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PERMODELAN KEGAGALAN UNTUK REAKTOR KELOMPOK KIMIA 

MENGGUNAKAN RANGKAIAN NEURAL BUATAN DAN LOGIK KABUR 

 

 

ABSTRAK 

 

 

Setiap proses kimia cenderung untuk mengalami kegagalan. Situasi ini memaksa 

industri dan penyelidik  mencari teknik bersesuaian bagi mengesan kegagalan 

secepat yang mungkin. Kaedah yang terbaik adalah dengan mengaplikasi sistem 

pengesanan kegagalan dan pengenalan (FDD). Di dalam kajian ini, sepuluh 

kegagalan proses telah direka untuk ujikaji. Data bagi suhu dan konduktiviti 

direkodkan semasa ujikaji dan penukaran dan kepekatan hasil diperolehi secara 

pengiraan. Data ini kemudiannya akan bertindak sebagai masukan ke dalam sistem 

permodelan. Sebaliknya, keadaan normal dan sepuluh kegagalan akan bertindak 

sebagai keluaran bagi sistem permodelan. Bagi permodelan menggunakan Rangkaian 

Neural Buatan (ANN), ‘perceptron’ berbilang lapisan (MLP) dengan satu lapisan 

tersembunyi telah digunakan. Bagi kajian pengekstrakan sifat, pertalian kepekatan 

hasil-penukaran-suhu lepasan menghasilkan keputusan yang terbaik dengan nilai 

SSE, 133.38 dan nilai r, 0.999. Nombor optimum bagi lapisan tersembunyi 

diperolehi pada 21 neuron dengan nilai SSE terendah pada 117.65 dan nilai r, 0.99. 

Pembangunan ANN telah berjaya mengesan dan mengasingkan 10 kegagalan semasa 

sessi pengesanan dan pengasingan. Pembangunan permodelan ini kemudiannya 

dioptimumkan dan disahkan dengan data ujikaji yang mana ianya tidak digunakan 

semasa latihan dan ujian. Sekali lagi, ANN yang dibangunkan telah berjaya 

menghasilkan corak kegagalan dan mengasingkan kegagalan. Penggunaan amaran 

lajakan dan ambang diagnosis dengan had 0.2 dan 0.8 akan memberikan amaran 

lajakan dan diagnosis terhadap data latihan dan ujian. Selain dari itu, 10 rekaan 
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kegagalan juga telah berjaya dikesan dengan menggunakan Logik Kabur (FL). 

Perbandingan Fungsi Keahlian (MF) mendapati bahawa 5 MF mempunyai 

keupayaan yang lebih baik untuk mengesan kegagalan berbanding dengan 3 MF. 

Keputusan juga menunjukkan bahawa bentuk Segitiga dan Gaussan akan 

menghasilkan keputusan yang sama. Bagaimanapun, bentuk Gaussan mempunyai 

keupayaan mengesan dan mengasingkan 40% lebih kegagalan tunggal berbanding 

dengan Segitiga. Selepas penghapusan peraturan lebihan, pengesanan dan 

pengasingan kegagalan tunggal meningkat sebanyak 12% dan kegagalan 

berpasangan berkurang sebanyak 76%. Akhir sekali, Sistem Taabir Kabur (FIS) 

dicadangkan untuk kajian terkini bagi menggantikan FIS yang sedia ada di dalam 

MATLAB
®
 atau yang telah dicadangkan oleh penyelidik terdahulu. Sebagai 

kesimpulan, ANN dan FL merupakan kaedah yang berpotensi di dalam kajian FDD. 

