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PREFACE

The SEAMS-Gadjah Mada University International Conference 2003 on
Mathematics and Its Applications was held on 14 - 17 July 2003 at Gadjah Mada
University, Yogyakarta, Indonesia. The Conference is the forth conference held by
Gadjah Mada University and SEAMS. The former was held in 1989, 1995 and 1999.

The Conference has achieved its main purposes of promoting the exchange of
ideas and presentation of recent development, particularly in the areas of pure and
applied mathematics, which are represented in South East Asian Countries. The
Conference has also provided a forum of researchers, developers, and practitioners to
exchange ideas and to discuss future direction of research. Moreover, it has enhanced
collaboration between researchers from countries in the region and those from
outside.

During the 4-day conference there were 13 plenary lectures and 117
contributed papers communications. The plenary lectures were delivered by Prof.
Chew Tuan Seng (Singapore), Prof. Edy Soewono (Indonesia), Prof. D. K. Ganguly
(India), Prof. F. Kappel (Austria), Prof G. Desch (Austria), Prof. G. Peichl (Austria),
Prof. J. A. M. van der Weide (the Netherland), Prof. K. Denecke (Germany), Prof.
Lee Peng Vee (Singapore), Prof. Soeparna Darmawijaya (Indonesia), Prof. Suthep
Suantai (Thailand), Prof. V. Dlab (Canada) and Dr. Widodo (Indonesia). Most of the
contributed papers were delivered by Mathematicians from Asia.

The proceedings consists of 5 invited lectures and 64 refereed contributed
papers.

In this occasion, we would like to express our gratitute and appreciation to the
following sponsors:

• UNESCO Jakarta
• ASEA UNINET
• ICTP
• BANK MANDIRI
• Gadjah Mada University
• Faculty of Mathematics and Natural Sciences, Gadjah Mada University
• Department of Mathematics, Gadjah Mada University

for their assistance and support.
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We would like to extend our appreCIatIOn to the invited speakers, the
participants and the referees for the wonderful cooperation, the great coordination and
the fascinating effort. We would like to thank to our colleagues who help in editing
papers especially to Atok Zuliyanto, Imam Sholekhudin, Fajar Adikusumo, I Gede
Mujiyatna and Sri Haryatmi. Finally, we would like to acknowledge and express our
thanks for the help and support of the staff and friends in the Mathematics
Department, UGM in the preparation for and during the conference.

Editorial Board
Lina Aryati
Supama
Budi Surodjo
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Abstract

Several special classes of univalent functions f in the unit disk U are characterized by

the quantity zf'(z)/I(z) lies in a given region in the right-half plane. Amongst these are

the classes SS· (a) of strongly starlike functions of order a and PS· (p) consisting of

parabolic starlike functions of order p. Both classes are closely related to the class P of

nonnalized analytic functions in U with positive real part.

We derive some sharp non-linear coefficient estimates for functions in the class P. Using
these estimates, we detennine sharp bounds for the first four coefficients over the classes
SS· (a) and PS· (p), and their inverses. All possible extremal functions are found. In

many of these problems, there cannot be a sole extremal function. The Fekete-Szego
coefficient functional is also treated.

Keywords: Univalent functions, analytic functions with positive real part, parabolic starlike
functions. strongly starlike fu!,ctions. coefficient bound. Fekete-Szego coefficient functional.

1. Introduction

Let A denote the class of analytic functions f in the open unit disk U = {z:1 z 1< I}

and normalized so that f(O) =1'(0) - 1=O. Some special classes of univalent functions are

defined by natural geometric conditions. A well-known example is the class S· of starlike
functions consisting of analytic functions f E A that map U conformally onto domains

starlike with respect to the origin O. Geometrically, this means that the linear segment
joining 0 to every other point WE feU) lies entirely in feU).

Closely related to the class S· is the class P of normalized analytic functions p in

the unit disk U with positive real part such that p(O) =I and Re p(z) > 0, Z E U. It is known

[11,p.42Jthatafunction fEA belongs to s* ifandonlyif zf'(z)/f(Z)EP.

