Enhanced and automated approaches for fish recognition and classification system

Samma, Ali Salem Ali (2011) Enhanced and automated approaches for fish recognition and classification system. PhD thesis, Universiti Sains Malaysia.

[img]
Preview
PDF
Download (206kB) | Preview

Abstract

Pengecaman dan pengelasan imej ikan dengan darjah ketepatan dan kecekapan yang tinggi boleh menjadi satu tugas yang sukar kerana ikan mempunyai persamaan yang sangat tinggi dengan latar belakangnya, kehilangan beberapa ciri ikan, dan kos komputan yang tinggi. Recognition and classification of fish images with high degree of accuracy and efficiency can be a difficult task due to fish being very similar to the background, missing of some features and high cost of computation.

Item Type: Thesis (PhD)
Subjects: Q Science > QA Mathematics > QA75.5-76.95 Electronic computers. Computer science
Divisions: Pusat Pengajian Sains Komputer (School of Computer Sciences) > Thesis
Depositing User: Mr Erwan Roslan
Date Deposited: 10 Dec 2018 07:49
Last Modified: 10 Dec 2018 07:49
URI: http://eprints.usm.my/id/eprint/43123

Actions (login required)

View Item View Item
Share