Development of Knowledge-Based Expert Screening System for Cervical Cancer

Lim , Jin Chow (2016) Development of Knowledge-Based Expert Screening System for Cervical Cancer. Masters thesis, Universiti Sains Malaysia.

[img] PDF - Submitted Version
Download (316Kb)

    Abstract

    Barah pangkal rahim adalah barah kedua serius dalam kalangan wanita. Barah pangkal rahim boleh dirawat pada peringkat awal. Oleh itu, pemeriksaan dan diagnosis memainkan peranan yang penting bagi pengesanan awal barah tersebut. Tugas pemeriksaan pesakit barah pangkal rahim memerlukan pengetahuan dan pengalaman pakar sakit puan. Biasanya terdapat beberapa masalah yang wujud dalam saringan manual palitan pap di mana kekurangan kepakaran ahli patologi dan pakar ginekologi serta proses kerja yang memakan masa yang lama dan keputusan tidak boleh diperolehi dalam tempoh yang singkat. Kadang-kadang manusia mempunyai kesukaran dan ketidakpastian dalam membuat keputusan ketika pemeriksaan. Oleh itu, penyelidik-penyelidik terdahulu telah membangunkan sistem pakar dalam saringan barah pangkal rahim dengan menggunakan penganalisis imej. Walau bagaimanapun, analisis imej memerlukan masa yang lama di mana spesimen imej diperlukan sebelum analisis imej boleh dilakukan. Untuk menangani masalah ini, pembangunan sistem pakar berasaskan pengetahuan dalam pemeriksaan pra-barah pangkal rahim diperkenalkan dalam kajian ini di mana sistem tersebut hanya terdiri daripada penggunaan soal selidik, tanpa penglibatan analisis imej dalam sistem ini. Selain itu, hasil klasifikasi boleh diperolehi dengan cepat daripada sistem ini. Dari hasil kajian ini, sistem yang dibina menunjukkan keupayaan yang baik dalam pengasingan kes-kes pemeriksaan pangkal rahim yang normal dan tidak normal, di mana sensitiviti dan spesifisiti yang diperolehi masing-masing adalah 95% dan 85%. ________________________________________________________________________________________________________________________ Cervical cancer is the second common cancer among women. Cancer can be cured at early stage. Hence screening and diagnosis plays an important role for early detection of cancer. The screening task of cervical cancer patient needs knowledge and experience of a gynecologist. Typically there are several problems exist for pap smear screening which is the shortage of expertise such as pathologists and gynecologists, and it involves plenty of manual work for the cervical cancer screening, hence the work process becomes time consuming and the results cannot be obtained in a short period. Sometimes human has difficulty and uncertainty in making decision for the screening results. Researchers have already developed an expert system in screening cervical cancer by using image analyzer. However, image analysis is time consuming time where the image specimen is needed before further image analysis can be done. In order to address the above mentioned problems, a knowledge-based expert system for pre-cervical cancer screening is introduced in this study which only consists the usage of questionnaire and without the involvement of image analysis in this system. Besides that, the classification result can be obtained spontaneously from this system. From the results of this study, the system shows high capability of segregating the abnormal cervical screening cases and normal screening cases, with sensitivity and specificity of 95% and 85% respectively.

    Item Type: Thesis (Masters)
    Additional Information: full text is available at http://irplus.eng.usm.my:8080/ir_plus/institutionalPublicationPublicView.action?institutionalItemId=2056
    Subjects: T Technology
    T Technology > TK Electrical Engineering. Electronics. Nuclear Engineering > TK7800-8360 Electronics
    Divisions: Kampus Kejuruteraan (Engineering Campus) > Pusat Pengajian Kejuruteraaan Elektrik & Elektronik (School of Electrical & Electronic Engineering) > Thesis
    Depositing User: Mr Mohd Jasnizam Mohd Salleh
    Date Deposited: 11 Jun 2018 15:55
    Last Modified: 11 Jun 2018 15:55
    URI: http://eprints.usm.my/id/eprint/40744

    Actions (login required)

    View Item
    Share