There are several subclasses of univalent starlike functions that are characterized by
the quantity zl'(z) / f(z) lies in a given region in the right-half plane. The region is often

convex and symmetric with respect to the real axis. Ma and Minda [8J have given a very
good unified treatment of such a study under a weaker condition that the region is starlike
with respect to I. We shall be interested in the following two subclasses.
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An analytic function f E A is said to be strongly starlike of order a, 0 < a:::; I, if it

satisfies

I
zf'(z) 1fa

arg < - (z E U).
f(z) 2

The set of all such functions is denoted by SS * (a). This class has been studied by several

authors [2,3,7,13,14]. More recently, Nunokawa and Owa [10] obtained a sufficient condition

for functions fEA to belong to SS*(a). With tp(z)=(:~;r, the class SS*(a) consists

offunctions f such that zf'(z)/ f(z) E tp(U), Z E U.
For 0:::; p < 1, let n p be the parabolic region in the right-half plane

Q p = {w= u +iv: v2
:::; 4(1- p)(u - p)}= {w:\ w-1\:::; 1- 2p + Rew}.

The class ofparabolic starlike functions oforder p is the subclass PS *(p) of A consisting

of functions f such that zf'(z)/ f(z) E n p , z E U. This class is a natural extension of the

class ofnorrnalized unifonnly convex functions UCV introduced by Goodman [4]. We recall
that a convex function f belongs to the class UCV if it has the additional property that for

every circular arc y contained in U with centre also in U, the image arc f(y) is convex. It

is known [9,12] that f EUCV ifandonly if zf'(Z)E Ps*(t)

If

is in the class SS * (a) (or PS *(p», then the inverse of f admits an expansion

f -1 ( 2 3w)=w+Y2w +Y3w +...

(I)

(2)

near w.= O. In this paper, we derive some sharp non-linear coefficient estimates for functions
in the class P. From these bounds, we detennine sharp bounds for the first four coefficients

of Ian lover both classes SS *(a) and PS *(p), the first four coefficients of Iyn lover

55 *(a), and find all possible extremal functions. Although the natural choice for an

extremal function would arise from p(z) = :~~ E P, we show that it cannot be the sole

extremal function for these problems. Additionally, we obtain sharp estimate for the Fekete­

Szego coefficient functionals la3 - ta2 21 or Iy3 - ty 221·
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2. Preliminary results

The classes SS *(a) and PS * (p) are closely related to the class P. It is clear that

f E SS· (a) if and only if there exists a function pEP so that zf'(z)/ f(z) = pa (z) . By

equating coefficients, each coefficient of f(z) = z + Q2Z2 + Q3Z3 + can be expressed in

tenns of coefficients of a function p(z) = I + clz + C2z2 + C3z3 + in the class P. For

example,

(3)

Using representations (1) and (2) together with f(f-I (w» = w or

w=f-'(w)+a2(f-I(w»2 +a3U-1(w»3 + ....

we obtain the relationships

(4)

Thus coefficient estimates for the class SS * (a) and its inverses may be considered as non­
linear coefficient problems for the class P.

Turning to the class PS· (p), Ali and Singh [I] has shown that the nonnalized

Riemann mapping function q from U onto n p is given by

() I 4(1-P)[1 1+..[;]2q z = + og--
1(2 1-..[;

If f(z) = z + b2z 2 + b3z 3 + ... E PS· (p), and h(z) = zf'(z)/ f(z), then there exists a

Schwarzian function w in U with w(O) = o. Iw(z) 1< I, and satisfying

zf'(z)
h(z) =--=q(w(z».

I(z)
(5)
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Hence the function

p(Z) = 1+q-I(h(z))

l-q-I(h(z))

is analytic and has positive real part in U, that is, pEP. It is now easily established that

Thus once again we see that coefficient estimates for PS *(p) may be viewed in- tenns of

non-linear coefficient problems for the class P. Our principal tool in these problems is given
in the following lemma.

Lemma 1 (5]. Afunction p(z) =I + Lk=1 Ck zk belongs to P ifand only if

~ {12z j + I CkZk+j!2 -I I ck+lzk+jI21~O
)=0 k=1 k=O

for evelY sequence {Zk} ofcomplex numbers which sati!>!y limk-w;,suP Izk III k < 1.

