A Class Of Measurable Dynamical Systems For Chaotic Cryptography

Akhshani, Afshin (2008) A Class Of Measurable Dynamical Systems For Chaotic Cryptography. Masters thesis, Universiti Sains Malaysia.

[img]
Preview
PDF
Download (431kB) | Preview

Abstract

Teori kaos merupakan teori yang merangkumi semua aspek sains. Kini, dalam dunia hari ini, ia turut merangkumi semua aspek matematik, fizik, biologi, kewangan, komputer dan juga muzik. Sebagai suatu daripada aplikasi teori ini, keselamatan komunikasi mula dikaji seawal 1990-an. Daya tarikan utama teori ini digunakan sebagai asas untuk membangunkan kriptosistem adalah disebabkan sifat intrinsiknya, antaranya: kepekaannya terhadap keadaan awal dan parameter kawalan, perlakuan seakan-akan rawak, ergodisiti dan sifat campurannya, yang mempunyai hubungan erat dengan keperluan kriptografi. Sifat teori ini yang paling penting adalah ergodisiti dan campuran, yang boleh dihubungkan dengan dua sifat kriptografi asas, iaitu kekeliruan (“confusion”) dan pembauran (“diffusion”). Bagi membuktikan ergodisiti dan kekuatan campuran, cukup dengan hanya menunjukkan bahawa sistem memperoleh ukuran takvarian dan entropi Kolmogorov-Sinai (K-S) daripada sudut pandangan sistem dinamik. Chaos theory is a blanketing theory that covers all aspects of science, hence, it shows up everywhere in the world today: mathematics, physics, biology, finance, computer and even music. As an application of chaos theory, secure communications have been studied since the early 1990s. The attractiveness of using chaos as the basis for developing cryptosystem is mainly due to the intrinsic nature of chaos such as the sensitivity to the initial condition and control parameter, random-like behaviors, ergodicity and mixing property, which have tight relationships with the requirements of cryptography. The most important features of chaos are ergodicity and mixing, which can be connected with two basic cryptographic properties; confusion and diffusion. To prove ergodicity and strength of the mixing, it’s enough to show that the system possess an invariant measure and Kolmogorov-Sinai (K-S) entropy from dynamical systems point of view.

Item Type: Thesis (Masters)
Subjects: Q Science > QC Physics > QC1 Physics (General)
Divisions: Pusat Pengajian Sains Fizik (School of Physics) > Thesis
Depositing User: Mr Mohammad Harish Sabri
Date Deposited: 09 Aug 2018 07:08
Last Modified: 12 Apr 2019 05:27
URI: http://eprints.usm.my/id/eprint/41257

Actions (login required)

View Item View Item
Share