Integer Sub-Decomposition (Isd) Method For Elliptic Curve Scalar Multiplication

Ajeena, Ruma Kareem K. (2015) Integer Sub-Decomposition (Isd) Method For Elliptic Curve Scalar Multiplication. PhD thesis, Universiti Sains Malaysia.

[img]
Preview
PDF
Download (339kB) | Preview

Abstract

Dalam kajian ini, kaedah baru yang dipanggil sub-peleraian integer (ISD) berdasarkan prinsip Gallant, Lambert dan Vanstone (GLV) bagi mengira perkalian skalar kP berbentuk lengkung elips E melebihi kawasan terbatas utama Fp yang mempunyai pengiraan endomorphisms ψj yang efisyen bagi j = 1; 2, menghasilkan nilai yang dihitung sebelum ini untuk λ jP, di mana λ j ∈ [1;n−1] telah dicadangkan. Jurang utama dalam kaedah GLV telah ditangani dengan menggunakan kaedah ISD. Skalar k dalam kaedah ISD telah dibahagikan dengan menggunakan rumusan k ≡ k11+k12λ1+k21+k22λ2 (mod n); dengan max{|k11|; |k12|} ≤ √ n dan max{|k21|; |k22|} ≤ √ n. Oleh yang demikian formula perkalian kP scalar ISD boleh dinyatakan seperti berikut: kP = k11P+k12ψ1(P)+k21P+k22ψ2(P): In this study, a new method called integer sub-decomposition (ISD) based on the Gallant, Lambert, and Vanstone (GLV) method to compute the scalar multiplication kP of the elliptic curve E over prime finite field Fp that have efficient computable endomorphisms ψj for j = 1; 2, resulting in pre-computed values of λ jP, where λ j ∈ [1;n−1] has been proposed. The major gaps in the GLV method are addressed using the ISD method. The scalar k, on the ISD method is decomposed using the formulation k ≡ k11+k12λ1+k21+k22λ2 (mod n); with max{|k11|; |k12|} ≤ √ n and max{|k21|; |k22|} ≤ √n. Thus, the ISD scalar multiplication kP formula can be expressed as follows: kP = k11P+k12ψ1(P)+k21P+k22ψ2(P):

Item Type: Thesis (PhD)
Subjects: Q Science > QA Mathematics > QA1 Mathematics (General)
Divisions: Pusat Pengajian Sains Matematik (School of Mathematical Sciences)
Depositing User: HJ Hazwani Jamaluddin
Date Deposited: 07 Mar 2017 07:27
Last Modified: 12 Apr 2019 05:25
URI: http://eprints.usm.my/id/eprint/32317

Actions (login required)

View Item View Item
Share