I P 21 { 2,c2 --cl ::5:max{2,2Ip-lll=
2 21,u -II,

0::5: p::5: 2

elsewhere

If p < 0 or p > 2, equality holds if and only if p(z) =(l +a)/(I- a), Ie 1= I. If 0 < p < 2,

then equality holds if and only if p(z) = (I + a 2 )/(1- a 2 ), Ie 1= I. For ,u = 0, equality

holds ifand only if
l+a I-a

p(z):=P2(z)=A.--+(I-A.)--, O::5:A.::5:I,lel=1.
I-a l+a

For p =2, equality holds ifand only if p is the reciprocal of P2'

Remark. Ma and Minda [8] had earlier proved the above result. We give a different proof.
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Proof Choose the sequence {zd of complex numbers in Lemma 1 to be Zo = - f.JcIf2,

zi =I, and zk =0 if k > I. This yields

IC2 - ~CI2r + I ci 1
2 ~ 1(1- f.J)cd

2
+4,

that is,

(7)

(8)

If f.J < 0 or f.J > 2, the expression on the right of inequality (7) is bounded above by

4(11-1)2. Equality holds ifand only if ICj 1=2, i.e., p(z)=(I+z)j(1-z; or its rotatiolls. If

0< f.J < 2, then the right expression of inequality (7) is bounded above by 4. In this case,

equality holds if and only if Icl 1= 0 and Ic2 1= 2, i.e., p(z) =(l + z2 )/0- z2) or its

rotations. Equality holds when f.J =0 if and only jf Ic2 1= 2, i.e., [I I, p. 41]

I+a I-a
p(z):=P2(z)=,t--+(I-,t)--, O~A.:::;I, 1&1=1.

I-a I+a

Finally, when f.J = 2, then Ic2 - Cl
2 I= 2 if and only if p is the reciprocal of P2' 0

Another interesting application of Lemma 1 occurs by choosing the sequence IZk}

to be 20 =be} - f3c2, Zl =-]1:'1, Z2 =I, and zk = 0 if k > 2. In this case, we find that

I
'12 2 I 2 1

2
, 21

2
c3 -(fl+Y)Clc2 +ay' ~4+4y(y-l)lc! I +(28-y)c] -(2fl-l)c2 -(2 --J'C\ I

I 1

2 2
2 v 2 . (8 - fly) 4

=4+4y(y-I)lcll +4fJ(fJ-I)C2 --cl - ICII
2 fJ(fJ -I)

where v'= 8(fJ -I) + fJ(8 - y)
. fJ(fJ-l) .

Lemma 3. Let p(z)=I+Lk=lckZk EP. !fO~fJ~1 and fJ(2f3-1)~8~fJ, then

IC3 - 2fJc(c2 + &1
3

/~ 2.

Proof If {J =0, then 8 =0 and the result follows since Ic3 I~ 2. If fJ = I, then Ii =1 and

the inequality follows from a result of[6].
Now assume that 0 < fJ < 1 so that P(fJ - I) < O. With Y = {J, we find from (8) that
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~4+bx+CX2 :=h(x)

with X=lcI12e[0,4], b=4fJ(P-l), and c=-(t5-p 2)2/fJ (P-l). Since c:2:0, it follows

that h(x) ~ h(O) provided h(O) - h(4):2: 0, i.e., b + 4c ~ 0. This condition is equivalent to

18 - fJ2 I~ fJ(l- fJ), which completes the proof. 0

With t5 = P in Lemma 3, we obtain an extension of Libera and Zlotkiewicz result [6]

that IC3 - 2cI c2 + C1
3

\ ~ 2.

Corollary 1. If p(z)=I+Lk'=lckZk eP, and O~P~I, then

IC3 - 2f3c1 c2 + f3c1 3
1~ 2.

When P =0, equality holds ifand only if
3 1+ &e-2trik /3z

p(Z):=P3(z) = L Ak -2trik/3' (/el=1)
k=1 1- Ge Z

}'k :2: 0, with Al + A2 + A3 = I. If P = I, equality holds if and ollly if p is the reciprocal of

P3' If O<P<I, equality holds if and only if p(z)=(I+t:z)!I-cz),I&I=I, or

p(Z)=(I+cz 3)/(1-&z:3),l e l=1.

Proof We only need to find the extremal functions. If P = 0, then equality holds if and only

if IC3 1== 2, i.e., P is the function P3 [II, p. 41]. If P = I, then equality holds if and only if

p is the reciprocal of P3' When 0 < P< I, we deduce from (8) that

I 312 2 I 212 4c3 - 2f3cIC2 + f3c1 ~ 4 + 4fJ(fJ - I) lei 1 +4fJ(fJ - I) c2 --tCI - P(P - I) lei I

~4+4fJ(P-I)lcI12 _P(P_I)lcI1 4 ~ 4.

