such as 

unique band gap, high electron mobility [1], good thermal stability [2] and low 

sensitivity towards ionizing radiations [3]. In the production of optoelectronic devices, 

a particular energy band gap is often required for the photon absorption or emission 

mechanism to occur. The direct band gap feature found in most III-V semiconductors 

makes them an ideal candidate for producing optoelectronic devices with high 

efficiency of optical absorption or emission. Further discoveries of both novel linear 

and nonlinear substances are crucial in making sure the continued growth of 

telecommunications and laser technology fields. Fortunately, efforts expended in 

researching, synthesizing and identifying new optical materials are very encouraging. 

1.2 Motivation 

 Through the use of ternary, tuning of the magnitude of forbidden gap between 

conduction band and valence band (direct or indirect) is made possible. By and large, 

direct band gap ternary like AlxGa1−xAs, AlxGa1-xN and InxGa1-xN are extensively 

studied. Emerging interest in AlxIn1-xP [4], an indirect band gap material, has also been 

noted. However, AlxIn1-xN does not seem to have the same fate. The lack of exploration 

for this ternary compound is often attributed to the dissimilarities in covalent bond and 

thermal stability between AlN and InN, sequentially causing compositional 

inhomogeneity along with phase separation during alloy formation [5, 6, 7]. Growing 
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high quality single crystals of these materials is in no doubt an uphill undertaking. Not 

only that, the understanding of nonlinear characteristics in these materials at 

microscopic level has also been found wanting. There are many robust first principles 

techniques that could assist researchers to realize above objectives. These include the 

configuration interaction (CI) and quantum Monte-Carlo (QMC) approaches. Chiefly 

among those is the solution of Kohn-Sham equation within density functional theory 

(DFT) [8, 9]. When incorporated with linear response procedures, elucidation of 

various optical spectrums is made possible. One particular weakness is the 

underestimation of energy band gap, thus causing the absorption to start at very low 

energy. Reason being that the Kohn-Sham formulism only deals with ground state 

properties and as such neglects the unoccupied conduction bands. 

 In spite of the difficulties, interest on AlxIn1-xN related studies continue to be 

revived sporadically [10, 11, 12]. This material remains an enticing prospect, owing to 

its wide coverage of electromagnetic spectrum ranging from deep ultraviolet to near 

infrared region. Though experimental approach targeting photoluminescence 

excitation of AlxIn1-xN has been done [13], other key optical properties like refractive 

index and absorption pattern are still unexplored. Due to their likely wide energy band 

gap range, AlxIn1-xN compounds are believed to be prospective thermoelectric 

materials [14]. Having a thermoelectric device that efficiently recycles waste energy 

would be mouth-watering as it not only opens pathway for sustainable system 

development but also promotes green energy concept. While extensive investigations 

have been performed for thermoelectric behaviours of tetrahedrite, half Heusler [15, 

16, 17] and IV tellurite based compounds [18], the desire for materials with multiple 

interesting properties has seen a change of focus for III-nitride alloys. III-nitride 

thermoelectric materials are flexible in the sense that they can be directly combined 
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with akin device technology, providing active thermal removal and efficiency 

improvement in nitride-based high power density instruments [19]. Improved figure 

of merit has also been demonstrated in III-nitride materials that underwent alloy 

tuning. Distinction of thermal conductivity with the mass fraction x has been 

highlighted in III-nitride ternary such as AlxGa1−xN [20, 21] and InxGa1−xN [22]. 

Despite the projected optical and optoelectronic potential of AlN-InN system, studies 

with regard to AlxIn1−xN thermoelectric efficiency are relatively rare. 

 In sight of the aforementioned constraints, the need to search for possible stable 

and metastable crystal structures within Al-In-N system by means of theoretical 

forecast has become vastly momentous. By identifying an array of probable structures 

hypothetically, each with reliable and promising composition breakdown, the 

characterization and synthesis of AlxIn1-xN might become more achievable. With 

reference to the predicted Al/In ratio, one can eliminate the possibility of having a 

compound grown from unreasonable initial condition. Thus far, there have been quite 

a number of theoretical investigations on lattice parameters and band gap energies of 

AlxIn1-xN. Most of these calculations were performed by assuming that the relaxed 

lattice parameters of AlxIn1-xN alloys, in either wurtzite or zincblende form, are 

expressible as a linear combination of the lattice constants of their respective binaries 

[23, 24, 25]. While optimization of these alloys was later carried out and their 

respective elastic parameters have been compared to the necessary stability criteria, 

information about their individual formation enthalpy is not available. Conjecturing 

the structures of ternary AlxIn1-xN alloys without performing structural search and 

multiple relaxations is incorrect. Structures to be studied must be at least metastable, 

if not thermodynamically stable. This can be verified by performing a thorough search 

for whole composition range (x = 0-1) and comparing the formation enthalpy of each 
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fit structure. Moreover, foretold global minimum and practically stable crystals must 

refrain from undergoing further structural transition should the surrounding 

temperature changes. This uncertainty can be checked by analyzing the phonon 

frequencies and eigenvectors of a chosen structure, within its Brillouin zone. 

