Optimization Methods In Training Neural Networks

Sathasivam, Saratha (2003) Optimization Methods In Training Neural Networks. Masters thesis, Universiti Sains Malaysia.

[img]
Preview
PDF
Download (956kB) | Preview

Abstract

Terdapat beberapa teknik pengekstremuman bagi menyelesaikan masalah aIjabar linear dan tak linear. Kaedah Newton mempunyai sifat yang dipanggil penamatan kuadratik yang bermaksud ia meminimumkan suatu fungsi kuadratik dalam bilangan le1aran yang terhingga. Walaubagaimanapun, kaedah ini memerlukan pengiraan dan pengstoran terbitan kedua bagi fungsi kuadratik yang terlibat. Apabila bilangan parameter n adalah besar, ianya mungkin tidak praktikat· untuk mengira semua terbitap kedua. Hal ini adalah benar bagi rangkaian neural di mana kebanyakan aplikasi praktikal memerlukan beberapa ratus atau ribu pemberat. Bagi masalah-masalah sedemikian, kaedah pengoptimuman yang hanya memerlukan terbitan pertama tetapi masih mempunyai sifat penamatan kuadratik lebih diutamakan. There are a number of extremizing techniques to solve linear and nonlinear algebraic • problems. Newton's method has a property called quadratic termination~ which means that it minimizes a quadratic function exactly in a finite number of iterations. Unfortunately, it requires calculation and storage of the second derivatives of the quadratic function involved. When the number of parameters, n, is large, it may be impractical to compute all the second derivatives. This is especially true for neural networks, where practical applications can require several hundred to many thousands weights. Eor these particular cases, methods that require ,only first derivatives bMt still have quadratic termination are preferred.

Item Type: Thesis (Masters)
Subjects: Q Science > QA Mathematics > QA1 Mathematics (General)
Divisions: Pusat Pengajian Sains Matematik (School of Mathematical Sciences)
Depositing User: HJ Hazwani Jamaluddin
Date Deposited: 21 Nov 2016 07:45
Last Modified: 27 Jul 2017 04:46
URI: http://eprints.usm.my/id/eprint/31158

Actions (login required)

View Item View Item
Share