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spreading with close-cell covering of the coral surface 
and cells migration into the pore of the coral (A, C and 
E, magnification x50; B, D and F, magnification x250) 
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Plate 3.40

 

Scanning electron micrographs of osteoblast cell line, 
human bone marrow mesenchymal stem cells without 
OS medium and human bone marrow MSC with OS 
medium grown on coral scaffolds for 7 days. The three 
different cell types display more prominent pattern of cell 
attachment and spreading among the three different 
types of cells. (A), (B) The osteoblast cell line is 
completely covering the surfaces with a thin sheet of 
cell. (C), (D) The human MSC is covered with a thin cell 
sheet, which is bridging majority of the pore openings. 
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(E) The human MSC with osteogenic medium is almost 
completely covered with cells. Uniform cell layer began 
to bridge over pores with formation of filopodial 
extensions and small globular extra-cellular matrix 
structures. (F) A typical cell–material interactions on 
coral scaffold which display bridging of intercellular 
connecting of differentiated osteoblasts by their filapodia 
(A, C and E, magnification x50; B, D and F, 
magnification x1K) 
 

Plate 3.41

 

Scanning electron micrographs of human bone marrow 
mesenchymal stem cells grown on coral scaffold with 
osteogenic medium at day 3 and day 7 of cell cultures 
displaying typical cell-material interactions. Both 
micrographs in (A) and (B) depicting good cell spread on 
the coral scaffolds, with many cells migrating into the 
pores of the coral and intercellular connecting of 
differentiated osteoblasts by their filapodia (A and B, 
magnification x1K) 
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Plate 3.42

 

Scanning electron micrographs of human bone marrow 
mesenchymal stem cells and osteoblast cell line grown 
on coral scaffold in three different culture media for 14 
days, which display a distinct difference in pore 
occlusion. (A), (B) The osteoblast cell line is completely 
covering the surfaces without signs of pore o 
3cclusion. Calcified plates were also observed (inset 
magnification x5k). The cells proliferated into the outside 
and inside of the pores. (C), (D) The human MSC is 
covered with a thin widespread cell sheet, which is 
bridging the pore but without signs of complete pore 
occlusions. (E) The human MSC in osteogenic medium 
is completely covering the entire coral network causing 
complete pore occlusion. (F) At higher magnification, the 
cell layer revealed regions of globular mineral deposition 
that were interspersed among the osteoblast-like cells 
(A, C and E magnification x100; B and D magnification 
x250 and F magnification x2.5K) 
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Plate 3.43
  

Scanning electron micrographs showing the three 
types of cells (MSC with OS, negative control and 
positive control) on coral scaffolds at different time 
points at low magnification (x50) 
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Plate 3.44 Scanning electron micrographs showing the three 
types of cells (MSC with OS, negative control and 
positive control) on coral scaffolds at different time 
points at high magnification (x250 to x2.5k)  
 

174 



 xxii

 
 
 
 
 

LIST OF ABBREVIATIONS 
 
 

ALCAM   Activated leukocyte cell adhesion molecules 
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hUCM   Human umbilical cord matrix 

MNC   Mononuclear cells 

MSC   Mesenchymal stem cells 

MSCBM   Mesenchymal stem cell basal medium  

MSCGM   Mesenchymal stem cell growth media  

MSCGS   Mesenchymal stem cell growth supplements 

MTT   Dimethylthiazol diphenyl tetrazolium bromide 
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KEJURUTERAAN TISU TULANG MANUSIA 
MENGGUNAKAN BATU KARANG DAN OSTEOBLAS 

TERBEZA DARIPADA TERBITAN SEL STEM 
MESENKIMA 

 

ABSTRAK 
 
 

Penggunaan sel-sel stem mesenkima (MSC) di masa hadapan dalam 

kejuruteraan tisu tulang bergantung kepada keberhasilan pengkulturan sel 

MSC secara in vitro, pembezaan kepada osteoblas dan regenerasi tulang baru 

di dalam rangka batu karang. Tujuan kajian ini ialah untuk membina satu 

kaedah pengkulturan untuk sel-sel stem mesenkima dari sum-sum tulang dan 

darah talipusat manusia kemudian membezakannya kepada fenotip osteoblas 

diikuti dengan penilaian kebolehan sel-sel ini untuk bercambah secara in vitro 

dan membeza menjadi osteoblas di dalam rangka batu karang. Sel-sel stem 

mesenkima yang diperolehi dari sum-sum tulang diasingkan, dikultur-kembang 

dan kemudian dibezakan menjadi osteoblas. Morfologi sel dianalisis 

menggunakan teknik mikroskop cahaya manakala fenotip keimunannya 

dengan penanda-penanda permukaan sel pada MSC (CD105, CD166). Sel-sel 

stem mesenkima dikultur di dalam medium yang mengandungi 10 nM 

deksametason, 3.5 mM β-gliserofosfat dan 50 μM L-asid askorbik. Pembezaan 

osteogenik dinilai dengan pewarnaan histokimia [alkalin fosfatase (ALP) dan 

von Kossa] pada hari ke-7, 14 dan hari ke-21 selepas sel terbeza menjadi 

osteoblas. Asai biokimia secara kuantitatif dianalisis dengan aktiviti alkalin 
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fosfatase, kandungan kalsium dan asai protein total. Pewarnaan 