Mechanical stability that indicates reaction against external disturbance should also be 

tested. A structure is said to be mechanically unstable if its capability to return to 

equilibrium position is loss when being disturbed by an extraneous action. 

1.3 Objectives 

To summarize, research objectives of this work are twofold. In the primary 

section, screening of novel stoichiometric phases within AlxIn1-xN composites at 

atmospheric and high pressures are to be carried out using state-of-the-art calculations. 

This has been done by means of prediction-specific evolutionary algorithm plus first 

principles scheme in the form of the density functional approach. Next, fundamental 

properties of stable phases within AlxIn1-xN composites (ambient and high pressures) 

will be investigated via the use of DFT and density functional perturbation theory 

(DFPT). Apart from acquiring ground state property such as density of states and 

electronic band structure, response of stable stoichiometries towards higher energy 

orders has also been performed, activating the computation of their respective band 

gap correction and crucial characteristics like optical, elastic, piezoelectric properties. 

And with the ongoing large scale application of semiconductor devices in wireless data 

transfer, industrial control coordination and scientific study, urgent demands for highly 

versatile and effective self-powered electronic appliances should thrust researchers 

into exploring multifunctional materials that possess multiple outstanding properties. 

Through this work, it is hoped that the theoretical investigations of steady AlxIn1−xN 

composites and their various natural characteristics could lay the foundation for 
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creation of multifunctional devices in which the electronic, optical, thermoelectric, 

piezoelectric and other properties can be coupled to one another. 

1.4 Thesis outline 

The thesis outline can be divided into three parts. In the first section, detailed 

formalisms and calculational techniques are presented. The second part concerns the 

screening of various stable AlxIn1-xN stoichiometries at atmospheric pressure and 

calculation of their important properties. Finally, the last part addresses the extension 

of AlxIn1-xN prediction under high pressure condition. 
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CHAPTER 2 THEORIES AND MODELS 

2.1 Overview  

 The screening of ground state and metastable structures within AlxIn1-xN 

system was conducted via Universal Structure Predictor: Evolutionary Xtallography 

or popularly known as USPEX code [26, 27, 28]. First-principles approach and 

density functional theory are the fundamental ingredients used in contriving its 

evolutionary algorithm. Details on the execution plan of USPEX starting from 

general chemical input to finalizing structure selection will be explored in this 

chapter. Fundamental properties of forecasted stable phases within AlxIn1-xN 

composites (ambient and high pressures) will then be investigated by means of DFT 

and density functional perturbation theory (DFPT) [29], mainly solving the Kohn-

Sham equation. 

2.2 Searching operation 

 By providing raw information such as types of elements and their exact 

constituents, USPEX automatically append the default atom dependent hard 

constraints such as initial unit cell volume and minimum separation between atoms. 

Constraints are helpful in maintaining the stability of total energy calculations and 

relaxation, through elimination of redundant and unreasonable nonphysical 

structures. A group of random structures that gratify above constraints are created. 

These structures will be stored in the first generation and each undergoes gradual 

optimization. Filtration of structures based on chosen optimization property (fitness) 

is done. Fitness can be in the form of enthalpy (default selection), volume, hardness, 

band gap or magnetic moment. Unfit structures are discarded while those deemed fit 

will play the role of parent. A structure has high fitness if its chances to last until the 
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next generation are high. Fresh structure is formed from parent through any of the 

following variant operators. 

2.2.1 Heredity 

Comprehensible planar slices of two parent structures are combined. The 

participating parent structure stores important information like relative position of 

proximate atoms. Lattice constants of the offspring are obtained by performing 

weighted arithmetic mean on lattice vectors of parent, where structure with greater 

vector matrices contributes more heavily. 

2.2.2 Softmutation 

Parent structure is altered as a result of large atomic displacements along the 

eigenvectors of softest phonon modes. 

2.2.3 Lattice mutation 

Lattice vectors of the parent structure are changed by applying a symmetric strain 

matrix. This operator helps to minimize events of untimely convergence towards a 

particular lattice of an immature structure. 

2.2.4 Transmutation 

Offspring is achieved by turning randomly chosen atoms within a parent structure 

into other chemical species present in it. 

 

Candidates for new structures that satisfy the hard constraints are moved into new 

generation. Random structures can be concurrently added in an attempt to reduce the 

impact of trapped local optimization. Optimizing the atomic coordinates and lattice 

parameters of each candidate creates new individual. Local optimization processes 

continue until the user specified number of new individuals is reached. At this stage, 

new individuals will assume the parental role and take part in aforementioned steps.  
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Figure 2.1 Evolutionary algorithm implemented in USPEX 

 

 
Chemical input; atom types and 

amount 

Initiation of random structures in 

first generation 

Structural optimization and 

filtration 

Yes No 

Create offspring via genetic 

manipulation 

Discard 

Is the relaxed structure satisfying 

hard constraints? 

Stopping criteria reached? 

Done 

Yes 

No 



9 
 

This course of action is repeated until all the selected low enthalpy individuals can 

no longer be mutated. Overall flow of evolutionary algorithm implemented in 

USPEX is summarized below. Above procedures will be repeated for simulations at 

higher pressures (2.5, 5.0, 10.0 and 20 GPa).  

