Non-Linear Contact Finite Element Analysis Of Split Hopkinson Incident Bars Under Impact Load

Ng, Yie Yen (2021) Non-Linear Contact Finite Element Analysis Of Split Hopkinson Incident Bars Under Impact Load. Project Report. Universiti Sains Malaysia, Pusat Pengajian Kejuruteraan Mekanik. (Submitted)

[img]
Preview
PDF
Download (1MB) | Preview

Abstract

A high strain rate testing system is important to define whether the component’s design can resist impact loading. Therefore, Split Hopkinson Pressure Bar (SHPB) development is important for studying material behaviour at high strain rates. However, from the literature review conducted in this project, it was found that no publication gave a specific guideline to determine the design parameters of a Tensile SHPB and to characterize the stresses experienced by the SHPB’s components. The purpose of this project was to characterize the stresses of an incident bar and use the simulation result to propose a design guideline for the development of a small-scale Tensile SHPB by using Ansys Mechanical APDL. To carry out the analysis, the geometry created in the simulation followed the actual material and dimension of Tensile SHPB developed in the Mechanical Engineering laboratory. The approach for the finite element analysis was based on contact mechanics to simulate the working principle of the SHPB. An experimental setup in a related testing configuration was used as the loading parameter in the simulation. Using this loading configuration, the finite element model demonstrated that the maximum stress experienced by the incident bar under frictionless conditions was 677MPa. Subsequently, pressure and friction losses were estimated to make the simulation a sensible outcome; the stress of 403.50MPa was obtained from the calculation. Moreover, small-scale SHPB was set to fit onto a 1.8m x 1.2m regular table using the stress ratio

Item Type: Monograph (Project Report)
Subjects: T Technology
T Technology > TJ Mechanical engineering and machinery > TJ1-1570 Mechanical engineering and machinery
Divisions: Kampus Kejuruteraan (Engineering Campus) > Pusat Pengajian Kejuruteraan Mekanikal (School of Mechanical Engineering) > Monograph
Depositing User: Mr Mohamed Yunus Mat Yusof
Date Deposited: 14 Dec 2022 07:56
Last Modified: 14 Dec 2022 07:56
URI: http://eprints.usm.my/id/eprint/56004

Actions (login required)

View Item View Item
Share