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PENAMBAHBAIKAN PROSEDUR-PROSEDUR UNTUK ANALISIS DATA 

BERKATEGORI YANG TIDAK LENGKAP  

 
ABSTRAK 

 
Semasa proses pengumpulan data, kadang-kala kita tidak akan dapat 

mengumpul semua data yang diperlukan. Ini akan menyebabkan terdapatnya 

sebahagian data yang tidak lengkap. Kesimpulan yang tidak sesuai akan wujud 

apabila penyelidik membiarkan, memangkaskan, menapiskan atau 

menggabungkan data yang tidak lengkap itu. Ini kerana, data itu mungkin 

mengandungi maklumat yang penting.  

 
Untuk data berkategori yang lengkap, pengganggar kebolehjadian  

maximum (PKM) dan algoritma penyesuaian berkadaran lelaran (PBL) telah 

dipertimbangkan untuk mendapat nilai yang dijangka. Bagaimanapun, teknik 

yang sedia ada untuk menguruskan data berkategori yang tidak lengkap ialah 

algoritma EM dan PKM.  

 
Objektif utama kajian ini ialah untuk membanding dan memperbaiki 

algoritma EM, PKM, model linear teritlak (MLT) dengan pendekatan paut 

gubahan  dan  regresi lojistik secara penaburan semula bukan sahaja data 

yang hilang dalam baris ataupun lajur, tetapi juga data yang hilang dalam baris 

dan lajur bagi jadual kontingensi dua-hala dan tiga-hala yang tidak lengkap. 

Melalui proses ini, taburan Binomial telah diperiksa sebagai suatu kes khas 

apabila ia hanya melibatkan jadual kontingensi nx2, teknik Newton-Rapson 

telah dimasukkan ke dalam PKM untuk mempercepatkan penumpuan dan ujian 

nisbah kebolehjadian yang melibatkan data yang tidak lengkap untuk pengujian 



 xvi

ketakbersandaran  telah diperkenalkan. Dalam kajian ini, mekanisma data 

hilang telah dipertimbangkan sebagai hilang secara rawak (HSR). 

 
Secara kesimpulannya, kita telah tunjukkan bahawa skema 

pensampelan untuk Poisson dan Multinomial adalah sesuai diaplikasikan 

apabila kita mempunyai semua jenis data hilang. Walau bagaimanapun, jika 

kita mempunyai jadual kontingensi nx2, maka skema pensampelan Binomial 

boleh dipertimbangkan. PKM telah menunjukkan bahawa ia adalah pilihan 

terbaik jika dibandingkan dengan algoritma EM. Keadaan ini disebabkan kedua-

dua pendekatan itu memberi keputusan yang sama, tetapi PKM memerlukan 

langkah yang kurang jika dibandingkan dengan algorithma EM. Ini akan 

menjimatkan masa untuk mendapat keputusan bagi saiz sampel yang besar. 

PKM dapat memberikan keputusan yang lebih baik jika ia dipertimbang ke 

dalam kaedah Newton-Raphson. Apabila PKM dimasukkan ke dalam kaedah 

Newton-Raphson untuk penumpuan, adalah jelas bahawa PKM dan algoritm 

EM adalah dua jenis algoritma yang berlainan. Didapati juga bahawa regresi 

logistik boleh digunakan sebagai suatu alternatif untuk memperoleh nilai 

jangkaan berbanding dengan PKM atau algoritma EM. Kebarangkalian atau ods 

untuk nilai yang hilang boleh diperolehi dalam sebutan fungsi logit cerapan 

yang diketahui. Ini dapat membantu kita untuk mendapatkan nilai jangkaan bagi 

data yang tidak lengkap tanpa menggunakan algoritma tradisi. Pendekatan 

regresi logistik menunjukkan bahawa ia boleh menganggar nilai pembolehubah 

kategori secara berkesan apabila kita mempunyai informasi pada 

pembolehubah kategori yang lain. Oleh sebab itu, kaedah regresi logistik boleh 

digunakan sebagai kaedah pembezalayan atau klasifikasi dan kaedah ini boleh 
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diitlakkan untuk sebarang pembolehubah kategori tanpa menjadikan prosedur 

ini lebih kompleks untuk pengguna umum.           
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IMPROVEMENT OF PROCEDURES FOR INCOMPLETE CATEGORICAL 

DATA ANALYSIS 

 
ABSTRACT 

 
During the process of collecting data, sometimes we may not get the fully 

observed data. This results in partially incomplete data. An inappropriate 

conclusion may occur when the researchers ignore, truncate, censor or collapse 

those data as it might contain important information. 

 
For complete categorical data, maximum likelihood estimation (MLE) and 

iterative proportional fitting (IPF) algorithms have been considered to obtain the 

expected values. However, the existing techniques to deal with incomplete 

categorical data are the EM algorithm and the MLE.  