2.3 Ab initio approach 

 Important properties of materials are influenced by the behavior of its internal 

atoms. Numerous models have been used to describe the interaction among atoms 

within a solid [30]. While classical assumptions such as the Monte Carlo model and 

ab initio molecular dynamics model are capable of researching matter at microscopic 

level, their computational cost is often expensive. As such, the equally efficient and 

computationally cheaper first-principles approach based on quantum mechanics has 

become a popular choice. This method enables researchers to predict important 

properties of substances even before the synthesis works take place. The electron 

theory of quantum mechanics has for decades, served as fundamental theory in wide 

areas of science and engineering that include condensed matter physics, nuclear 

physics, photonics and many more. The integral part of quantum mechanics is 

Schrodinger equation [31], which describes the relationship between wave function 

and movement of microscopic particles under the presence of external potential V(r). 

The general Schrodinger equation for a system comprised of multiple atoms forming 

a solid crystal, can be written as  

 HΨ=EΨ                                                (Eq. 2.1) 

where H is the Hamiltonian operator, E is the eigenvalue and Ψ is the orbital wave 

function. This operator is made up of five terms, namely the total kinetic energy of 

every single electron, potential energy of the interaction between electrons with 

atomic nuclei, energy of interaction between dissimilar electrons, total kinetic energy 
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of every nucleus and lastly interaction between all nuclei. It is presupposed that 

Schrodinger equation can be rightly solved with normalization condition on wave 

functions 

⟨𝜑𝑖|𝜑𝑖⟩ = 1                                                (Eq. 2.2) 

satisfied. By solving the Schrodinger equation, one can unlock crucial details like 

atomic structures and density of states of a system, hence making the physical and 

chemical processes in the system accessible. However, providing solution to 

Schrodinger equation for multi-particle systems is no doubt difficult and complex. 

Segregation of Schrodinger equation into independent terms is not possible due to 

the presence of electron-electron interrelation in its Hamiltonian term, that is non-

local in nature. Mathematically justified approximation methods have since been 

introduced so as to simplify the solution of many body systems’ Schrodinger 

equation. 

 In Born-Oppenheimer approximation [32], heavier nuclei are assumed to be 

moving at very slow pace. Their kinetic energy contribution becomes negligible and 

thus can be omitted from the Hamiltonian. Under this approximation, separate 

treatment of nuclei and electrons can be realized. With the Hamiltonian simplified, a 

more straightforward solution of Schrodinger equation is expected. But this is not the 

case. Aforesaid complication remains because electron-electron term is yet to be 

removed. Hartree-Fock approximation [32] on the other hand replaces the multi 

particle systems wave function with product of single electron wave function. 

Hamiltonian is further abbreviated with only kinetic energy of the electrons, potential 

energy due to nuclei-electrons interaction and potential energy of electron-electron 

repulsion terms left. Electrons in this model are seen as drifting in both ion and mean 

potential fields of surrounding electrons. This approximation however disregards the 
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permutation among neighboring electrons and at times reproduces hard to access 

excited states, therefore affecting the precision of computing outcome. More 

auxiliary approximations were needed to reduce the complexity in solving 

Schrodinger equation. A breakthrough was attained with the introduction of density 

functional theory (DFT). At this instance, electronic density has replaced many 

electron wave function as the fundamental variable.  

𝐸[𝑛(𝒓)] =  〈𝜑|𝐻|𝜑〉 =  𝐹[𝑛(𝒓)] + ∫ 𝑉𝑒𝑥𝑡𝑛(𝒓)𝑑3𝑟                (Eq. 2.3) 

F[n(r)] is a universal functional that represents contributions from kinetic and other 

potential energies. Revamp of many body problem with regard to density is 

depending on Hohenberg-Kohn theorems [33] and Kohn-Sham formulation. The 

former can be explained using the following two attestations. 

 

Theorem 1  

When a system of interacting constituent parts is under the effect of an external 

potential 𝑉𝑒𝑥𝑡(𝒓), its density of ground state 𝑛0(𝒓) is completely and distinctively 

correlated to 𝑉𝑒𝑥𝑡(𝒓). To gain better insight, let us assume there are two diverse 

peripheral potentials 𝑉𝑒𝑥𝑡
(1)(𝒓) and 𝑉𝑒𝑥𝑡

(2)(𝒓), where both yield the same ground state 

density. Due to different Hamiltonians (𝐻(1) and 𝐻(2)), these potentials bound to 

have different ground wave function (𝜑𝑖
(1)

 and 𝜑𝑖
(2)

). Therefore, 

𝐸(1) =  〈𝜑(1)|𝐻(1)|𝜑(1)〉 

         <  〈𝜑(2)|𝐻(1)|𝜑(2)〉 

                                                           <  〈𝜑(2)|𝐻(2)|𝜑(2)〉 + 〈𝜑(2)|𝐻(1) − 𝐻(2)|𝜑(2)〉 

                              𝐸(1)  <  𝐸(2)  +  ∫[𝑉𝑒𝑥𝑡
(1)

− 𝑉𝑒𝑥𝑡
(2)

]𝑛0(𝒓)𝑑3𝑟 
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Likewise, 

                              𝐸(2) <  𝐸(1)  +  ∫[𝑉𝑒𝑥𝑡
(2)

− 𝑉𝑒𝑥𝑡
(1)

]𝑛0(𝒓)𝑑3𝑟 

Adding the two inequalities above gives an unempirical relationship in which 𝐸(1) +

𝐸(2) < 𝐸(2) + 𝐸(1). It is therefore not reasonable for unlike external potentials to 

have the same 𝑛0(𝒓).  

