Iron Oxide Encapsulated Gold Colloidal Nanoparticle Via Rapid Sonochemical Method For Mri And Ct Imaging Application

Dheyab, Mohammed Ali (2021) Iron Oxide Encapsulated Gold Colloidal Nanoparticle Via Rapid Sonochemical Method For Mri And Ct Imaging Application. PhD thesis, Perpustakaan Hamzah Sendut.

[img]
Preview
PDF
Download (1MB) | Preview

Abstract

Core@shell nanoparticles (Fe3O4@Au NPs) have multiple functions obtained in one stable entity and thus have been extensively investigated. Combining Fe3O4 and Au NPs in one core@shell nanostructure is a promising strategy for diagnostic biomedical applications. However, the conventional direct methods for Fe3O4@Au NPs synthesis are laborious and time-consuming. Therefore, this study presents a facile and rapid sonochemical technique of synthesising Fe3O4@Au NPs with excellent physicochemical properties for magnetic resonance imaging (MRI) and computed tomography (CT) scan. The Au shell is coated on Fe3O4 NPs using a Vibra-Cell ultrasonic solid horn with tip size, frequency and power output of ½ inch, 20 kHz and 750 watts, respectively within 10 minutes. The targeted zeta potential of - 46.125 mV was achieved under the optimum conditions of 10 ml of HAuCl4, 30 ml of sodium citrate (SC) and sonication amplitude of 40%, which is consistent (about 99.2%) with the actual average zeta potential (- 45.8 mV). The stability and monodispersing of Fe3O4NPs improved following modification to Fe3O4@Au, as indicated by the increase in zeta potential from - 24.2 mV to - 45.8 mV. The saturation magnetization (Ms) value of Fe3O4 was 54 emu/g, while that of Fe3O4@Au NP is 38 emu/g. In general, the sonochemical method effectively synthesis highly stable and monodisperse Fe3O4@Au NPs with an average size of about 20 nm within 10 minutes.

Item Type: Thesis (PhD)
Subjects: Q Science > QC Physics > QC1 Physics (General)
Divisions: Pusat Pengajian Sains Fizik (School of Physics) > Thesis
Depositing User: HJ Hazwani Jamaluddin
Date Deposited: 28 Mar 2022 07:07
Last Modified: 28 Mar 2022 07:07
URI: http://eprints.usm.my/id/eprint/52055

Actions (login required)

View Item View Item
Share