Kedua-duanya mempunyai keupayaan mengesan dan mengasingkan pelbagai 

kegagalan seperti yang dipertimbangkan di dalam kajian ini. Ini menunjukkan 

bahawa ANN dan FL boleh diaplikasi untuk pengawasan sebarang kegagalan proses 

di dalam reaktor kelompok kimia. 
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MODELING OF FAULTS FOR CHEMICAL BATCH REACTOR USING 

ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC 

 

 

ABSTRACT 

 

 

Every chemical processes prones to failure. This situation enforces the researchers 

and industrial to find the appropriate techniques to detect a process failure as early as 

possible. The best solution is by implementing fault detection and diagnosis system 

(FDD). In these studies, ten process faults have been designed for the experimental 

work. The temperature and conductivity data were collected during the experiment 

and the conversion and concentration of the products were calculated. These data 

were then acted as an input into the modeling system. In the other hand, the normal 

and ten faulty situations acted as an output for the modeling system. In the modeling 

by using Artificial Neural Network (ANN), Multilayer Perceptron (MLP) with single 

hidden layer was implemented. For the feature extraction study, the correlation of 

concentration-conversion-past temperature produced the best result with sum square 

error (SSE) of 133.38 and r-value of 0.999. The optimum number of the hidden layer 

was found to be 21 neurons with the lowest SSE value of 117.65 and r value of 0.99. 

The developed ANN was successfully detected and isolated the 10 prescribed faults 

during the detection and isolation session. This developed modeling then has been 

further optimized and validated with another set of experimental data which were not 

used during the training and testing. Again, the developed ANN was successfully 

produced fault patterns and isolated the faults. The application of an advanced 

warning and diagnosis threshold with the limit of 0.2 and 0.8 could give an advanced 

warning and diagnosis on the training and testing data. The 10 designed faults were 

also successfully detected by using Fuzzy Logic (FL) approach. Comparison on the 
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different Membership Function (MF) indicated that 5 MFs have better ability to 

detect the faults compared to 3MFs. The result also shows that Triangular and 

Gaussian shape MF produced similar the results. However, the Gaussian has the 

ability to detect and isolate 40% more single fault compared than the Triangular. 

After eliminating some redundancies rules, the detection and isolation of single fault 

detected increased about 12% and paired-fault reduces about 76%. Finally, a new 

Fuzzy Inference System (FIS) has been proposed in the present study to replace the 

existing FIS in the MATLAB
®
 or proposed from previous researchers. As for the 

conclusion, the ANN and FL have potential methods in FDD studies. Both these 

methods were able to detect and isolate various faults considered in the study. It 

shows that ANN and FL can be implemented for monitoring any process faults in 

chemical batch reactor. 
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CHAPTER 1 

INTRODUCTION 

 

1.0  Introduction 

This chapter presents the introduction to fault detection and a few definitions 

related to this area. It covers some fault terminologies, types of faults, the importance 

of fault detection, problem statement, project objectives and thesis organization. 

 

1.1 Definition of Faults 

 A fault can be defined as any non-permitted deviation from an acceptable 

behavior (Isermann & Balle, 1996). Frank and Koppen-Seliger gave their own 

perspective of fault definition (Frank and Koppen-Seliger, 1997a, b). Fault according 

to their definition is an additional input that can disturb the system’s performance. 

Normally, a fault can be classified by temporary or permanent physical changes in 

the system (Leger et al., 1998). The physical changes are either incipient (soft) or 

abrupt (hard) (Bocaniala and Sa da Costa, 2006).   

 

1.2 Type of Faults 

Faults or any additional inputs can be categorized into three main types; 

actuators faults, process faults and sensor faults (Frank and Koppen-Seliger, 1997a, 

b; Guglielmi et al., 1995). The illustration of faults can be seen in Figure 1.1. 

Actuator faults are deviations between the intended control and its realization by the 

actuators. Process faults are disturbances on the process causing shift in the plant’s 

outputs and may describe plant leaks, overloads and broken down components. 
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Sensor faults are discrepancies between the measured and true values of the process 

output or input variables (Luo, 2006). 

 

 Suppose in an automatic control system, the known input vector U and the 

output vector Y, a fault is something that disturbs functional devices of a plant and 

may lead to undesired or intolerable performance (failure) of the control system. 

 

 

 

 

 

 

 

Figure 1.1: Definition of faults (Frank and Koppen-Seliger, 1997a, b) 

 

In order to get a clear definition of faults, Frank and Koppen-Seliger have 

listed various examples of faults such as structural damage, abnormal parameter 

variations and external obstacles. In addition, there is always a modeling uncertainty, 

noise and model mismatch which are unknown input. Even though these inputs are 

not critical, they can create a false alarm in the detection system. 

