A Comparative Study Of Different Types Of Mother Wavelets For Heartbeat Biometric Verification System

Lee, Jian Han (2017) A Comparative Study Of Different Types Of Mother Wavelets For Heartbeat Biometric Verification System. Masters thesis, Universiti Sains Malaysia.

PDF - Submitted Version
Download (832Kb) | Preview


    Recently, advanced biometric technology is turning to the use of electrocardiograms (ECG) signal as new modality for verification system. The ECG signal contains sufficient information to verify an individual as it is unique to everyone. One of the feasible methods to extract the salient information from ECG signal for verification is by using wavelet transform. However, there is a challenge in implementing it as different types and orders of mother wavelet used will yield different verification performance. Therefore, in this study, a comparative study is done so as to investigate the optimum type and order of mother wavelet that represents the best feature for the verification system. Three different types of mother wavelets i.e. Symlet, Daubechies and Coiflet with order ranging from one to five have been studied in this research. The extracted features are then trained by using SVM classifier to generate a model to verify the features. The performance of the ECG biometric verification system is evaluated with the Receiver Operating Characteristic (ROC) plot and Equal Error Rate (EER). Experimental result showed that the developed system achieves the best performance when the 3rd order Coiflet is used as feature with an EER score of 10.755% is achieved.

    Item Type: Thesis (Masters)
    Subjects: T Technology > TK Electrical Engineering. Electronics. Nuclear Engineering > TK1-9971 Electrical engineering. Electronics. Nuclear engineering
    Divisions: Kampus Kejuruteraan (Engineering Campus) > Pusat Pengajian Kejuruteraaan Elektrik & Elektronik (School of Electrical & Electronic Engineering) > Thesis
    Depositing User: Mr Mohd Fadli Abd Rahman
    Date Deposited: 08 Mar 2018 17:02
    Last Modified: 17 May 2018 11:09
    URI: http://eprints.usm.my/id/eprint/39420

    Actions (login required)

    View Item