immunositokimia terhadap osteonektin (ON), osteopontin (OPN) dan 

osteokalsin (OC) yang bertindak sebagai penanda untuk osteoblas ditentukan 

setiap penandaannya pada tiga titik masa yang berlainan. Viabiliti sel yang 

menjalani pembezaan kepada osteoblas di dalam larutan batu karang (1, 10, 

25, 50, 100 and 200 mg/ml) dinilai dengan asai dimetiltiazol difiniltetrazolium 

bromid (MTT). Percambahan dan pembezaan sel-sel di atas rangka batu 

karang dianalisis dengan menggunakan mikroskop imbasan elektron (SEM). 

Penanda permukaan sel untuk MSC mengekspresi CD105 dan CD166 yang 

mengesahkan MSC di dalam sum-sum tulang. Sel-sel dari matriks talipusat 

mampu bertahan untuk beberapa bilangan pengkulturan sahaja dengan 

ekspresi yang terhad untuk CD 105.  Pewarnaan von Kossa untuk nodul yang 

bermineral dikesan pada hari ke-14 tetapi aktiviti ALP adalah rendah sepanjang 

pembezaannya kepada osteoblas.  Ekspresi ALP meningkat dengan masa dan 

asai kalsium berkadaran dengan keputusan histokimia. Osteopontin mencapai 

tahap maksimum pada hari ke 7 dan beransur-ansur menurun hingga hari ke 

21 tetapi rembesan OC meningkat berkadaran dengan masa. Yang 

menariknya, ON menunjukkan satu corak dwifasa dengan ekspresi yang tinggi 

pada hari ke-7 dan hari ke-21. Sel-sel kawalan yang dikultur tanpa media 

osteogenik mengekspresi penandaan yang pudar. Asai MTT dengan 

signifikannya menunjukkan percambahan sel-sel berbanding dengan sel 

kawalan apabila di dedahkan kepada kepekatan larutan batu karang yang 

tinggi.  Kajian dengan SEM menunjukkan peliputan sel yang baik pada 

permukaan batu karang dengan penambunan matriks untuk ketiga-tiga 

kumpulan iaitu osteoblas terbeza dan MSC tanpa medium osteogenik dan 
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titisan sel osteoblas. Keputusan yang terhasil mengesyorkan bahawa batu 

karang ialah satu bahan yang bioserasi yang mampu menyediakan satu rangka 

sementara yang menarik untuk kejuruteraan tisu tulang. 
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HUMAN BONE TISSUE ENGINEERING USING CORAL  
AND DIFFERENTIATED OSTEOBLASTS FROM  

DERIVED-MESENCHYMAL STEM CELLS 
 

ABSTRACT 
 

The future use of mesenchymal stem cells (MSC) for bone tissue 

engineering depends on the establishment of in vitro MSC cell culture; 

differentiation into osteoblasts and generation of new bone on coral scaffolds. 

The purposes of this study were to develop a cultural method for the human 

bone marrow and cord blood mesenchymal stem cells to differentiate into 

osteoblasts phenotype followed by assessing their in vitro ability to proliferate 

and differentiate in the coral scaffolds. Mesenchymal stem cells of human were 

isolated, culture-expanded and then differentiated into osteoblasts. Cellular 

morphology was analysed by light microscopy technique and the immune 

phenotype by MSC cell surface markers (CD105, CD166). Mesenchymal stem 

cells were cultured in MSC media containing 10 nM dexamethasone, 3.5 mM β-

glycerophosphate and 50 μM L-ascorbic acid. Osteogenic differentiation was 

evaluated by means of histochemical stainings [alkaline phosphatase (ALP) 

and von Kossa] at day 7, 14 and 21 after osteogenic differentiation. 

Quantitative biochemical assays were analysed by alkaline phosphatase 

activity, calcium content and total protein assay. Immunocytochemical stainings 

against osteonectin (ON), osteopontin (OPN) and osteocalcin (OC) served as 

markers for osteoblasts were each determined at 3 different time-points. Cell 
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viability for differentiated osteoblasts in eluted corals (1, 10, 25, 50, 100 and 

200 mg/ml) were assessed with dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium 

bromide (MTT) assay. Cell proliferation and differentiation on coral scaffolds 

were analysed by using scanning electron microscopic (SEM). MSC surface 

markers expressed CD105 and CD166 which defined MSC in bone marrow. 