Theorem 2  

Numerical statements from first theorem show that the correlation between charge 

density and external potential is of one to one function. As such, 𝐸[𝑛(𝒓)] is logically 

a minimum if and only if 𝑛(𝒓) =  𝑛0(𝒓). 

 

In Kohn-Sham DFT calculations, permutation among electrons is represented by 

electron density functional n(r). It is deduced that the ground state energy and charge 

density of interacting electrons are similar to those of non-interacting electrons. 

Complications arise from interaction of electrons are simplified as movement of non-

interacting electrons within an effective potential field. Ground state energy of this 

system is derivable through minimization of the following functional: 

𝐸[𝑛(𝒓)] = ∫ 𝑉𝑒𝑓𝑓(𝒓)𝑛(𝒓)𝑑3𝑟 + 𝑇[𝑛(𝒓)]                       (Eq. 2.4) 

where T[n(r)] is the non-interacting kinetic energy. Particles no longer depend on 

each other. Electronic system as a whole can now be expressed by a solitary product 

of individual wave function. Density distribution n(r) can be determined using 

𝑛(𝒓) = ∑|𝜑𝑖(𝒓)|2

𝑁

𝑖

                                          (Eq. 2.5) 

and with that wave functions of every electron state are incorporated. This means 

electronic charge density is evaluated by considering non interacting system as sum 
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over all occupied single orbital densities. Principally, atoms always align themselves 

in regular and replicating patterns. These periodicities also lead to regularities in 

potential, charge density and later stage the wave functions. Since φi(r) is periodic, 

Fourier series can be applied to expand it. In order to construct the density, φi(r) need 

to be integrated over all possible wave vectors. Plane wave is expanded to the limit 

of cut-off energy. Wave functions surrounding the nuclei vary rapidly due to strong 

potential. These wave functions usually do not contribute much, only affecting the 

mechanical, chemical and electronic properties marginally. As such, it is possible to 

replace the potential near nuclei with weaker but smoother potential known as 

pseudopotential. The pseudopotential wave functions do not vary as swiftly as those 

nearby the nuclei. Lower cut-off energy can now be used to reduce the expansion 

space. In short, DFT converts a many body systems into single body systems by 

ousting the interaction potential between electrons. Equation of Kohn-Sham can be 

written as: 

[−
ℏ

2𝑚
∇2 + 𝑉𝑒𝑓𝑓(𝒓)] 𝜑𝑖 = 𝐸𝑖𝜑𝑖                             (Eq. 2.6) 

The single particle effective potential is expressible as: 

𝑉𝑒𝑓𝑓(𝒓) = 𝑉𝑖𝑜𝑛(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑥𝑐(𝒓)                         (Eq. 2.7) 

The three terms in sequential refer to electron-nuclei Coulomb potential, classical 

electronic Coulomb potential and exchange-correlation potential which covers all 

quantum mechanical effects. Unlike previous models, solution to Kohn-Sham 

equation centralizes around the exchange correlation energy. True form of this 

energy is nonetheless unknown. For that reason, engaging an appropriate form of 

exchange correlation energy functional is extremely critical in ensuring high 

precision and accuracy of DFT calculations. Two common choices of exchange-

correlation approximation are the local density approximation (LDA) and 
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generalized gradient approximation (GGA). LDA assumes that the density of 

exchange-correlation energy at every position for a particle is akin to the uniform 

electron gas with similar density found at that point. This approximation will be 

flawless if there are no inhomogeneities in electron density around a position, but 

actual electronic densities are far from being uniform. GGA is able to include the 

effects of inhomogeneities by adding a correction term know as local gradient to 

existing LDA functional. Moreover, its lower exchange energy indirectly reduces the 

binding energy, hence complementing the over binding result in LDA. A popular 

GGA functional constructed on the root of this model is PBE functional, which is 

one of the GGA functionals that has been utilized broadly at present. Once the 

decisive factor on approximation has been fixed, solution of Kohn-Sham equation 

can be carried out. Generally, the Kohn-Sham equation is solved using a self-

consistent manner. After picking the proper approximation, single electron wave 

function φi(r) obtained through substitution of a user defined trial electron density 

n(r) into equation 2.4 is used to reevaluate an improved n(r) by means of equation 

2.4. If the new n(r) differs from initial n(r), it will be taken as input to solve the two 

equations above again. This iteration course is repeated until the difference between 

trial and computed electron densities is within the preset convergence criteria. The 

converged electron density is then used to calculate total energy of the desired 

system. Highlight of steps needed for solving Kohn-Sham equation can be seen in 

Figure 2.2. The main idea here is to treat the electron density as a basic variable to 

disentangle the universal many body Schrodinger equation. Accomplishing self-

consistency can be a really demanding because it is obligatory to pick a suitable 

alternative for updating either the potential or charge density in each iteration of the  
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Figure 2.2 Self-consistent procedure used in solving Kohn-Sham equation 
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previous step. It is less complex to portray in term of the electronic density, which is 

exclusive, whereas the external potential is unique modulo a constant. During the 

solution of Kohn-Sham ansatz, only ground state properties are determined as the 

exchange correlation potential used is an explicit function of ground state densities. 

