Simulation And Optimization Of Biodiesel Production From Dimethyl Carbonate In Batch Reactor

Ali, Nur Amirah Mohd (2016) Simulation And Optimization Of Biodiesel Production From Dimethyl Carbonate In Batch Reactor. Masters thesis, Universiti Sains Malaysia.

[img]
Preview
PDF - Submitted Version
Download (420kB) | Preview

Abstract

Simulasi bagi penghasilan biodiesel daripada dimetil karbonat (DMC) adalah sangat sukar dan terhad terhadap penggunaan minyak kanola sebagai bahan mentah. Dalam kajian ini, proses DMC transesterifikasi pada skala perintis dalam penghasilan biodiesel dengan menggunakan reaktor kelompok telah diambil kira. Pengoperasian reaktor kelompok berskala perintis telah diperkenalkan dalam penghasilan biodiesel sebagai satu persediaan untuk pembangunan komersial dan industri. Simulasi reaktor kelompok berskala perintis bagi tindak balas DMC transesterifikasi menggunakan Aspen Plus versi 2006 telah diperkenalkan dalam kajian ini. Model simulasi dipastikan kesahihannya dengan keputusan eksperiment yang terdapat dalam literasi. Model simulasi itu disahkan pada suhu 75°C dengan R2 = 0.96 dan menghasilkan trend profil kepekatan PME yang sama dengan keputusan eksperimen. Berdasarkan model simulasi yang sah, reaktor kelompok skala perintis telah dilakukan dan kajian kepekaan telah dijalankan untuk mengkaji perilaku proses DMC transesterifikasi pada skala yang lebih besar. Reaktor kelompok berskala perintis dengan isipadu 300 L diperkenalkan dengan faktor 660 dari skala eksperiment. Berdasarkan kepada kajian kepekaan, suhu reaktor dan bilangan minyak kelapa sawit dipilih sebagai pembolehubah yang akan dimanipulasikan dalam kajian pengoptimunan. Kajian pengoptimunan telah dijalankan dengan tiga objektif iaitu maksimum penukaran (OP1), minimum masa kelompok (OP2) dan maksimum kepala sawit metil ester (PME) dan minimum sisa buangan secara serentak (OP3). Kajian pengoptimunan tersebut telah dilaksanakan menggunakan alat pengoptimunan dalam Aspen Plus iaitu berdasarkan kepada teknik pengaturcaraan kuadratik berurutan (SQP). Keputusan menunjukkan bahawa bagi OP1, penukaran tindak balas DMC transesterifikasi telah meningkat daripada 90.6% kepada 99.9%. Bagi OP2, masa kelompok yang diperlukan untuk tindak balas tersebut telah dipendekkan daripada 8 jam kepada 2.68 jam manakala bagi OP3, penghasilan PME telah meningkat dengan ketara daripada 31.05 kg kepada 125.99 kg dan sisa buangan telah berkurang daripada 76.42 kg kepada 63.78 kg pada masa kelompok yang singkat. Dalam realiti, pengoperasian suhu ke atas reaktor kelompok mengalami perubahan dengan masa. Oleh itu, daripada mengoptimumkan suhu yang tetap, pengoptimunan profil suhu juga diambil kira. Dengan mengoptimumkan profil suhu, keputusan prestasi yang diperolehi bagi proses DMC transesterifikasi adalah lebih baik. Penghasilan PME bertambah manakala masa kelompok telah dipendekkan dan penghasilan bilangan sisa buangan dikurangkan. Bagi setiap masalah pengoptimunan, profil suhu yang optimum telah diperolehi adalah kurang daripada suhu optimum yang diperolehi sebelumnya. Kesimpulannya, keputusan pengoptimuman yang diperolehi dari profil suhu optimum OP3 ialah keadaan suhu yang terbaik untuk dilaksanakan dalam industri biodiesel kerana ia mampu menyediakan operasi yang lebih selamat dan menghasilkan pengeluaran biodiesel yang lebih besar dengan jumlah pengeluaran sisa yang lebih rendah dalam masa kelompok yang minimum. ________________________________________________________________________________________________________________________ Simulation of biodiesel production from dimethyl carbonate (DMC) is very scarce and limited to utilization of canola oil as the raw material. In this study, a pilot scale of DMC transesterification process to produce biodiesel in a batch reactor was considered. A pilot scale operation of the batch reactor was introduced to the biodiesel production as a preparation for commercial and industrial development. A simulation of the pilot scale batch reactor for DMC transesterification reaction using Aspen Plus Version 2006 is presented in this study. The simulation model was validated with experimental results available in the literature. The simulation model was validated at temperature of 75°C which gave R2 = 0.96 and produced a similar trend of the Palm Methyl Ester (PME) concentration profile with the experimental results. From the validated simulation model, a pilot scale batch reactor operation was simulated and sensitivity studies were carried out to study the behavior of DMC transesterification process at a larger scale. A pilot scale batch reactor considered has a volume of 300 L with scaling factor of 660 from the experimental scale of operation. Based on the sensitivity studies, reactor temperature and amount of reactant were selected as variables to be optimized in the optimization study. The optimization study was carried out with three objectives which were: maximize conversion (OP1), minimize batch time (OP2), and maximize palm methyl ester (PME) and minimize waste simultaneously (OP3). The optimization study was performed using the optimizer tool in Aspen Plus which was based on the sequential quadratic programming (SQP) technique. The results showed that in optimization problem (OP)1, the conversion of DMC transesterification reaction increased from 90.6% to 99.9%. In OP2, the batch time required for the reaction was shortened from 8 hours to 2.68 hours while in OP3, the PME production significantly increased from 31.05 kg to 125.99 kg and the waste decreased from 76.42 kg to 63.78 kg at the shortest batch time specified. In real situation, operational temperature of batch reactor is changing with time. Therefore, apart from optimizing temperature at single time interval, optimizing temperature at multiple time intervals was considered to obtain optimal temperature profile. By optimizing the profile, the performance of DMC transesterification process produced better results. The PME production increased while the batch time was shortened and with low amounts of waste produced. For each optimization problem, the optimum temperature profile obtained was less than the optimum temperature obtained at single time interval. In conclusion, optimization results obtained from optimal temperature profile of OP3 is the best temperature condition to be implemented in biodiesel industry since it was able to provide safer operation and produce larger biodiesel production with lower amount of waste produced at minimum batch time.

Item Type: Thesis (Masters)
Additional Information: Full text is available at http://irplus.eng.usm.my:8080/ir_plus/institutionalPublicationPublicView.action?institutionalItemId=3098
Subjects: T Technology
T Technology > TJ Mechanical engineering and machinery > TJ1-1570 Mechanical engineering and machinery
Divisions: Kampus Kejuruteraan (Engineering Campus) > Pusat Pengajian Kejuruteraan Mekanikal (School of Mechanical Engineering) > Thesis
Depositing User: Mr Mohd Jasnizam Mohd Salleh
Date Deposited: 30 Aug 2018 08:25
Last Modified: 30 Aug 2018 08:25
URI: http://eprints.usm.my/id/eprint/41608

Actions (login required)

View Item View Item
Share