The bound 4 in the last inequality is obtained from simple calculus computations. Equality

occurs in the last inequality if and only if either Ici 1== 0 or 1ci 1= 2. If Ici 1= O. then 1c2 1= 0,

i.e., p(z)=(I+t:z 3 )/(I_cz3 ), 1&1=1. Iflcll=2, then p(z)=(I+t:z)!(1-t:z), 1&1=1. 0

Lemma 4. If p(z) = I + Ik=rCkZk E P, then

IC3 - (p + l)cl c2 + f.lC131~ max{2,212p -II}= { 2,
2/2p-l/,

O~p~1

elsewhere

Proof For 0 ~ p ~ I, the estimate follows from Lemma 3 with t5 = p, and Zp = p + I. For the

second estimate, choose P= p, r = I, and t5 = p in (8). Since p(p-I) > 0, we conclude
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from (7) and (8) that

IC3 -(,u+l)clc2 +,uc131
2
~4+4,u(,u-l)lc2 _C1

21
2
~4(2,u-1)2. 0

3. Coefficient bounds

For the larger class S· of starlike functions, R. Nevanlinna in 1920 [II, p. 46J

proved that the coefficient of each function f E S· satisfy Ian I~ n for n =2,3" . '. Brannan

et af. [2J obtained a sharp bound for the third coefficient of functions in SS * (a). We shall

give an alternate proof, and additionally, derive a sharp estimate for the fourth coefficient in
the result below. The general coefficient problem for the classes SS *(a) and PS *(p)

remains an open problem.

Theorem 1. Let fez) =z + a2z2 + a3z3 + ... E SS· (a). Then

la21~ 2a,
with equality ifand only if

Further

Zf'(Z)=(I+&z)a, 1£1=1.
fez) 1- &z

(9)

O<a::s;t

t::s;a::S;1

For a> 1/3, extremalfunctio"ns are given by (9). If 0 <a < 1/3, equality holds ifand only if

Zf'(Z)=(I+&z2)U,le l=l, (/0)
fez) 1- &z2

while if a == I / 3, equality holds ifand only if

zf'(z) _ ()-a (1 1+ &z (I 1) 1- &z )-a---P2 z = 1\.--+ -I\. -- ,
fez) I-&z 1+&z

Moreover,

I I j 2f, o<a::s;..[1;
a4::S; 2: (l7a2 +1) M::s;a::S;1

For a ~ J2/17, extremalfunctions are given by (9), while for 0 < a ::s; J2/17, equality holds

ifand only if

zf'(z) =( I + &z3 JU , 1£ 1= I.
fez) 1- &z3
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Proof The following relations are obtained from (3):

a2 =ac\

a[ 1-3a,,]a3 ="2 C2 --2-C\-

a [ 5a - 2 17a
2-15a + 4 3] a E

a4 =- c3 +--clc2 + c\ :=-
3 2 12 3

The bound on Ia2 I follows immediately from the well-known inequality Icl I~ 2. Lemma 2

with f.J =1- 3a yields the bound on I031 and the description of the extremal functions.

For the fourth coefficient, we shall apply Lemma 3 with 2/3 =(2 - 5a) / 2 and

<5 =(l7a 2 -15a + 4) /12. The conditions on /3 and <5 are satisfied if a ~ ~2/17. Thus

la41~2a/3, with equality ifand only if zf'(Z)/f(Z)=~I+a3)/(l-a3)r·
In view of the fact that 0 < <5 < I, and <5 - /3 ~ 0 provided a ~ ~2/17, Corollary I

yields

lEI 17a
2

- 15a + 4 I7a
2

- 15a + 4 3 17a 2 - 2
1

II I 2 (17 2 I)
~ c3 - cl c2 + ci + ci c2 S - a +

6 12 6 3

This completes the proof. D

Theorem 2. Let feSS*(a) alld f-l(w)=W+Y2W2 +Y3w3 + .... Theil

IY2 I~ 2a,
with equality ifand only if

Z!'(Z)=(I+a)a,le l=1.
f(z) I-a

Further

Ja, O<ast
IrJ\Slsa 2 , tSasl

For a > I /5, extremalfunctions are given by (9). If 0 < a < 1/5, eqilOlity holds ifand only if

zf'(z) =(1 + a
2 )a, Iel= I,

f(z) 1- a 2

while if a =1/5, equality holds ifand only if

zf'(z) ( )-a _(.I+a (I .)I_a)-a--=P2 z - /L--+ -/L -- ,
f(z) I-a I +a
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Moreover,

{

2a O<a<_I-
< 3' -.J3i

Ir41- 2; (62a 2 +I} Jh'sa s I

For a ~ I /.f3I, extremal functions are given by (9), whilefor 0 <a s I/,J3I, equality holds
ifand only if

Proof The following relations are obtained from (3) and (4):

(II)

As in the previous proof, the bounds on Ir2 I and IY3 I are obtained from the well-known

inequality Icl Is 2, and from Lemma 2.