Failures in the representation of electronic excited states have been documented. 

These setbacks can be overcome using quantum formulism for perturbation theory, 

within the DFT framework. Density functional perturbation theory (DFPT) exploits 

the good delineation of ground state in DFT to accurately portray the down tempo 

excitation in low energy region. By gently perturbing the electronic ground state, 

wide range of physical properties become quantifiable through the total energy 

derivatives generated. Perturbation [34] can be in the form of atomic displacements, 

homogenous electric or magnetic fields, strain and alchemical change. Every 

perturbation begins with the classification of an enormously undersized parameter. 

Taking λ as the diminutive parameter, the perturbed Schrodinger equation can be 

written as 

𝐻𝜆 = 𝐻 + 𝑋𝜆                                                   (Eq. 2.8) 

where H and Xλ are the unperturbed Hamiltonian and external perturbed quantity, 

respectively. The ambiguous perturbed quantities Xλ can be expanded to produce a 

linearly increasing term in the form of 

𝑋𝜆 = 𝜆𝑋(1) + 𝜆2𝑋(2) + 𝜆3𝑋(3) + ⋯                          (Eq. 2.9) 

Apart from Hamiltonian term, X can also be used to signify the electronic energy E, 

electronic wavefunctions φ(r), external potential V(r) and electron charge density 

n(r). When expanded into the powers of λ, their respective complete form can be 

rewritten as 

𝐸𝜆 = 𝐸 + 𝜆
𝛿𝐸(𝒓)

𝛿𝜆
+ 𝜆2

𝛿2𝐸(𝒓)

𝛿𝜆2
+ 𝜆3

𝛿3𝐸(𝒓)

𝛿𝜆3
+ ⋯          (Eq. 2.10) 
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𝜑𝜆(𝒓) = 𝜑(𝒓) + 𝜆
𝛿𝜑(𝒓)

𝛿𝜆
+ 𝜆2

𝛿2𝜑(𝒓)

𝛿𝜆2
+ 𝜆3

𝛿3𝜑(𝒓)

𝛿𝜆3
+ ⋯      (Eq. 2.11) 

𝑉𝜆(𝒓) = 𝑉(𝒓) + 𝜆
𝛿𝑉(𝒓)

𝛿𝜆
+ 𝜆2

𝛿2𝑉(𝒓)

𝛿𝜆2
+ 𝜆3

𝛿3𝑉(𝒓)

𝛿𝜆3
+ ⋯      (Eq. 2.12) 

𝑛𝜆(𝒓) = 𝑛(𝒓) + 𝜆
𝛿𝑛(𝒓)

𝛿𝜆
+ 𝜆2

𝛿2𝑛(𝒓)

𝛿𝜆2
+ 𝜆3

𝛿3𝑛(𝒓)

𝛿𝜆3
+ ⋯      (Eq. 2.13) 

Linearization of previously discussed ground state density and Kohn-Sham orbitals 

leads to charge density linear response and Kohn-Sham derivatives: 

𝛿𝑛(𝒓)

𝛿𝜆
= 4𝑅𝑒 ∑ 𝜑𝑖

∗(𝒓)
𝛿𝜑𝑖(𝒓)

𝛿𝜆
𝑖

                          (Eq. 2.14) 

(𝐻 − 𝐸𝑖)
𝛿𝜑𝑖(𝒓)

𝛿𝜆
= − (

𝛿𝑉𝑒𝑓𝑓(𝒓)

𝛿𝜆
−

𝛿𝐸𝑖

𝛿𝜆
) 𝜑𝑖(𝒓)                 (Eq. 2.15) 

where 

𝛿𝑉𝑒𝑓𝑓(𝒓)

𝛿𝜆
=

𝛿𝑉𝑖𝑜𝑛(𝒓)

𝛿𝜆
+ ∫

𝑒2

|𝒓 − 𝒓′|

𝛿𝑛(𝒓′)

𝛿𝜆
𝑑𝒓′ +

𝛿𝑉𝑥𝑐(𝒓)

𝛿𝑛(𝒓′)

𝛿𝑛(𝒓′)

𝛿𝜆
𝑑𝒓′ (Eq. 2.16) 

Note that ∆𝑉𝑒𝑓𝑓(𝒓) is a linear functional of ∆𝑛(𝒓) which consecutively depends on 

variation of Kohn-Sham orbitals. As such, calculation of self consistency can be 

performed for generalized linear problems. In addition, the linear response technique 

[30] enables the calculation of the dynamical matrix at arbitrary q vectors.  