 

Generally, the nature of fault can be classified into two categories; abrupt and 

incipient. Abrupt faults are dramatic and persistent due to significant deviations from 

steady state operation; however, incipient faults occur relatively slowly over time 

and they are linked to wear and tear of components and drift in control parameters. 

ACTUATORS PROCESS SENSORS 

Unknown inputs 

(Parameter variations, disturbances & noise) 

Actuator 

faults 
Process 

faults 

Sensors 

faults 

Output, Y Input, U 
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1.3 Fault Detection System 

In general, the system consists of three major steps; fault detection, fault 

isolation and fault diagnosis. 

 

1.3.1 Fault Detection 

Fault detection is a binary decision making process; either the system is 

functioning properly or there is a fault occurrence. This step determines the presence 

of faults in a system and the time of detection. 

 

1.3.2 Fault Isolation 

Fault isolation is a process of isolating several faults based on the symptoms. 

Generally, this step is taken after the fault detection process.  

 

1.3.3 Fault Diagnosis 

Fault diagnosis is more difficult compared to fault detection and isolation 

because it finds and diagnoses the root cause of the problem. The task consists of 

determining the type, size and location of fault as well as its time of detection based 

on the symptoms. 

 

1.4 Advantages of Fault Detection System 

Any process system is liable to faults. Although a good design is 

implemented to minimize the faults from occurring, the situation cannot be fully 

removed. The only way to overcome the growing faults phenomena is by using the 

detection system. Numerous applications of faults detection system are reported in 

the literature mainly in the area of aeronautical and aerospace systems, automotive 
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and traffic systems, chemical processes, electrical and electronic systems, nuclear 

plants, power systems and transportation systems (Isermann and Balle, 1996).  

 

Currently, the fault detection system is very important in the chemical 

industry because of the demand on finding the appropriate method that covers safety 

and reliability. The purpose of the detection system is generally to generate an alarm 

to inform the operators that there is at least one fault has occurred in the system 

(Wang and Daley, 1996). The detection of fault should be as early as possible before 

it slowly propagates elsewhere (Jamsa-Jounela et al., 2003; Avoy, 2002; Frank and 

Koppen-Seliger, 1997a, b; Isermann, 1997; Patton et al., 1994). The detection at an 

early stage will help the operators to counteract the problem by reconfiguring, 

maintaining and repairing the faulty system (Isermann, 1997). The only way to get an 

earlier detection is by obtaining as much information as possible related to the 

process or system.  

 

In most of the chemical industries, there are two main problems that are 

always interrupting the operators to get an accurate reading and more information. 

This is caused by equipment malfunctions or process disturbances. Of these two, 

process disturbances are usually more difficult to detect (Wang and Daley, 1996). 

Detection of process disturbances is important since it reduces the occurrence of 

production that does not meet the quality criteria. The reduction of the product 

quality will contribute to the economic impact. 
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1.5  Problem Statement 

In practice, the ideal fault detection system must include detection, isolation 

and diagnosis. However, the majority of previous works addressed only on the 

detection step, giving little emphasis on isolation and diagnosis. Among the three 

steps, diagnostic is far more complicated because it requires the determination of the 

location and magnitude of the plant faults (Isermann, 1996; Jiang, 1996, Wang and 

Daley, 1996).  

 

In a real process, there are many fault scenarios which may produce similar 

characteristics and it is rather difficult to pinpoint the exact cause of the problem 

with a limited amount of data. Currently, the fault diagnosis mainly depends on the 

operator’s experience to assimilate a large amount of information from different 

sources and react rapidly to avoid any hazardous or any costly consequences 

(Benkhedda and Patton, 1996). Hence, a proper fault detection system that includes 

the isolation of fault is required. 

