Goh, Wei Yee
(2002)
Time Series Prediction Using Recurrent Neural Networks And Boosting: An Experimental Study In Pharmaceutical Product Formulation.
Masters thesis, Universiti Sains Malaysia.
Abstract
Tesis ini berpusat pada perkembangan teknik Rangkaian Neural Buatan (ANN)
dalam menyelesaikan masalah-masalah ramalan siri masa. Penyelidikan ini tertumpu
kepada penggunaan·- rangkaian-rangkaian neural perulangan yang menyediakan satu
kerangka yang menyeluruh bagi fonnulasi produk fannasi melalui pendekatan ramalan
siri masa. Khususnya, kerangka ini telah menjelajahi paradigma pembelajaran ANN
dalam mengendalikan perancangan eksperimen dan analisis. Berdasarkan kepada
kaedah-kaedah yang sedia ada, reka bentuk ANN yang baru dicadangkan untuk analisis
siri masa di dalam proses formulasi produk fannasi.
This thesis is devoted to the development of Artificial Neural Network (ANN)
techniques for solving time-series prediction problems. The research is focused on the
use of recurrent neural networks for devising a comprehensible framework for
pharmaceutical product formulation using time series prediction approach. In
particular, the framework explores the learning paradigms of ANNs for conducting the
experimental design and analysis. Based upon existing methodologies, novel ANN
architectures are proposed for time series analyses in the process of pharmac~utical
product formulation.
Actions (login required)
|
View Item |