The Effect Of Glucose Concentration On The Co-Factor Recycling In A Non-Growing Whole-Cell Saccharomyces Cerevisiae-Mediated Ketoisophorone Biotransformation

Umapathy, Nanthini (2017) The Effect Of Glucose Concentration On The Co-Factor Recycling In A Non-Growing Whole-Cell Saccharomyces Cerevisiae-Mediated Ketoisophorone Biotransformation. Project Report. Universiti Sains Malaysia, Pusat Pengajian Kejuruteraan Kimia. (Submitted)

[img]
Preview
PDF
Download (829kB) | Preview

Abstract

The aim of this study is to investigate the effect of different glucose concentrations on the recycling of co-factor in a non-growing whole-cell Saccharomyces cerevisiae. Besides that, this study also investigates the effect of different glucose concentrations on the biotransformation of 2,6,6-trimethylcyclohex-2-ene-1,4-dione also known as ketoisophorone in a non-growing whole-cell S. cerevisiae. The liquid phase biotransformation was carried out in a shake-flask culture. The conditions of biotransformation are 37 °C, 150 rpm, 5 g/L S. cerevisiae, 0.2 g/L ketoisophorone and varied concentration of glucose (5 g/L, 10g/L, 15 g/L). It was found that level of co-factors were shown at different glucose concentrations. This indicates that co-factor recycling process exist in this reaction.15 g/L of glucose showed the highest value of absorbance which is 0.4100. 5.018×1022 number of glucose molecules are present in 15 g/L glucose. The optimum concentration of glucose for the formation of actinol is 15 g/L. 15 g/L of glucose showed a maximum of 12 mole % of actinol formed. Levodione was the only intermediate formed during the biotransformation. Ketone reduction did not occur due to the inhibition of alcohol dehydrogenase caused by high concentration of NAD+. Besides, ketone reduction has a slower reaction rate as compared to the reduction of carbon-carbon double bond by enoate reductase.

Item Type: Monograph (Project Report)
Subjects: T Technology
T Technology > TP Chemical Technology > TP155-156 Chemical engineering
Divisions: Kampus Kejuruteraan (Engineering Campus) > Pusat Pengajian Kejuruteraan Kimia (School of Chemical Engineering) > Monograph
Depositing User: Mr Mohamed Yunus Mat Yusof
Date Deposited: 13 Jul 2022 01:36
Last Modified: 13 Jul 2022 01:36
URI: http://eprints.usm.my/id/eprint/53330

Actions (login required)

View Item View Item
Share