Probabilistic contextual models for object class recognition in uncontrived images.

Hasanat, Mozaherul Hoque Abul (2011) Probabilistic contextual models for object class recognition in uncontrived images. PhD thesis, Universiti Sains Malaysia.

[img]
Preview
PDF
Download (7MB) | Preview

Abstract

Konteks merupakan suatu elemen penting dalam mendapatkan penjelasan yang bererti untuk sesuatu imej bagi kedua-dua sistem visual biologi dan buatan. Tesis ini mencadangkan permodelan hubungan konteks di antara objek dunia nyata di dalam imej yang tidak dibuat-buat bagi meningkatkan prestasi pengecaman kelas objek. Dua model kebarangkalian dicadangkan iaitu Semantic Context Model (SCM) dan Spatial Context Model (SpCM) - untuk memodelkan hubungan kontekstual semantik dan ruangan peringkat tinggi. Context is a vital element in deriving meaningful explanation of an image for both biological, as well as, artificial vision systems. This thesis proposes to model contextual relation among real-world objects in uncontrived images in order to improve object class recognition performance. Two probabilistic models are proposed – Semantic Context Model (SCM), and Spatial Context Model (SpCM) to model high-level semantic and spatial contextual relations respectively.

Item Type: Thesis (PhD)
Subjects: R Medicine > RM Therapeutics. Pharmacology > RM300-666 Drugs and their actions
Divisions: Pusat Penyelidikan Dadah dan Ubat-ubatan (Centre for Drug Research) > Thesis
Depositing User: Mr Erwan Roslan
Date Deposited: 26 Nov 2018 06:51
Last Modified: 26 Nov 2018 06:51
URI: http://eprints.usm.my/id/eprint/43011

Actions (login required)

View Item View Item
Share