2.3.1 Lattice dynamics 

 In phonon calculation, atomic displacements are treated as perturbations. Self 

consistent computation is applied to the electronic response of perturbation. When 

nuclei are not at their equilibrium coordinate, forces which are opposite of the energy 

derivative appear. These interatomic forces are linearly correlated to the 

displacement of each nucleus. For crystal consideration, phonons are ruled by wave 

vector q. The displacement patterns of x-th atom in α-th Cartesian component, 𝑈𝑥
𝛼(𝒒) 

and phonon frequencies, ω(q) are expressible using the secular equation: 
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∑(𝐶𝑥𝑦
𝛼𝛽(𝒒) − 𝑀𝑥𝜔2(𝒒)𝛿𝑥𝑦𝛿𝛼𝛽)𝑈𝑦

𝛽(𝒒)

𝑦,𝛽

= 0                  (Eq. 2.17) 

where 𝐶𝑥𝑦
𝛼𝛽(𝒒) is the matrix of inter atomic force constants. DFPT enables an 

efficient calculation of second order energy derivatives, required to generate the 

dynamical matrices. 

𝐶𝑥𝑦
𝛼𝛽(𝒒) =

1

𝑛
(

𝛿2𝐸

𝛿𝑢𝑥
𝛼(𝒒)𝛿𝑢𝑦

𝛽(𝒒)
)                             (Eq. 2.18) 

First order derivative of electronic energy is computable without the knowledge of 

any first order quantity. Dynamical matrix due to second order change in total energy 

is depending on the variation of first order electronic charge density. 

𝛿2𝐸

𝛿𝜆2
= ∫

𝛿𝑉(𝒓)

𝛿𝜆

𝛿𝑛(𝒓)

𝛿𝜆
𝑑𝒓 + ∫ 𝑛(𝒓)

𝛿2𝑉(𝒓)

𝛿𝜆2
𝑑𝒓             (Eq. 2.19) 

This result is expandable to derivatives of mixed perturbation. 

𝛿2𝐸

𝛿𝜆𝛿𝜇
= ∫

𝛿𝑉(𝒓)

𝛿𝜆

𝛿𝑛(𝒓)

𝛿𝜇
𝑑𝒓 + ∫ 𝑛(𝒓)

𝛿2𝑉(𝒓)

𝛿𝜆𝛿𝜇
𝑑𝒓             (Eq. 2.20) 

The interatomic force constants are obtained by the use of fast Fourier transform 

(FFT) of the dynamical matrices in real space super cell, covering a grid in Brillouin 

zone. Within the real space, hidden dynamical matrices in reciprocal space (not 

necessarily contained in the original grid) can be uncovered at any wave vector. 

Removing the long range component of real space force constants allows the use of a 

coarser reciprocal space grid during Fourier interpolation. Inverse Fourier transform 

is then performed on these force constants so as to obtain the phonon frequencies at 

arbitrary points in reciprocal space, via interpolation. One can verify the dynamical 

stability of a system by probing the presence of negative phonon frequencies or soft 

mode within the phonon dispersion curve. Appearances of soft modes within a 
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structure indicate crystal instability. Structure concerned prevents this scenario by 

bestowing a new form, which is more conducive to lattice stability. 

2.3.2 Mechanical properties 

 Elastic parameters can be denoted as force constants connected to 

homogenous strains. Integrating DFPT for homogenous distortions [30] requires the 

inclusion of a transitional conjured Hamiltonian which is associated to unperturbed 

system. When a crystal is dilated with amplitude of x, its strained Hamiltonian 

becomes 

𝐻𝑥 = −
ℏ

2𝑚
𝛻2 + 𝑉𝑖𝑜𝑛

𝑥 (𝒓) + 𝑒2 ∫
𝑛𝑥(𝒓′)

|𝒓 − 𝒓′|
𝑑𝑟′ + 𝑉𝑥𝑐 (𝑛𝑥(𝒓′))     (Eq. 2.21) 

in which 

𝑉𝑖𝑜𝑛
𝑥 (𝒓) = ∑ 𝑉𝑠(𝒓 − 𝑥𝑹𝑙 − 𝑥𝑻𝑚)

𝑙𝑠

                             (Eq. 2.22) 

Rl is the site of l-th unit cell within Bravais lattice while Tm is the m-th atom inside 

the unit cell. The intermediate conjured Hamiltonian, 𝐻̃𝑥, is then derived from 

unperturbed Hamiltonian, through a scale conversion: 

𝐻̃𝑥 (𝒓,
𝛿

𝛿𝒓
) = 𝐻 (

𝒓

𝑥
, 𝑥

𝛿

𝛿𝒓
)                                     (Eq. 2.23) 

Both conjured and real strained Hamiltonians have identical boundary conditions, 

thus permitting the use of DFPT in relative energy difference calculation. Other 

quantities of 𝐻̃𝑥 and H that are inconsequentially allied are: 

𝐸̃𝑖
𝑥 = 𝐸𝑖                                                      (Eq. 2.24) 

𝜑̃𝑖
𝑥(𝒓) = 𝑥−

3

2𝜑𝑖 (
𝒓

𝑥
)                                      (Eq. 2.25) 

𝑛̃𝑥(𝒓) = 𝑥−3𝑛 (
𝒓

𝑥
)                                       (Eq. 2.26) 