 
The main objective of this study is to compare and improve the EM 

algorithm, MLE, generalized linear model (GLM) with composite links and 

logistic regression approaches by redistributing not only for missing row or 

missing column data, but also for missing row and column data for the two-way 

and the three-way incomplete contingency tables. Throughout the process, the 

Binomial distribution has been examined as a special case when it only involves 

the nx2 contingency table, the Newton-Rapson method has been adopted in the 

MLE to make a rapid convergence and the likelihood ratio test which involves 

the incomplete data for testing independence has been introduced. The missing 

data mechanism is considered as missing at random (MAR) in this work. 

 
As conclusion, we have shown that the Poisson and the Multinomial 

sampling schemes are suitable when we have all types of missing data. 
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However, if we have nx2 contingency table, then the Binomial sampling scheme 

can be considered. The MLE has demonstrated that it is a better choice as 

compared to the EM algorithm due to the fact that both of these give the same 

results but the MLE requires less number of steps as compared to the EM 

algorithm. This will save the time to get the results for large sample size. The 

MLE can perform better when it is adopted with the Newton-Raphson method. 

When the MLE is adopted with that of the Newton-Raphson method of 

convergence, it is clear that the MLE and the EM algorithm are two different 

kinds of algorithms. It is also revealed that the logistic regression method can 

be used as an alternative to obtain the expected values as compared to that of 

the MLE or the EM algorithm. The probability or odds of a missing value in 

terms of logit function of known observations can be obtained. Without 

employing traditional algorithm, this helps to get the expected values for 

incomplete data. The logistic regression approach shows that it can effectively 

estimate the value of a categorical variable when we have information on the 

other categorical variables. Hence, the logistic regression method can be used 

as a discriminant or classification method as well and this method can be 

generalized for any number of categorical variables without making the 

procedure more complex for the general users. 
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CHAPTER 1 

INTRODUCTION 

 

1.0 Introduction 

The role of data is very important to the statisticians. Without data 

analysis, statistics will not be complete and illustrative. There are different types 

of errors in data. This can be human error, equipment error or even unexpected 

error. For example, some people refuse to fill in the information on a 

questionnaire or be interviewed due to embarrassing questions like drug abuse, 

sexual activities, age or income. The other reasons may stem from clinical trials 

data with some patients not following up their health after certain time period. In 

engineering, some data may be lost because of mechanical breakdown for an 

industrial experiment. All the above examples will result in some incomplete 

data.                                                                              

 

The analysis of categorical data rapidly emerged as an important field of 

research after mid-twentieth century. This is due to the influence of increasing 

availability of multivariate data sets with categorical responses in the social, 

behavioural, biomedical sciences, public health, ecology, education, food 

science, marketing and industrial quality control. Categorical data analysis has 

provided important insights in resolving problems with categorical response. 

Since the 1970s, incomplete data analyses have emerged as an important issue 

of concern. Until today, many methods have become available to analyse 
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incomplete data. Although the focus is mostly on continuous outcomes, 

incomplete categorical data have also been well studied. Several developments 

served special instances of the problems, but the most popular approach has 

been the EM algorithm. With this background, this study focuses on the 

importance of the EM algorithm and also on alternative ways to analyse 

incomplete categorical data. 

 

1.1   Background of Study 

An incomplete table is referred to as a table in which the entries are 

missing, a prior zero or undetermined (Fienberg, 1980). Incomplete data is 

always the main obstacle for researchers to extend their works. This is 

especially true for the case of incomplete categorical data. The most common 

ways for researchers to solve this problem are by ignoring, truncating, censoring 

or collapsing those data so that their work can be continued. But these are not 

the wise ways to solve the problems because such procedures may lead to 

inappropriate conclusion and confusion because those data might contain 

important information.  

 

 Molenberghs and Goetghebeur (1997) defined the missing data 

mechanism as ignorable missing data mechanism and non-ignorable missing 

data mechanism. For ignorable missing data mechanism, it involves the process 

of missing completely at random (MCAR) and missing at random (MAR). When 

the missingness is independent of both unobserved and observed data, the 
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non-response process is named as MCAR. However, if conditionally on the 

observed data, the missingness is independent of the unobserved 

measurements, the non-response process is called as MAR. The informative 

process is for non-ignorable or informative missing data mechanism. In other 

words, the process is termed as informative when the process is neither MCAR 

nor MAR. The informative mechanism is based on some information regarding 

the missing data regarding the pattern of missing data, unlike noninformative 

mechanism such as MCAR and MAR 

 

