Efficacy And Compatibility Of Blood-Mimicking Fluid In Vascular Wall-Less Flow Phantom For Use In Doppler Ultrasound Applications

Oglat, Ammar Anwar Khaled (2019) Efficacy And Compatibility Of Blood-Mimicking Fluid In Vascular Wall-Less Flow Phantom For Use In Doppler Ultrasound Applications. PhD thesis, Universiti Sains Malaysia.

[img]
Preview
PDF
Download (803kB) | Preview

Abstract

Doppler ultrasound (US) tools have been utilized clinically and pre-clinically since 1970s, and they were extremely responsible for the detection of blood flow in arteries and veins. This project shows a general overview focusing on the measuring and calculating the influence of the thickness of protective layer in ultrasonic probe of German Society for Applied Medical Physics and Technology (GAMPT) for the speed of sound (Vs) measurements. Preparing and characterizing new BMF with relatively low-cost, suitable viscosity, and less consuming time for preparation with both new adequate ternary mixture fluid (water (H2O), propylene glycol (PG), and polyethylene glycol (PEG) 200Mw) and with a novel suspension scatter particle (Poly (4-methylstyrene)) to produce a suitable backscatter power comparable to the human blood were explained. Moreover, in this study, the mechanisms of fabrication and characterization a strong (robust) and elastic vascular wall-less flow phantom (TMM and VMM) utilizing a physically strong materials called Konjac (K), Carrageenan (C), and gelatin (bovine skin)-based TMM for high physiological flow rate and detection of the issues related to it by medical Doppler US were explained. The ultrasonic technique was utilized as a main apparatus for acoustical measurements (Vs, attenuation (α), and backscatter power) of BMF and TMM.

Item Type: Thesis (PhD)
Subjects: Q Science > QC Physics > QC1-999 Physics
Divisions: Pusat Pengajian Sains Fizik (School of Physics) > Thesis
Depositing User: Mr Mohammad Harish Sabri
Date Deposited: 19 Mar 2021 01:33
Last Modified: 19 Mar 2021 01:33
URI: http://eprints.usm.my/id/eprint/48665

Actions (login required)

View Item View Item
Share