 

Another problem in fault detection system is the utilization of the simulation 

data instead of real experimental data. This application of the simulation data is not 

significant, very difficult, undesirable and inconvenient to apply into the real process 

(Afonso et al., 1998a; Brydon et al., 1997 and Chang et al., 1993). According to 

Afonso et al., (1998a), the simulation environment that was commonly applied never 

included a number of practical realities. The real failure data and experience in the 

real operating environment are needed because the validation of method cannot just 

simply depend on the simulation results (Ruokonen, 1995). Some other researchers 

applied the steady-state simulation to develop and test the diagnosis model. 
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However, the results could not give the insight into real-time dynamic behavior 

under the closed-loop system (Armengol et al., 2000).  

 

1.6 Scope of Present Study 

The present study focuses on the development of fault detection system, that 

includes both detection and isolation stages. The normal and various fault situations 

will be detected and isolated based on their characteristics. This condition will help 

the operators to recognize and differentiate the pattern of normal and various faulty 

situations. 

 

In this study, the data for the fault detection and isolation development were 

collected from a series of experimental works from an esterification process in pilot 

scale batch reactor. Before the experimental data were collected, the normal and 

faulty operations were designed by changing the process parameters. The 

conductivity, temperature, conversion and concentration were recorded and 

calculated during the experiment. This data then acted as the input whereas the 

operation condition acted as output into the modeling system. The utilization of the 

real data is more significant, desirable and convenient because it gives an insight into 

the real operations. Those data can also be used directly for the validation method. 

 

Two different methods are applied for fault detection and isolation study 

which is artificial neural network (ANN) and fuzzy logic (FL). Both of method are 

independent each other. The main reason is to study the feasibility for the both two 

method for an esterification process. 
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1.7 Project Objectives 

 This research is carried out to develop a fault detection system using two 

different methods which consist of the artificial neural network and fuzzy logic. To 

achieve the overall aim of the research objectives, several specific objectives were 

defined: 

1. To develop a modeling off-line fault detection and isolation system using 

the artificial neural network and fuzzy logic. 

2. To optimize an off-line fault detection and isolation system in the 

artificial neural network by removing some of a fault. 

3. To validate an off-line fault detection and isolation system in the artificial 

neural network based on pattern generated between normal and faulty 

situations. 

4. To propose the Fuzzy Inference System in off-line fault detection and 

isolation system in the fuzzy logic. 

5. To validate the proposed Fuzzy Inference System in the fuzzy modeling. 

 

1.8 Thesis Organization 

This thesis structure is organized in six main chapters; 

 

Chapter 1 The outline of the fault detection terminology, types of faults 

and the importance of fault detection study are included here. 

The limitation of current study and the scope of present study 

are also included in this chapter. At the end of the chapter, the 

specific research objectives are mentioned. 
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Chapter 2 Provides the theoretical description of fault detection and 

diagnosis including their importance, requirement to a good 

detection system and classification of the methods. Detailed 

discussion of methods which covers model-based is covered in 

this section. The theory of artificial neural network and fuzzy 

logic as well as the previous study will also be included. The 

applications of chemical reactor in FDD are explained before 

ending of the chapter. 

 

Chapter 3 Describes the methodology applied in the development of fault 

detection and isolation system. The explanation consists of 

experimental and modeling work. The experimental covers the 

process selection, materials and chemicals, equipment 

description and design of faults. On the other hand, the 

modeling works was covers the development of fault detection 

and isolation using artificial neural network and fuzzy logic. 

 

Chapter 4 Presents the results and discussion of the study. Results from 

experimental as well as modeling works are presented in this 

chapter. 

 

Chapter 5 Presents the overall conclusions, summary of results and 

contribution of this research. The recommendation and avenue 

for the further research is suggested in this chapter. 
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CHAPTER TWO 

LITERATURE SURVEY 

 

2.0 Introduction 

This chapter presents the literature study in the area of fault detection 

research. It begins with the importance of fault detection system. Then, the 

discussion on the requirement for fault detection system is followed by the 

classification of fault detection method which is model-based and data-driven. After 

that, two most commonly used techniques in modeling of fault known as the 

Artificial Neural Network (ANN) and Fuzzy Logic (FL) are discussed. Finally, the 

literature is concluded with the overall summary. 