Computation of energy variation due to strain involves a two steps procedure. Firstly, 

energy distinction between unperturbed and fictitious strained crystals is calculated. 
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This is then followed by calculation of energy difference between the latter and the 

actual strained crystals by means of perturbation approach. Energy variation between 

conjured and real strained crystals can now be evaluated. In principal, perturbed 

atoms will realign themselves in order to minimize the energy sum as a function of 

applied strain. For every applied strain, atoms are relaxed to their energetically 

preferred lattice positions. During relaxations, perturbed lattice vectors are fixed. The 

distortion in energy is used to characterized elastic moduli Cij through the 

relationship 

∆𝐸 ∝ ∑ ∑ 𝐶𝑖𝑗𝜀𝑖𝜀𝑗

6

𝑗=1

6

𝑖=1

                                     (Eq. 2.27) 

where εi refers to the i th constituent of strain tensor in Voigt notation, with specific 

designations of xx = 1, yy = 2, zz = 3, yz = 4, xz = 5 and xy = 6. By adding another 

perturbation quantity in electric field, piezoelectric property can be further evaluated. 

Piezoelectricity can be viewed as a bridge linking the interchange effect between 

mechanical and electrical properties. We regard a material as having piezoelectric 

potential if its piezoelectric effect is favourable. Other constraints to be fulfilled [35] 

are: 

• Absence or lack of inversion symmetry. Structures with space group of 1, 3-

9, 16-46, 75-82, 89-122, 143-146, 149-161, 168-174, 177-190, 195-199, 207-

220 are said to be non-centrosymmetric. 

• Energy band gap > 0.1 eV 

• Number of atom per unit cell ≤ 20 

Describing the piezoelectric effect requires adequate knowledge of piezoelectric 

stress coefficient, eij. These eij parameters are reckoned through straightforward 

computations of change in polarization intensity in the i-th direction when being 
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strained in the j-th route. Piezoelectric coefficients are defined as contributions from 

relaxed (internal strain) and clamped ion terms. These parameters can be represented 

by a 3   3 matrix, consisting of eighteen third ranked tensors. Some of these tensors 

could be equal to zero or identical to each other, due to constraint imposed by 

individual crystal’s point group symmetry. 

   e𝑖𝑗 =  e𝑖𝑗  (𝑐𝑙𝑎𝑚𝑝𝑒𝑑 𝑖𝑜𝑛) +  e𝑖𝑗  (𝑟𝑒𝑙𝑎𝑥𝑒𝑑 𝑖𝑜𝑛) 

e𝑖𝑗 =  [

e11 e12 e13

e21 e22 e23

e31 e32 e33

]                                    (Eq. 2.28) 

The subscript i signifies direction along the three axes while j is the pairs of 

Cartesian direction expressed in Voigt notation. Self consistent calculations are 

performed on electronic response to these perturbations, creating first and second 

order energy derivatives of occupied wave functions. Energy derivatives that 

correspond to strain and electric field produce the clamped ion component. During 

this stage, movements of atoms or ions are not permitted. Only response with respect 

to electric field relaxation is taken into account. In contrast, derivatives that depend 

on strain and atomic displacement generate the relaxed ion part. Summation of the 

former and latter terms gives rise to total piezoelectric coefficient. While most non-

centrosymmetric composites have dominant positive coefficients in which charges 

are induced during extension, some appears to be solely responsive towards 

compression, due to their large negative coefficients. 

2.3.3 GW correction 

 Despite its directness and wide application, DFT has a tendency to 

undervalue the energy band gap of most materials. On the whole, Kohn-Sham 

formulism is very much depending on the correlation between definite N electron 

system and its unreal non-interacting counterpart through xc potential, an explicit 
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ground state functional. As a result, attempt to mirror the N body quantum 

mechanical problem onto N number of 1-body problems becomes less efficient. 

Furthermore, the connection between electron density and exchange correlation in 

Kohn-Sham ansatz is highly non-analytical and non-local. A slight variation in n(r) 

affects xc greatly, making the construction of a complete reliable approximation to 

exact xc at further points extremely difficult. The contribution of xc discontinuity to 

energy band gap is often neglected in such manner. A way to tackle this woe is by 

implementing perturbation theory within GW approximation [36]. In GW method, 

electronic self energy is approximated as the product of Green’s function G and 

screened interaction W among quasiparticles. When photon incidents on a compound 

and expels an electron, the system gains additional electron. Coulomb interaction 

between the newly injected electron and neighbouring polarization cloud forms 

quasiparticle, which can be depicted as a unit comprising of electrons and holes 

cloud, as shown in Figure 2.3. 