The problem of estimation for incomplete contingency table under the 

quasi-independence model was examined by Fienberg (1970). Fienberg used 

the maximum likelihood estimation (MLE) procedure. Similarly, the MLE for the 

Poisson and the Multinomial sampling distributions for the incomplete 

contingency tables in the presence of missing row and missing column data 

were considered by Chen and Fienberg (1974). Chen and Fienberg (1976) 

extended their works which focused on cross-classifications containing some 

totally mixed up cell frequencies with the Multinomial sampling. In the following 

year, Dempster, Laird and Rubin (DLR) (1977) presented the MLE of incomplete 

data and named the algorithm as the EM algorithm since each iteration of the 

algorithm involves expectation (E) and maximization (M) steps. This method has 

been used extensively by other researchers especially for incomplete categorical 

data. Among many others, Fuchs (1982), Nordheim (1984), Fay (1986), Baker 

and Laird (1988), Philips (1993) have used the EM algorithm for analyzing 



 4

incomplete categorical data. Baker (1994) and Galecki, Have and Molenberghs 

(2001) incorporated the Newton-Raphson approach into the EM algorithm to 

improve the convergence of the EM. The EM algorithm is well developed 

(Lauritzen, 1995) to exploit the computational scheme of Lauritzen and 

Spiegelhalter (1988) to perform the E-step of the EM algorithm to find the MLEs 

in hierarchical log-linear models and recursive models for contingency tables 

with missing data. Besides, Molenberghs and Goetghebeur (1997) presented a 

simple expression of the observed data log-likelihood for the EM algorithm. 

 

Since the EM algorithm has been introduced, the MLE procedure is 

ignored by the researchers until 1985. Then Stasny (1985) used the MLE to 

process the model based on data from Current Population Survey and the 

Labour Force Survey to estimate the gross flow data. Most recently, Lyles and 

Allen (2003) proposed the MLE procedure with the Multinomial likelihood 

properly accounting for missing data and assumed that the probability of missing 

exposure depends on true exposure. 

 

In another development, Rindskopf (1992) has considered the 

generalized linear models with composite links to fill in contingency tables with 

supplementary margin, and which fits loglinear models when data are missing. 

 

Little and Schluchter (1985) have considered the logistic regression and 

the discriminant analysis with missing predictors and unclassified observations 

to obtain the maximum likelihood estimation for mixed continuous and 
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categorical data with missing values. Vach and Schumacher (1993) have 

compared the approaches among maximum likelihood estimation, pseudo 

maximum likelihood estimation and probability imputation for the logistic 

regression analysis with incompletely observed categorical covariates. However, 

Fitzmaurice et al. (1996a) considered the logistic regression as a 

likelihood-based regression model to analyze binary data with attrition and in the 

same year, Fitzmaurice et al. (1996b) have considered the same method to 

model the association between the binary response in terms of conditional log 

odds ratios. Besides, the logistic regressions have also been considered by 

Ibrahim et al. (1999) to propose estimating parameter in the generalized linear 

models with missing covariates. They considered conditional distribution 

consisting of logistic regression. James (2002) extended the generalized linear 

models to the situation where some of the predictor variables are observations 

from a curve or function. He considered this approach to perform linear, logistic 

and censored regression with functional predictor in missing data problems. 

 

1.2   Objectives of Study 

 The specific objectives of the study are listed below: 

1. To show that the MLE and the EM algorithm can be extended to estimate 

when row and column data are missing based on various assumptions 

and by considering the different types of distributions for the two-way and 

the three-way incomplete contingency tables. 
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2. To show the Binomial sampling scheme for the MLE and the EM 

algorithm as a special case of the Multinomial sampling scheme. 

3. To show that the likelihood ratio test procedure can be used for the 

incomplete categorical data based on the MLE and the EM algorithm. 

4. To show that the MLE procedure can be improved by using the 

Newton-Raphson method for quick convergence in case of missing 

categorical data. 

5. To compare the revised the MLE and the EM algorithm. 

6. To show how the GLM with composite links can be employed to deal with 

the missing row and column data in the two-way and the three-way 

contingency tables.  

7. To compare among the GLM procedure with the MLE and the EM 

algorithm. 

8. To show that the proposed method, the logistic regression procedures 

can be used to estimate the missing categorical data for three variables 

which can be extended for more variables. 

9. To compare the proposed method with existing methods such as the EM 

algorithm employing various test procedures such as apparent error rate 

(APER), sensitivity, specificity, McNemar test and Mantel-Haenszel test. 
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1.3 Organization of Thesis 

Organization of the thesis is as follows: Chapter 2 is literature review of 

the study. Chapter 3 is a review of existing methods for complete and incomplete 

contingency tables. This includes two-way and three-way contingency tables. 

The maximum likelihood estimation (MLE) and the iterative proportional fitting 

(IPF) methods are applied to the log-linear models to obtain the expected values 

for complete contingency tables. However, for incomplete contingency tables, 

the EM algorithm and the MLE have been reviewed. Then likelihood ratio test is 

considered for testing independence for both complete and incomplete 

contingency tables.  