 

2.1 The Importance of Fault Detection System 

The complexities of most chemical industries always tend to create a problem 

in monitoring and supervising a system. The problem or upset experienced in one 

area of the plant will give an impact to the operations of other sections (Shin and 

Venkatasubramanian 1996). The fault tolerance in automatic control systems has a 

potential to solve this problem (Frank and Koppen-Seliger, 1997a, b). 

  

According to Frank and Koppen-Seliger (1997a, b), the fault tolerance can be 

achieved either by passive or active strategies. The passive approach makes use of 

robust control techniques to ensure that the closed-loop system becomes insensitive 

with respect to the faults. On the other hand, the active approach provides fault 

accommodation such as the configuration of the control system when a fault has 

occurred. The fault tolerance is not just to detect any incipient faults in sensors and 



 

 

 

10 

 

actuator but preserves a performance in a good quality and safety manner 

(Bonivento, Isidori et al. 2004). 

 

Figure 2.1 shows the architecture of fault tolerance control. Generally, it 

consists of two steps with fault diagnosis and control re-designs. In the fault 

diagnosis step, existing faults will be detected and identified whereas the controller 

will be adapted with the faults in the control re-design stage. Both steps will be 

carried out by a supervision system that prescribes the control structure and selects 

the algorithm and parameters of the feedback controller. 

 

 

 

 

 

 

 

 

 

Figure 2.1: Architecture of fault tolerance control 

 

Fault detection, isolation and diagnosis are very important in the chemical 

process industry. It is a step of the maintenance process (Aubrun, Robert et al. 1995). 

By applying scheduled maintenance, it will help the process to run in a good 

condition and safely manner. The study of fault detection is very important not just to 

the maintenance of the equipment and process but also to the maintained yield and 
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quality of the process (Dash and Venkatasubramaniam, 2000). The appropriate 

system and method of fault detection can avoid product deterioration, performance 

degradation, major damage to the equipment and human health even cause casualty 

(Garcia, Izquierdo et al. 2000). For obvious reasons of safety and economics, fault 

detection and diagnosis have become an integral part of process design (Ralston, 

DePuy et al. 2001). 

 

The Abnormal Situation Management (ASM) is a system that deals with 

timely detection and diagnosis, assessment of the abnormal situation and 

countermeasure planning. The first step in the ASM is the Fault Detection and 

Diagnosis (FDD). According to Dash and co-worker (2000) and Nimmo (1995),  

abnormal situation management will help avoid event progression and hence reduce 

the amount of productivity loss during abnormal events.  

 

Inadequate managing of abnormal situations caused annual losses of $20 

billion for petrochemical industry in the USA (Nimmo 1995). This cost was caused 

by premature shutdowns, suboptimal operation of the process and violation of safety 

and environmental regulations. Similar accidents also cost a lost to British economy, 

around $27 billion dollars every year (Laser 2000). These considerations provide a 

strong motivation for the development of methods for the design of advanced fault 

detection system to enhance the fault recovery and prevent faults from propagating 

into the total faults. 

 

The design of fault monitoring system is a challenging research area 

especially when considering the practical significance (Chang et al., 1993). Avoy et 
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al., (2004) and Avoy (2002) mentioned that the latest intelligent control should not 

just focus on modeling and optimization, but also cover the area of fault detection 

and isolation. Traditional approach of fault detection involves checking of some 

variables or the application of redundant sensors (Garcia et al., 2000; Frank 1990; 

Isermann,1984). This method is based on mathematical models and has a link 

between input and output variables. Nowadays, the study on the fault detection can 

be considered as already at a matured stage even though a suitable and appropriate 

method is still under development. The report emphasized on the fault detection was 

reported by Dochain et al., (2006). Isermann and Balle (1996) in their work gave a 

review of fault detection and diagnosis applications.  

 

2.2 Fault Detection Methods 

 There are an abundance of work on process fault diagnosis ranging from 

analytical methods to artificial intelligence and statistical approaches. From the 

modeling perspectives, there are a few methods that require accurate process model 

and a few of them applies qualitative models. On the other hand, there are methods 

that only rely on process history data. 