 

 

 

                          

 

 

 

Figure 2.3 Screened interaction 
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Holes surrounding the electron at r shield its bare Coulomb potential υ(r, rʹ), hence 

producing the effective potential at rʹ, given by screen interaction W. Quasiparticles 

act reciprocally by way of screened interaction W instead of the robust Coulomb 

interaction. With that, the energies Ei and wave functions φi are at this time governed 

by the quasiparticle relation 

𝐻(𝒓)𝜑𝑖(𝒓) + ∫ ∑(𝒓, 𝒓′, 𝐸𝑖 ℎ⁄ )𝜑𝑖(𝒓′)𝑑3𝑟′ = 𝐸𝑖𝜑𝑖(𝒓)           (Eq. 2.29) 

Approximating φi(r) and ∑(𝒓, 𝒓′, 𝐸𝑖 ℎ⁄ ) to 𝜇𝑖
𝐾𝑆(𝒓) and 𝑉𝑥𝑐(𝒓) will enable the 

exploitation of Kohn-Sham equation 

𝐻𝜑𝑖
𝐾𝑆(𝒓) + 𝑉𝑥𝑐(𝒓)𝜑𝑖

𝐾𝑆(𝒓) = 𝐸𝑖
𝐾𝑆𝜑𝑖

𝐾𝑆(𝒓)                      (Eq. 2.30) 

Upon configuring the ground state, Green’s function is set up. This is followed by 

computation of screened interaction W. In terms of dielectric function, 

𝑊 =  ∫ ∫ 𝜖(𝒓, 𝒓′, 𝐸) 𝜈(𝒓, 𝒓′)𝑑𝒓                               (Eq. 2.31) 

The Random Phase Approximation (RPA) [37] is used to determine the dielectric 

function 𝜖(𝒓, 𝒓′, 𝐸) and finally leads to quasiparticle energy solution 

𝐸𝑖 = 𝐸𝑖
𝐾𝑆 + 𝑍𝑖⟨𝜑𝑖

𝐾𝑆|∑𝐺𝑊 − 𝑉𝑥𝑐|𝜑𝑖
𝐾𝑆⟩                        (Eq. 2.32) 

where ∑GW = GW self energy and Zi is the renormalization factor. Segregation of the 

one shot GW into both exchange and correlation parts can now be done, denoted by 

∑𝑥
𝐺𝑊and ∑𝑐

𝐺𝑊. The band gap correction or scissor shift, when integrated into linear 

optical response calculations, aggressively raises the conduction states to higher 

energy while maintaining the number of electronic wavefunctions. 

2.3.4 Optical response 

Polarization induced by electromagnetic wave (EM) in linear optical material 

is directly proportional to the electric field. 

𝑷 = 𝜀𝑜𝜒𝑬                                                  (Eq. 2.33) 
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where χ is the linear susceptibility with the matching dielectric constant 𝜀 =

𝜀𝑜(1 + 𝜒). When intensity of EM wave grows stronger, a shift from linear behavior 

to nonlinear pattern occurs. As a result, the dielectric constant becomes a field-

dependent parameter [38, 39, 40, 41]. Expanded terms of susceptibility and related 

dielectric constant are as follows: 

𝜒(𝑬) = 𝜒 + 𝜒(2)𝑬 + 𝜒(3)𝑬2 + ⋯                          (Eq. 2.34) 

𝜀(𝑬) = 𝜀 + 𝜀(2)𝑬 + 𝜀(3)𝑬2 + ⋯                          (Eq. 2.35) 

When combined  

𝑷 = 𝜀𝑜𝜒𝑬 + 𝜀0𝜒(2)𝑬2 + 𝜀𝑜𝜒(3)𝑬3 + ⋯ = 𝑷(1) + 𝑷(2) + 𝑷(3) + ⋯  (Eq. 2.36) 

in which 

𝑷(1) = 𝜒𝑎𝑏(−𝜔𝛽 , 𝜔𝛽)𝑒−𝑖𝜔𝛽𝑡𝑬𝑏(𝜔𝛽)                         (Eq. 2.37) 

𝑷(2) = 𝜒𝑎𝑏𝑐(−𝜔𝛽, −𝜔𝛾, 𝜔𝛽 , 𝜔𝛾)𝑒−𝑖(𝜔𝛽+𝜔𝛾)𝑡𝑬𝑏(𝜔𝛽)𝑬𝑐(𝜔𝛾)     (Eq. 2.38) 

 

From perturbation approach, values of single particle operator Φ is expressible as 

𝛷𝜆 = 𝜆𝛷(1) + 𝜆2𝛷(2) + 𝜆3𝛷(3) + ⋯                        (Eq. 2.39) 

where  

𝛷(1) = ∑ 𝑓𝑛𝑚(𝒌)𝛷𝑛𝑚(𝒌, 𝑡)
𝜇𝑚𝑛

𝑏 (𝒌, 𝑡)

(𝜔𝑚𝑛 − 𝜔𝛽)
× 𝑒−𝑖𝜔𝛽𝑡𝑬𝑏(𝜔𝛽)

𝑛𝑚𝑘

   (Eq. 2.40) 

𝛷(2)

= 𝑖 ∑ 𝑓𝑛𝑚(𝒌)𝛷𝑛𝑚(𝒌, 𝑡)

𝑛𝑚𝑘

1

(𝜔𝑚𝑛 − 𝜔𝛽 − 𝜔𝛾)

×
𝛿

𝛿𝑧
[

𝜇𝑚𝑛
𝑏 (𝒌, 𝑡)

𝜔𝑚𝑛(𝑧) − 𝜔𝛽
] 𝑒−𝑖(𝜔𝛽+𝜔𝛾)𝑡𝑬𝑏(𝜔𝛽)𝑬𝑐(𝜔𝛾)                                              (Eq. 2.41) 