 

Chapter 4 contains the method to estimate the missing value which is the 

EM algorithm. In this chapter, the Multinomial and the Poisson sampling to 

redistribute not only missing row and missing column data but also missing row 

and column data are been considered. However, the Binomial sampling has 

been demonstrated that it can be considered as the special case of redistributing 

missing column data when we have nx2 contingency tables. Besides, 

incomplete three-way contingency table for all types of possible missing data in 

the Poisson and the Multinomial sampling also be considered. Likelihood ratio 

test for the test of independence of the expected value for two-way and 

three-way contingency tables are considered. 
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In Chapter 5, estimation and test procedures are considered for the linear 

models. Loglinear model is considered for incomplete data and the MLE 

procedure is demonstrated and then the generalized linear model (GLM) with 

composite links are also shown. In this chapter, not only missing row, missing 

column data but also missing row and column data on the Poisson and the 

Multinomial sampling are distributed for the MLE while the Binomial sampling as 

a special case to redistribute missing column data when we have nx2 

contingency table for the MLE is considered. The results of the MLE are shown 

with an application and a test for the independence is highlighted on the basis of 

the likelihood ratio test. Then, the MLE is compared with the EM algorithm. The 

MLE is improved by adopting the Newton-Raphson method. However, for the 

GLM with composite links, all possible types of missing data in two-way and 

three-way contingency tables have been considered. Results of the GLM with 

composite links are compared with the MLE and the EM algorithm. Then the 

weaknesses of the GLM with composite links are highlighted also in this chapter 

by comparing it with the MLE and the EM algorithm. 

 

The conditional distribution by using the logit link functions has been 

considered and this method will be discussed in Chapter 6. The logistic 

regression model is employed to estimate the incomplete categorical data for 

three-way contingency tables where one of the variables is let to be the outcome 

variable and the other two as independent variables. After that, this result has 

been compared with that of the EM algorithm. The suitability of the method is 
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examined on the basis of the apparent error rate, sensitivity, specificity, 

McNemar’s test and Mantel-Haenszel test. Chapter 7 includes the overall 

conclusion of the study and comments on future research.  
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CHAPTER 2 

LITERATURE REVIEW  

 

2.0 Introduction 

 One of the main obstacles for researchers is to deal with incomplete data 

in studies related to categorical data. In this chapter, a review of the literature is 

provided in this context. It is observed that the EM algorithm, the MLE, and the 

logistic regression models have been employed by various researchers in the 

field of incomplete categorical data. This chapter includes a review of the 

important studies, in relation to the analysis of incomplete categorical data.   

 

2.1 EM Algorithm 

In 1977, a broadly applicable algorithm for computing the maximum 

likelihood estimates from incomplete data is proposed by Dempster, Laird and 

Rubin. They proposed an algorithm which is named as EM algorithm because it 

involves expectation step (E-step) and maximization step (M-step) in each 

iteration. They have derived the monotone behavior of the likelihood and 

convergence of the algorithm. 

 
It is evident that categorical data are often collected with some 

incomplete data records (Fuchs, 1982). There are two general methods to 

categorize the incomplete data: (i) data are summarized in a single table with 

missing or a priori empty or combined categories, or (ii) data summarized in the 

form of two or more related tables, one fully categorized and the other 

containing data that are only partially categorized. Fuchs (1982) states that 

single tables with missing or a priori empty cells can be analyzed by fitting the 
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log-linear models (Bishop, Fienberg, and Holland, 1975; Haberman 1974b, 

1979). Tables with combined categories can be caused by truncated or 

censored data (Hartley, 1958) or by contingency tables with mixed-up cells 

(Haberman, 1974a; Chen and Fienberg, 1976). 

 
Data summarized into a series of mutually exclusive tables, only one of 

which is fully categorized, may arise when the investigator collects the data by 

refining categories for a subsample and by grosser categories for the remainder 

of the sample. Analysis of such partially categorized data is considered by 

Hocking and Oxspring (1971, 1974) and by Chen and Fienberg (1974). A 

special case of such a series of tables occurs when data are missing for one or 

more of the categories of variables. The partially categorized tables contain 

those observations that cannot be included in the fully categorized table and 

each observation is included in the highest-order table to which it can be 

assigned. Chen and Fienberg (1974) illustrated the expected frequencies in the 

main table and the process by which some observations lose their row or 

column identity for two-way contingency tables with supplemental row and 

column subtables. 

 
Fuchs (1982) considered data classified into a multiway frequency table 

where the values of all the variables are recorded for a subset of the sample, 

while other subsamples have data missing for one or more variables. Since 

missing observations can occur on any variables, many of the supplemental 

tables may be sparse. 

 
Fuchs (1982) applied the EM algorithm (Dempster, Laird and Rubin, 

1977) for the problem he had considered to obtain the maximum likelihood 
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estimates (MLEs) for the expected cell frequencies in tables augmented by 

incomplete data. The factorization of the likelihood (Rubin, 1974) is applied for 

data with a nested pattern to obtain MLEs for the saturated model. Tests of fit 

for the log-linear models in the presence of incomplete data are also considered. 

