Simultaneous Removal Of Ammonium And Phosphate Using Magnesium Chloride Modified Zeolite

Gunasegran, Vikneshan (2021) Simultaneous Removal Of Ammonium And Phosphate Using Magnesium Chloride Modified Zeolite. Project Report. Universiti Sains Malaysia, Pusat Pengajian Kejuruteraan Kimia. (Submitted)

[img]
Preview
PDF
Download (270kB) | Preview

Abstract

This study analyzed individual and simultaneous sorption of ammonium (NH4+) and phosphate (PO43-) and their mechanisms together with their major operating parameters such as initial nutrient concentration, types of zeolites, and addition of salt onto Mg2+-modified zeolites. The phosphate reported a removal efficiency of -62.68% due to poor sorption for individual sorption, and 13.49% for simultaneous removal. Besides, the removal efficiency of ammonium in individual and simultaneous sorption is 59.98% and 35.87%, respectively. The ammonium and phosphate removal efficiency decreases as the initial nutrient concentration increases. Moreover, the mordenite typed zeolites showed much better adsorption for both individual and simultaneous with a higher removal efficiency of 59.98% and 35.87%, respectively for ammonium at an initial concentration of 20 ppm. However, the zeolite-Y had more adsorption capacity towards phosphate with a higher removal efficiency of 19.91%. The individual presence of Na+ had a significantly negative effect on the removal of ammonium as Na+ possesses small ionic radii than NH4+, which reduces ammonium uptakes. The pseudo-second-order model could describe the adsorption of nutrients with higher (R2 ≥ 0.99), where chemical actions mainly govern the process. The Langmuir model can be acceptably applied to fit the experimental data with a higher correlation coefficient (R2 = 0.995) for individual ammonium sorption, suggesting that the adsorption is a monolayer coverage. The addition of MgCl2 to the reaction system promoting the desorption process for both separate and simultaneous processes revealed the possibility of regeneration and reusability of the adsorbent.

Item Type: Monograph (Project Report)
Subjects: T Technology
T Technology > TP Chemical Technology
Divisions: Kampus Kejuruteraan (Engineering Campus) > Pusat Pengajian Kejuruteraan Kimia (School of Chemical Engineering) > Monograph
Depositing User: Mr Engku Shahidil Engku Ab Rahman
Date Deposited: 04 Oct 2022 08:05
Last Modified: 04 Oct 2022 08:05
URI: http://eprints.usm.my/id/eprint/55127

Actions (login required)

View Item View Item
Share