Metaheuristic-Based Neural Network Training And Feature Selector For Intrusion Detection

Ghanem, Waheed Ali Hussein Mohammed (2019) Metaheuristic-Based Neural Network Training And Feature Selector For Intrusion Detection. PhD thesis, Universiti Sains Malaysia.

[img]
Preview
PDF
Download (1MB) | Preview

Abstract

Intrusion Detection (ID) in the context of computer networks is an essential technique in modern defense-in-depth security strategies. As such, Intrusion Detection Systems (IDSs) have received tremendous attention from security researchers and professionals. An important concept in ID is anomaly detection, which amounts to the isolation of normal behavior of network traffic from abnormal (anomaly) events. This isolation is essentially a classification task, which led researchers to attempt the application of well-known classifiers from the area of machine learning to intrusion detection. Neural Networks (NNs) are one of the most popular techniques to perform non-linear classification, and have been extensively used in the literature to perform intrusion detection. However, the training datasets usually compose feature sets of irrelevant or redundant information, which impacts the performance of classification, and traditional learning algorithms such as backpropagation suffer from known issues, including slow convergence and the trap of local minimum. Those problems lend themselves to the realm of optimization. Considering the wide success of swarm intelligence methods in optimization problems, the main objective of this thesis is to contribute to the improvement of intrusion detection technology through the application of swarm-based optimization techniques to the basic problems of selecting optimal packet features, and optimal training of neural networks on classifying those features into normal and attack instances. To realize these objectives, the research in this thesis follows three basic stages, succeeded by extensive evaluations.

Item Type: Thesis (PhD)
Additional Information: Access full text: Off Campus Log In Via OpenAthens
Subjects: Q Science > QA Mathematics > QA75.5-76.95 Electronic computers. Computer science
Divisions: Pusat Pengajian Sains Komputer (School of Computer Sciences) > Thesis
Depositing User: Mr Mohammad Harish Sabri
Date Deposited: 26 Jun 2020 08:38
Last Modified: 26 Jun 2020 08:38
URI: http://eprints.usm.my/id/eprint/46632

Actions (login required)

View Item View Item
Share