It is shown that the allocation of the incomplete data according to a specific 

model may affect the tests of fit considerably. Therefore, fitting the model and 

computing the MLEs are suggested in two separate stages. For the purpose of 

application, Fuchs (1982) considered the data from the extensively argued 

Protective Services Project for Older Persons (Blenkner, Bloom, and Weber, 

1974). The data on all the variables were available for 101 participants. The 

data not available were physical status with 1 frequency, mental status with 33 

frequencies and physical status and mental status with 29 frequencies. The 

data is presented in the Appendix, Table A.1  

 
It is evident from the conclusion of Fuchs (1982) that the algorithms 

required for computing the MLEs in frequency tables formed from an incomplete 

data matrix are not much more difficult than those in the case of complete data. 

The algorithms used in the case of complete data can be either used iteratively 

to yield the MLEs for the incomplete data case or modified to yield the MLE in a 

single cycle. Fuchs (1982) also found that the increased reliability of the results, 

the ease of computation, and the intuitive interpretation are appealing features 

of the procedure. 

 
 It was observed by Fay (1986) that a nonresponse originated from a 

questionnaire might pose an obstacle to get the complete survey data.  Fay 

(1986) states that the most frequently cited reasons for nonresponse in sample 
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surveys is attributable to unwillingness of respondents to provide the correct 

information. However, besides the cause of human behavior, it might also be 

caused by inability of respondents to understand a question or lack of 

knowledge of the respondents. Another important reason of nonresponse is due 

to propagation of erroneous nonresponse as a sequel to a single question. The 

study of Fay (1986) was limited to nonresponse for categorical data.  Therefore 

a general class of models to process the nonresponse to represent a different 

orientation to the problem of inference from the observed data is presented. The 

data considered by Fay (1986) is on survival of subjects cross-classified by 

initial evaluations of physical and mental status. This data set is shown at 

Appendix, Table A.2. 

 
According to Fay (1986), many possible models are available for three or 

more variables. The causal models discussed about forming of a rich class of 

alternatives. There has been utmost attention in the literature on the model-

based approaches for analysis of missing data in the case of given ignorability 

of response and it occupies a central role but the assumption of ignorability may 

not always be correct. Additional conditions are required for causal models 

which may cause substantially larger effect on the overall variance. This 

becomes the disadvantage of causal models. As stated by Rubin (1978), the 

importance of appreciating two sources of uncertainty in the analysis of data 

subjects to nonresponse are: i) imputation does not properly include the random 

contribution or variance due to treatment of imputed data; and ii) the source of 

uncertainty in the analysis can be stemmed from selection of a model or 

assumption for the process of nonresponse. Therefore causal models may 

serve as an alternative for deciding the effect of the choice of model. 
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As referred to Baker and Laird (1988), a common problem in the analysis 

of survey data involves incomplete data with a possible nonignorable response 

mechanism. The response mechanism (the reason whether or not a unit 

response is obtained) is said to be nonignorable if it depends on a subject’s 

unobserved response (Little, 1982). The example considered by Baker and 

Laird (1988) is the use of polling data to predict the proportion of voters 

preferring Truman won with 52% of the two party votes, although polling results 

predicted Dewey. The set of data is shown at Appendix, Table A.3. The causes 

for failure of the polls in an election were studied extensively by a special 

committee of the Social Science Research Council (SSRC) and discussed in its 

report (Mosteller et al., 1949). This report identified several weaknesses of the 

polls, including failure to weight sample data appropriately, heavy vote switching 

in the two weeks prior to the election, and nonresponse bias. The purpose of 

Baker and Laird (1988) was to illustrate that an appropriate model could be 

used effectively to adjust for nonresponse bias. 

 
Baker and Laird (1988) modeled the response mechanism associated 

with a categorical outcome and a set of covariates by using the log-linear 

models. The results of estimation and hypothesis testing can be sensitive to the 

choice of model for the response mechanism. By using different regression 

models, the model for response mechanism can be systematically varied and 

the sensitivity of estimates can be checked and tested to a variety of plausible 

assumptions for nonresponse. 

 
It is evident from the conclusion and finding of Baker and Laird (1988) 

that their results may be sensitive to the model selected. Responses were 
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obtained on a subset of nonrespondents through intensive pursuit of a random 

fit of a richer set of alternative models for analyzing categorical data subject to 

nonresponse. In the M step of the EM algorithm, the log-linear models also 

make it easy to examine all plausible models for the response mechanism, 

which is necessary for gauging the uncertainty due to nonresponse in 

estimation and hypothesis testing. For incomplete 2x2x2 table, it can be 

demonstrated that some models are not estimable, solutions may occur on the 

boundary, and G2, goodness of fit may be nonzero even when degree of 

freedom (df) (lack of fit) = 0. It is difficult to determine which models are 

estimable and to count df (lack of fit) with large tables. As a result, model 

comparisons involving ∆G2 and ∆df should be done carefully to ensure that df is 

counted correctly. 