 

 A survey from Venkatasubramaniam et al., (2003a, b, c) classified fault 

detection methods into two categories: model-based and data driven methods. The 

hierarchy of fault diagnosis approaches is shown in Figure 2.2. This classification is 

based on the process knowledge that is required a priori (Yang, 2004). The priori 

process knowledge is used to distinguish the features for classifying fault diagnosis 

system. Normally, the basic a priori knowledge is a set of failure and relationship 

between the symptoms and the failures (Yang, 2004). 
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Figure 2.2: Classification of fault detection methods (Venkatasubramaniam et al., 

                       2003a) 

 

For model-based methods, the model is classified as qualitative and 

quantitative. This model is currently being developed by considering the fundamental 

understanding of the physical law of the process. Thus, the model based method is 

known as white box model. In a quantitative model, the relationships between the 

inputs and outputs of the system are expressed in terms of mathematical function; 

whereas qualitative model is expressed in terms of qualitative functions. As 
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examples of quantitative methods are observers, frequency domain and parity space 

and diagraph method, fault tree and qualitative physics are method for qualitative 

method.  

 

For data-driven approaches, a large amount of historical data is required to 

develop relationship between input and output data. The data driven method does not 

rely on mathematical models, yet capable in detecting the process malfunction.  

 

The data can be transformed and presented as a priori knowledge to 

diagnostic systems. This is known as feature extraction. In term of data driven, it can 

be classified by either qualitative or quantitative feature extraction. Two of the major 

methods in qualitative methods include expert system and qualitative trend analysis. 

Methods that extract quantitative information can be non-statistical classifier or 

statistical methods. Neural network is an important class of non-statistical 

quantitative method; and principal component analysis/partial least square and 

statistical classifier are examples of statistical methods. The key advantage of data 

driven fault detection is generating concise and accurate detection model from a 

large amount of data (Luo, 2006). 

 

 There might be some overlapping between the model-based and data-driven 

approaches. It depends on whether or not the knowledge about process 

characteristics are required (Yang, 2004). Artificial neural network for example are 

classified as data driven method but it is normally applied in residual generation and 

residual evaluation in model-based method such as in Koscielny (2004a, b), Patan 

and Korbicz (2004), Simani et al., (2003) and Koppen-Seliger and Frank (1996). The 
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study between the model-based and neural network is done by Rengaswamy et al., 

(2001). In this study, the implementations of neural network and fuzzy logic are 

based on model-based approach.   

 

2.3 Model-Based Fault Detection System 

2.3.1  Overview 

As mentioned by Frank (1990), fault detection system can be implemented by 

using various methods. Among them, model-based is a very popular method and 

powerful tool to detect a system failure at an early stage (Dochain et al., 2006; 

Isermann, 2005, 1997, 1996; Amman et al., 2001; Frank et al., 2000; Frank and 

Ding, 1997; Frank and Koppen-Seliger, 1997a, b). This method has been available 

for the past 30 years (Isermann, 2005; 1997; 1996; Benkhedda and Patton, 1996; 

Patton et al., 1994; Frank, 1990). 

 

Model-based can be used as a monitoring system for fault detection and 

isolation system. By comparing the system’s measurement and mathematical model, 

process error signal will be generated. This procedure is called the analytical 

redundancy. It is different with the hardware redundancy where replication hardware 

such as computers, sensor, actuators and other component are used to generate a 

signal. Analytical redundancy is more reliable and cost effective compared to 

hardware redundancy (Isermann, 1997; Isermann and Balle, 1996). Figure 2.3 

illustrates the analytical and hardware redundancy concepts. 

 

The understanding of physical fundamental is needed when developing a 

model-based method. In the early applications, most of the processes were based on 
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the observation with a linear system and analytical redundancy (Balle and Fuessel, 

2000; Genovesi et al., 1999). The method such as parameter estimation, observer 

schemes and parity schemes were commonly applied (Isermann and Balle, 1996). 