For the fourth coefficient, we shall apply Lemma 3 with 2P = I + Sa and

0" =(31a 2 + 15a + 2)/6. The conditions on p and 8 are satisfied if as 1I.J3i. Thus

IY41s 2a /3, with equality ifand only if zf'(z)/ f(z)-:;: ~I + £z3)/(l- t:z3)f.

For 1/..[3i < a :$1/5, Corollary I yields

II I 1+5a 31 31a
2

-1
1

13 21 2 )E S c3 - (l + 5a)c1C2 +--cI + cI :$-\62a + I
2 6 3

It remains to determine the estimate for 1/5 < a :$ 1. Appealing to Lemma 4 with

p=5a, and because 31a 2 -15a+2>Oin (0,1], we conclude that

II I 31 31a
2

-ISa+2
1

13 4 2E:$ c3 - (I + 5a)clc2 + Sac] + 6 CI s 2(10a -1) +3"(3Ia -ISa + 2)

= ~ (62a 2 + I) 0
3

Now we introduce
respectively by,

zGn (z) -:;: (zn-I)
Gn(z) q ,

the following functions in PS·(p). Define G",H,J e A

ZH'(Z)=q(z(z-r»), ZJ'(Z)=q(_z(z-r»), Osrsl.
H(z) I - rz J(2.) I - rz
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It is clear from (5) that Gn,H,JEPS*(p). Using (6), the following result can be

established in a similar fashion to Theorem 1.

Ib I
< 16(1 - p)

2 - 2 '
7r

with equality ifand only if g = G2 or its rotations. Further

{

8(1-P) (1. + 16(1-P»), 0 ~ p ~ 1- £
I~I~ ;r2 3;r2 2 48

8(1-p) 1-L< 1
;r2 ' 48 - P <

2 2
For 0 ~ p < 1- ~8 ' equality holds if and only if g = G2 or its rotations. For 1- ~8 < P < I,

2

equality holds ifand only if g = G3 or its rotations. If p :: 1- ~8 ' equality holds ifand only

if g :: H or its rotations. Additionally,

{

16(I_P)[128(1-P)2 16(1-p) n] 0< < 1 £(1_ (89)
2 4 + 2 +45' -P-+16 V45

Ib41~ 3;r ;r;r ,

16(1-p) 1+ '!!":"(I_ [89) < p < 1
3;r2 ' 16 v"45-

Equality holds in the upper expression oj the right inequality if and only if g:: G2 or its

rotations, while equality holds in the lower expression of the right inequality if and only if
g = G4 or its rotations.

4. Fekete-Szego Coefficient Functional

{

(S - 4t)a 2 , t ~ 5-~/a

Ir -tr 21< a 5-I/a <t< 5+I/a32- , 4--4

(4t - 5)a 2 , t ~ 5+~/a

If 5-~a < t < 5+~/a, equality holds if and only if J is given by (/0). If t < 5-~/a or

t> 5+~/a , equality holds ifand only if J is given by (9). IJ t = 5+~/a, equality holdr ifand
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if zf'(z) ( )a
only I fez) = P2 z ,

zf'(z) _ ()-a
fez) - P2 z .

while if t = 5-~a, then equality holds if and only if

Proof From (11), we obtain

2 a [ 1+ (5 - 4t)a 2]
Y3- tY2 =-"2 c2- 2 c\.

The result now follows from Lemma 2. 0

Remark. An equivalent result for the Fekete-Szego coefficient functional over the class
SS >I< (a) was also given by Ma and Minda [7].

2 3 >I<
TheoremS. Lei g(z)=z+b2z +b3z +"'ePS (p). Then

2 2
If 1_-"-- < t < 1 +-..2.L-, equality holds ifand only if g =G) or one ofits rotations. If

2 96(I-p) 2 96(1-p)

2 5 2
t < t-96~-P) or t> t + 96(~-P)' equality holds if and only if g = G2 or one of its

2 .

rotations. If I = t - 96~ _p)' equality holds ifand only if g = H or one ofits rotations, while

2
if t =-2

1 +-9Sf( ,then equality holds ifand only if g = J or one ofits rotations.
6(1-p)

Finally, we note that the estimates above can be used to determine sharp upper
bounds on the second and third coefficients respectively.
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