 
Ibrahim (1990) examined the general problem of incomplete data for any 

generalized linear model (GLM) with discrete covariates, in which 

incompleteness is due to partially missing covariates on some observations. 

The EM algorithm is applied to obtain the MLEs. Under some very general 

conditions, the E-step of the EM algorithm can be written as a weighted 

complete data log likelihood for any GLM is shown. 

 
 The example which Ibrahim (1990) considered to illustrate the method of 

weights for the EM algorithm involves a logistic regression from a data set of 

incomplete observation. The example involves a study of 82 patients who 

experienced translaryngeal intubation (TLI) for more than four days and were 

prospectively evaluated for laryngeal complications. The purpose of the study 

was to identify a group of patients experiencing prolonged TLI (more than four 
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days) and to prospectively evaluate the incidence and type of laryngeal 

complications they might suffer. Data were collected on the patients regarding 

13 baseline explanatory variables (covariates) during the period of TLI. From 13 

covariates, 3 are continuous and 10 are dichotomous and among that 13 

variables, 4 are incomplete. For these data, the response variable, y, is 

dichotomized as 0, for no damage and 1 for damage of the larynx at baseline 

respectively. The three covariates are serum albumin, x1, which is dichotomized 

and takes the values of 0 if <30 SI and 1 if ≥30, where SI denotes standard 

international units. Serum creatinine, x2, is second explanatory variable. This is 

also dichotomous and takes the value 0 if <200 SI and 1 if ≥200 SI. The third 

covariate, x3, is the ratio of laryngeal size to tracheal tube size, which is also 

dichotomized and takes the value 0 if the ratio is less than 0.45 and 1 if the ratio 

is greater than or equal to 0.45. This data set is illustrated in Appendix, Table 

A.4. 

 
It is evident from the conclusion of Ibrahim (1990) that the direct use of 

the Newton-Raphson method on the incomplete data likelihood can also be 

used to estimate the parameters in an incomplete data problem. For the class of 

GLM, finding the incomplete data likelihood directly is generally quite difficult, 

and in most cases it cannot be expressed in a reasonable closed form. Thus 

carrying out the direct Newton-Raphson on the incomplete data likelihood in 

GLM is not practical for most situations. The EM algorithm by the method of 

weights does not require the computation of the incomplete data likelihood. Its 

entire computation depends only on complete data quantities. The EM algorithm 

seems to be a more practical approach than the direct Newton-Raphson for the 

class of GLM. The EM algorithm by the method of weights is not restricted only 
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to the class of GLM. The idea is actually very general and may be applied to 

other types of models, such as nonlinear regression models or time series 

models. Slow convergence rate is the drawback of the EM algorithm. 

 
The analysis of categorical data will not be clear when there are partially 

classified observations with missing values on one variable (Phillips, 1993). 

Ignoring partially classified observations do not affect any comparisons of 

models made by using the likelihood ratio goodness-of-fit statistics if the 

observations are ‘missing at random’ (MAR) (Rubin, 1976). 

 
Phillips (1993) has concentrated on three-dimensional tables with 

missing values on one variable. General results given by Fuchs (1982) and 

Nordheim (1984) were applied and extended by Phillips (1993). The case of two 

dimensional tables has been tackled by Little and Rubin (1987). The data set 

considered by Phillips (1993) is a clinical trial conducted at two centers to 

compare two drugs. This data is shown at Appendix, Table A.5. 

 
 It is evident from the conclusion of Phillips (1993) that when the effect on 

inferences of using the likelihood ratio test statistic with the  assumption that 

‘missing at random’ is relaxed can only be applied on IxJx2 three-dimensional 

tables. It is possible to obtain the maximum likelihood estimator for the expected 

cells. 

 
A general-likelihood-based theory for the analysis of data obtained from 

sample surveys of finite populations have been presented by Breckling et al. 

(1990). In contrast with the EM algorithm, this method produces explicit 

expressions for the score and information functions generated by the observed 
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data which allow us to compute approximate standard errors and test statistics 

based on these functions. Chambers and Welsh (1993) applied the methods of 

Breckling et al. (1990) to fit the log-linear models to categorical survey data 

which are subject to non-response. Chamber and Welsh (1993) have made a 

double contribution, which is a very general class of the log-linear models an 

algorithm for fitting these models, which yields explicit estimates, are used to 

quantify the sensitivity of the inferences to the model for non-response. 