The objective of analytical redundancy was to generate residual by comparing the 

actual output with predictions obtained by mathematical model. The residual is acts 

as fault indications of the system. The examples of residuals include disturbances, 

noise and modeling errors.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Hardware and analytical redundancy 

 

Model-based can be classified into two categories qualitative or quantitative 

(Venkatasubramaniam et al., 2003a). The quantitative model can be developed using 

the terms of mathematical relationships function between the inputs and the outputs 

of the system. On the other hand, qualitative model are expression in qualitative 

terms. 
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There are various works which concentrate on the application of model-based 

studies. This includes the study from Cheng et al.,(2003), Afonso et al., (1998b), 

Pfeufer (1997),  Chang et al., (1995), Chang et al., (1994), Chang et al., (1993) and 

Schuler and Schmidt (1993). 

 

2.3.2 Model-Based Scheme 

According to Leonhardt and Ayobi (1997), the fault diagnosis system can be 

viewed as a sequential process involving two steps; the residual generation and 

residual evaluation. Figure 2.4 illustrates the general and conceptual structure of a 

model-based fault diagnosis system comprising of two stages: residual generation 

and residual evaluation. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: General structure of model-based scheme 
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fault in the system. If the fault is not present, the residual value will normally be zero 

or close to zero, whilst different from zero when faults are present. The algorithm or 

processor to generate residual is known as residual generator. In ideal condition, the 

residual should carry only fault information and are independent of the system 

operating state. 

 

According to Genovesi and co-workers (1999), the residual generation 

algorithm should work even if these problems arise: 

 

 the time evolution of the fault is unknown 

 the mathematical model of the nominal system is uncertain (with 

unknown tolerance) 

 there are system and measurement noises (with unknown characteristic) 

 

 In a normal system, an existing residual generation is more dependent on a 

few factors such as: 

 

 the knowledge of the normal and abnormal behavior 

 a good definition of the faulty behavior 

 the existence of analytical redundancy relations 

 a satisfactory reliability of the redundant information 

 

Residual evaluation is a process to examine the likelihood of faults. Decision 

rule is used to determine the types of faults. The decision process may consist of a 

simple threshold test on the instantaneous value or moving average of the residuals. 
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Another method such as pattern signatures can also be applied in the decision 

process. Isermann and Balle (1996), lists the methods that are commonly used in this 

stage such as neural network, fuzzy logic, Bayes classification and hypothesis 

testing.  

 

Frank and Koppen-Seliger (1997a, b) and Patton (1997) proposed a structure 

of model-based scheme. In this structure, the model-based consists of three stages: 

residual generation, residual evaluation and fault analysis. Residual generation can 

be determined by computing the difference between the measured output and the 

estimated output  obtained from the model of the system (Chang et al., 1995). At this 

stage, any signal generated is reflected by the faults. The seconds stage in the model-

based is the residual evaluation: a logical decision making on the time of occurrence 

and the location of a fault. The model-based and knowledge-based are applied in this 

scheme to improve decision making and assist in residual generation. The final stage 

is a fault analysis where it is defined as the determination of the type and size of the 

faults. The first two stages implement system theory for instance the artificial 

intelligence based method. Nonetheless, stage three requires in general either a 

human expert or knowledge-based system for the fault analysis (Frank and Koppen-

Seliger, 1997a, b; Patton 1997). The structural diagram of the residual generation and 

evaluation is shown in Figure 2.5. 
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Figure 2.5: Model-based scheme (Frank and Koppen-Seliger, 1997a, b; Patton 1997) 

 

Isermann (1996) proposed another scheme for model-based fault detection 

system. In this task, detection of faults in processes, actuators and sensors were 

conducted based on the dependencies between different measurable signals. The 

scheme is shown in Figure 2.6. Using the input signal, (U) and output signal (Y), the 

detection method will generate features that consist of residual (r), parameter 

estimate (), or state estimates (x). Any differences in these features can be detected 

by simply comparing them between the normal and abnormal changes in the process 

conditions. This procedure will lead to the analytical symptoms (s). 
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Figure 2.6: Model-based scheme (Isermann 2005; 1997 and 1996)  

 

2.3.3 Assumptions of Model-Based Method 

Model-based fault detection method is built upon a number of idealized 

assumptions (Patton 1997; Patton and Chen 1997). One of the assumptions is that the 

developed mathematical model is a replica of the plant dynamics. However, it is 

impossible to model a system as accurate and complete as a mathematical system. It 

is because at times, the mathematical structure of a dynamical system is not fully 

known. There are a few cases where the system parameter is unknown or the 

parameter is with limited range of values. This situation will create a “model-reality 

mismatch” between the plant dynamics and the model developed.  
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As the complexity in chemical process plant increases, it is often difficult to 

model a system that fulfills the entire requirement and simultaneously tolerates the 

disturbances. More attentions are now given to the study of robustness of process 

models. Report from Patton (1997) noted that early studies on robustness focused 

more on local sensitivity requirements rather than producing truly robust solution. 

