Hasanat, Mozaherul Hoque Abul
(2011)
Probabilistic contextual models for object class recognition in uncontrived images.
PhD thesis, Universiti Sains Malaysia.
Abstract
Konteks merupakan suatu elemen penting dalam mendapatkan penjelasan yang bererti untuk sesuatu imej bagi kedua-dua sistem visual biologi dan buatan. Tesis ini mencadangkan permodelan hubungan konteks di antara objek dunia nyata di dalam imej yang tidak dibuat-buat bagi meningkatkan prestasi pengecaman kelas objek. Dua model kebarangkalian dicadangkan iaitu Semantic Context Model (SCM) dan Spatial Context Model (SpCM) - untuk memodelkan hubungan kontekstual semantik dan ruangan peringkat tinggi.
Context is a vital element in deriving meaningful explanation of an image for both biological, as well as, artificial vision systems. This thesis proposes to model contextual relation among real-world objects in uncontrived images in order to improve object class recognition performance. Two probabilistic models are proposed – Semantic Context Model (SCM), and Spatial Context Model (SpCM) to model high-level semantic and spatial contextual relations respectively.
Actions (login required)
|
View Item |