 
Little (1985), Fay (1986), Little and Rubin (1987), and Baker and Laird 

(1988), Chamber and Welsh (1993) tackled the problem of uncertainty about 

the nature of the non-response mechanism by explicitly considering several 

competing plausible models for the mechanism. Explicit allowance for 

simultaneous adjustment for sample design effects is made and explicit 

expressions for the score and information functions generated by the observed 

data are produced by Chamber and Welsh (1993). The log-linear models, which 

are used by Chamber and Welsh (1993), are most closely related to Baker and 

Laird (1988) but they do not allow for either non-nested patterns of non-

response or simultaneous adjustment for sample design effects. Little (1985) 

and Fay (1986) allow for general (non-nested) patterns of non-response but not 

for simultaneous adjustment for sample design effect and do not use the log-

linear models. Fay (1986) also develops the use of causal models for non-

response. The explicit formula of Chamber and Welsh (1993) avoid the need to 

use the jackknife (Fay, 1986) and bootstrap (Baker and Laird, 1988) to obtain 

approximate standard errors. Table A.6, in Appendix was used by Chamber and 

Welsh (1993) to illustrate their methods. 
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Chambers and Welsh (1993) have demonstrated the construction, 

interpretation and fitting of the computable log-linear models to categorical 

survey data with nonignorable nonresponse. This is both feasible and 

straightforward. They referred to the works of Little (1985), Fay (1986), Little 

and Rubin (1987), and Baker and Laird (1988) and modeled conditional 

nonresponse probabilities on the basis of the classification given separately 

employing the classification probabilities. Their general model formulation for 

the nonresponse model allows this model to depend on scores, discrete 

covariates, continuous covariates or a mixture of types of covariates. They 

obtained explicit expressions for the score and information functions generated 

by the observed data, which allow computing approximate standard error and 

test statistics based on these functions. Unfortunately, Chambers and Welsh 

(1993) cannot guarantee the accuracy of the inferences when the underlying 

nonresponse is in fact nonignorable. Therefore it is quite difficult to determine 

from the survey data alone when the nonresponse is ignorable. However, large 

sudden changes in fitted values as fitted nonignorable nonresponse models 

become more extreme which may indicate the presence of ignorable 

nonrepsonse. 

 
 Lauritzen (1995) has shown that the computational scheme of Lauritzen 

and Spiegelhalter (1988) to perform the E-step of the EM algorithm when 

applied to finding the maximum likelihood estimates or the penalized maximum 

likelihood estimates in the hierarchical log-linear models and recursive models 

for contingency tables with missing data can be exploited. 
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 It is evident from the conclusions of Lauritzen (1995) that the procedure 

of Lauritzen and Spiegelhalter (1988) is able to calculate the term in the E-step 

of the EM algorithm for the hierarchical log-linear models and recursive models. 

When the results tend to converge on the basis of the recursive models, the EM 

algorithm converges at a relatively slower pace. Therefore the relative 

computational scheme could be used for the probability propagation in the E-

step as an alternative which described by Shenoy and Shafer (1990). 

 
According to Molenberghs and Goetghebeur (1997), the most popular 

approach to analyse incomplete data has been the EM algorithm (Dempster et 

al., 1997). Definition of complete data is containing observed and unobserved 

outcomes and full data is combined by set of complete data and missingness 

indicators (Molenberghs and Goetghebeur, 1997). 

 
From the terminology of Little and Rubin (1987),  if the missingness is 

independent for both observed and unobserved data, then the non-response 

process is said to be missing completely at random (MCAR). However, if the 

missingness is independent of the unobserved measurement conditionally on 

the observed data, then the non-response process is called as missing at 

random (MAR). If it is neither completely random nor random, then it is termed 

as informative. From previous work of Baker and Laird (1988), Chambers and 

Welsh (1993) found that the EM algorithm is general, stable and can be 

implemented conveniently. However, slow rate of convergence and lack of the 

direct provision of a measure of precision for the estimators have made the EM 

algorithm not a perfect approach. Therefore Molenberghs and Goetghebeur 

(1997) proposed an alternative general approach which has advantages when 
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fitting models to a broad class of incomplete categorical data. A simple 

expression for the observed data likelihood and its derivatives in terms of the 

complete data model, provided that the observed data are linear functions of the 

complete data was presented. 

 
It is evident from Molenberghs and Goetghebeur (1997) that no greater 

complexity arises when constructed and fitted the observed data likelihood 

directly rather than for the complete data. Faster convergence and variance 

estimator at each step of iteration is obtained by considering Fisher scoring 

algorithm to find the maximum.  

 
 As referred by Galecki et al. (2001), the advantages for the EM algorithm 

are its generalizability and stability. But the EM algorithm performs at a slow 

rate of convergence and lacks straightforward estimation of the precision of 

parameter estimates. Baker (1994) tried to improve the EM algorithm by 

incorporating the Newton-Raphson approach. However, Molenberghs and 

Goetghebeur (1997) proposed a method using the Fisher scoring to maximize 

the observed likelihood instead of complete data likelihood under a multivariate 

generalized logistic model with composite link function (McCullagh and Nelder, 

1989; Lang and Agresti, 1994; Balagtas et al., 1995; Yang and Becker, 1997). 

Molenberghs and Goetghebeur (1997) have shown faster convergence and 

easily yielded variance estimates as part of the Fisher scoring algorithm.  