The main goal is to discriminate between the effects of faults, uncertain signal and 

system perturbations. But, recently the increasing development of truly robust 

methods shows promising developments. The studies are now focusing on both in 

order to create robustness in residual generation and decision-making stage.  

 

2.3.4 Problems of Model-Based Method 

Model-based approaches require accurate mathematical models of the plant. 

However, the model development task using the first principles is often difficult and 

time consuming, particularly for complex nonlinear processes (Balle and Fuessel, 

2000). 

 

The main problems in the model-based system are the implementation and 

maintenance in a real process environment (Lautala et al., 1996; Benkhedda and 

Patton et al., 1996). Processes usually have several modes and operating points and 

for this reason large and complex models are required. Most of the existing 

automation system do not support tasks needed such as modeling and visualizing 

dynamics of multivariable systems. Such a problem will later increase when dealing 

with a non-linear system.  
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A model-based system has several problems that should be minimized. Ma 

and co-workers (2007) have stated the two main problems faced in applying the 

model-based system and they are: 

 

 potential fragile: mismatch between actual plant and the model used 

algorithm can result in false alarm. 

 the difficulty in isolating the exact location of the fault and in detecting 

simultaneous faults. 

 

Since the model-based system is highly dependent on the mathematical 

model; therefore, they are a few disadvantages when applying this method. Among 

others are the sensitivity to model errors, parameter variations, noise, and 

disturbances (Patton 1994). The success of the model-based depends on the quality 

of models and this is often difficult to achieve in practice.  

 

 Rengaswamy et al., (2001) mentioned that most of the model-based methods 

developed generally focused on the linear system. This system is difficult to apply in 

practice especially in engineering system where most of the processes are nonlinear 

with such complex terms (Frank and Koppen-Seliger 1997a). In reality, modeling of 

linear system is difficult in many cases especially in chemical process industry 

(Rengaswamy, Mylaraswamy et al. 2001). 

 

The model-based qualitative model approach in the form of qualitative 

differential equations, signed diagraph, qualitative functional and structural models 

are poor in diagnostic process especially when it involves the process transitions 
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(Rengaswamy, Mylaraswamy et al. 2001). Such models require a large number of 

hypotheses since they give poor resolution when applied with on-line systems 

(Power and Bahri, 2004). 

 

2.4 Artificial Neural Networks (ANN) 

2.4.1 Introduction  

 The ANN has been previously used to study the interconnection of neurons in 

human brain. These interconnections allow the implementation of pattern recognition 

computation in an attempt to mimic the human brain. Artificial neural network is 

generally a nonlinear mapping between the input and output which consists of 

interconnected “neurons” between layers. These layers are connected such that the 

signals at the input of the neural net are propagated through the network. The choice 

of neuron nonlinearity, network topology and the weights of connections between 

neurons actually specify the behavior of neural network.  

 

 The application of ANN in fault detection and diagnosis are based on model 

approximation and pattern recognition (Lipnickas, 2006; Simani et al., 2003; Zhou et 

al., 2003). Among these methods, pattern recognition has been formed to be more 

adequate based on the difficulty to perform the ANN training on the dynamic 

patterns. Pattern recognition method is a convenient approach to solve the fault 

identification problem for instance in determining the size of the fault (Simani et al., 

2003). Pattern recognition classification is typically an off-line procedure where the 

information regarding normal and faulty situation can be obtained from the training. 

In recent years, successful implementation of ANN as pattern recognition in fault 

identification and diagnosis were highlighted and reported by a number of previous 
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