  
 It is evident from the conclusion that Galecki et al. (2001) is able to 

propose a more flexible alternative. The differences between Galecki et al. 

(2001) with Molenberghs and Goetghebeur (1997) are Galecki et al. (2001) 

proposed a more flexible inversion technique for obtaining cell probabilities by 
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considering the multivariate generalized linear models. Galecki et al. (2001) 

applied an extension of the iterative proportional fitting (IPF) to the inversion 

process. The IPF approach is used to obtain the maximum likelihood estimates 

under a hybrid marginal log-linear model. Secondly, the difference between 

Galecki et al. (2001) with Molenberghs and Goetghebeur (1997) is that they 

considered iteratively reweighted least squares (IRLs) techniques rather than 

the Newton-Raphson approach. 

 
 According to Tang et al. (2007), the EM algorithm is the most widely 

used approach for finding the maximum likelihood estimate for incomplete-data 

problems but it lacks the direct provision of a measure of precision for the 

estimators and the slow rate of convergence. Louis (1982) suggested obtaining 

the asymptotic variance-covariance matrix of the MLE. The delta method 

(Tanner, 1996) can be utilized to calculate standard errors of various functions 

of the cell probabilities. 

 
 Tang et al. (2007) proposed a novel data augmentation (DA) scheme 

which involves fewer latent variables and results in a new and efficient EM 

algorithm. Two bootstrap confidence intervals (CIs) are recommended for small-

sample data, for functions of cell probabilities via the new EM algorithm. 

 
 Tang et al. (2007) reveals that the method they suggested converged 

much faster than the EM algorithm based on the conventional DA scheme. Also 

by comparing with the delta methods, the proposed bootstrap methods are 

feasible and perform well. Throughout the work of Tang et al. (2007), they 

considered the mechanism of MAR. 
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2.2 Maximum Likelihood Estimation (MLE) 

It is evident that two types of empty cells we have to encounter in 

categorical data analysis are sampling zero and a priori zero (Fienberg, 1970). 

Sampling zero occurs due to sampling variability and the relative smallness of 

the cell probability. Sampling zeros will be eliminated when the sample size is 

increased. However, a priori zero occurs when the observations are missing or 

truncated (Goodman, 1968; Watson, 1956). Besides, impossible observation 

counts is also defined as a priori zero (Bishop and Fienberg, 1969; Mantel and 

Halperin, 1963; Pearson, 1930, Waite, 1915).  

 
It was observed by Fienberg (1970), most of the authors tried to solve 

the problem of a priori zero cell by considering a multiplicative model for the 

non-zero expected cell frequencies. Goodman (1968) introduced the term 

‘quasi-independence’ to describe that multiplicative model. Various procedures 

for calculating estimates of the expected cell frequencies based on the 

assumption that the unique maximum likelihood estimates for the quasi-

independence model do exist have been proposed by Bishop and Fienberg 

(1969), Caussinus (1965), and Goodman (1964, 1968). By adopting these 

procedures, Fienberg and Holland (1970) proposed a different approach. 

Unfortunately, the existence of unique maximum likelihood estimates for the 

expected cell counts under the various models could not be successfully shown. 

Therefore, Fienberg (1970) tried to work on the problem discussed above.  

 
In his study, Fienberg (1970) was able to provide two conditions to prove 

the existence of unique non-zero maximum likelihood estimates for an 

incomplete two-way table. Two conditions provided by Fienberg (1970) were: (i) 
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the marginal totals of row and column are all positive, and (ii) the observed table 

of cell counts corresponding to the subtable is inseparable.  

 
According to Chen and Fienberg (1974), an unrestricted estimation of the 

multinomial cell probabilities has been considered by Blumenthal (1968) for 

some partially cross-classified contingency tables. Hocking and Oxspring (1971) 

have considered the same problem and they considered the original multinomial 

corresponding to a two-dimensional cross-classification, and Reinfurt (1970) 

considered that there are two supplemental multinomial samples corresponding 

to the row totals and column totals. Blumenthal (1968) noted that results for the 

random partial classification problem can be essentially the same as the 

supplemental-sample problem. However, Koch and Reinfurt (1970) and Koch et 

al. (1972) use a modified minimum chi-squared approach to various 

contingency tables cases of the Hocking-Oxspring (1971) problem. Many of 

these earlier results are applicable to problems involving the unrestricted 

estimation of cross-classified cell probabilities. But unfortunately none of the 

researchers deal with reduced parameterizations for general interest like 

independence of variables corresponding to rows and columns.  

 
Chen and Fienberg (1974) have shown that their results can be 

specialized to yield the estimators and asymptotic variances given in 

Blumnethal (1968). Besides, methods for obtaining the maximum likelihood 

estimates for expected cell values in contingency tables with partially cross-

classified data were described. The log-linear model was considered to deal 

with the multi-dimensional contingency tables with some partially cross-
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