Cells from cord matrix persisted for a limited passage number with limited 

CD105 expression. Von Kossa stained for mineralised nodules on day 14 but 

ALP activity was minimal throughout osteogenic differentiation. Alkaline 

phosphatase expression increased with time and calcium assay correlated with 

the histochemical findings. Osteopontin reached a maximum on day 7 and 

gradually decreased until day 21 but the secretion of OC increased time-

dependently. Interestingly, ON showed a biphasic pattern with increased 

expression on day 7 and 21. The control cells cultured in the absence of 

osteogenic medium produced negligible expression of these markers. MTT 

assay showed significantly cell proliferation compared to control with 

administration of high coral concentration. SEM studies exhibited good cell 

coverage on coral surface with deposition of the matrix for all cell types that is 

the differentiated osteoblasts, MSC without osteogenic medium and osteoblast 

cell line. The results suggest that coral is biocompatible material thus provides 

an attractive scaffold for bone tissue engineering.  
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CHAPTER ONE 
 
 

INTRODUCTION 
 
 

1.1 MESENCHYMAL STEM CELLS 

 

The definition of a stem cell remained contentious for over three 

decades. “Mesenchyme” designates the developing loose connective tissue of 

an embryo, mainly derived from the mesoderm and giving rise to a large part of 

the cells of the connective tissue in the adult (Moore, 1993). Mesenchymal stem 

cells (MSC) according to Dennis and Caplan (2004), referred to the adult 

mesenchymal progenitor cells and are defined as cells that have the capacity to 

self-renew and uncommitted to conduct a specific function as well as the 

capacity for extensive proliferation and differentiation (Weissman, 2000). To 

avoid vague terms; Cowen & Melton (2006) concluded a working definition of a 

stem cell as a clonal, self-renewing entity that is multipotent and thus can 

generate several differentiated cell types. 

 

Mesenchymal stem cells represent a subset of precursor cells that 

adhere to the stem cell definition, that is, they are capable of (1) self-renewal or 

the ability to generate at least one daughter cell with characteristics similar to 

the initiating cell; (2) differentiation into multiple cells and (3) in vivo functional 

reconstitution of the tissues to which they give rise (Verfaillie et al., 2002, 

Roufosse et al., 2004). In 1980, Golde and colleagues investigated the origin of 
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bone marrow fibroblasts in bone marrow transplant recipients and indicated that 

the human fibroblast is not derived from a precursor common to haematopoietic 

cells or lymphocytes. Instead, the cells were mesenchymal cells derived from a 

different precursor and capable of in vitro proliferation even after high doses of 

total body irradiation. According to Pittenger and co-workers (1999), only a 

small percentage; estimated at about 0.001 to 0.01% of cells isolated from the 

light density separation attached and grew as fibroblastic cells that developed 

into visible colonies.  

 

These cells may be found in cells preparations that have been labelled 

with various terms include mesenchymal progenitor cells (Minguell et al., 2000, 

Caterson et al., 2002), marrow stromal cells (Wilkins & Jones, 1995, Kuznetsov 

et al., 1997, Prockop, 1997), mesenchymal stem cells (Majumdar et al., 1998, 

Tuan et al., 2003); and colony-forming unit-fibroblastic (CFU-f) (Gordon et al., 

1995, Minguell et al., 2000, Minguell et al., 2001). Verfaillie and co-workers 

(2002) described multipotent adult progenitor cells as a subpopulation of cells 

that co-purified with MSC and have unique properties. Although mesenchymal 

stem cells were originally isolated from bone marrow (Prockop, 1997, Minguell 

et al., 2001), similar populations have been reported in other tissues such as 

adipose tissue (Zuk et al., 2001), umbilical cord blood (Erices et al., 2000, 

Goodwin et al., 2001, Bieback et al., 2004) and trabecular bone (Noth et al., 

2002). 
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1.1.1 Sources of mesenchymal stem cells (MSC) 

 

1.1.1(a) Bone marrow stem cells 

 

The most well studied and accessible source of MSC is bone marrow, 

although in this tissue, the cells are present in a low frequency (Pittenger et al., 

1999). The cells have attracted interest because the bone marrow stroma was 

originally thought to function mainly as a feeder layer for the growth of 

haematopoietic stem cells and progenitor cells (Caplan, 1991, Prockop, 1997). 

There are three main cellular systems in the bone marrow: haematopoietic, 

endothelial and stromal (Deans & Moseley, 2000, Tuan et al., 2003). Marrow 

stromal cells provide growth factors, essential cell-to-cell interactions as well as 

production of matrix proteins essential to maintenance, growth and 

differentiation of haematopoietic stem cells within the marrow micro-

environment (Dennis & Charbord, 2002). Within the bone marrow stromal, there 

exists a subset of nonhaematopoietic cells referred to as mesenchymal stem or 

mesenchymal progenitor cells (Minguell et al., 2001).  

 

Evidence for the existence of MSC in bone marrow-derived cultures has 

been provided by the work of Golde and colleagues (1980). They investigated 

the origin of the bone marrow fibroblasts and indicated that it was not derived 

from a precursor common to haematopoietic cells but instead, appeared to be 

mesenchymal cells which were capable of in vitro proliferation. Additional 

evidence for the present of uncommitted MSC has been provided by the work of 

Simmons and Torok-Storb (1991). By using a murine monoclonal antibody 
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STRO-1 and plated in long-term bone marrow culture conditions, these STRO-1 

positive cells retain the capacity to generate adherent cells layers with identical 

cellular composition to that of the parent cultures. In addition, these cells were 

able to support the generation of haematopoietic cells. Recent efforts 

demonstrated that given the right stimuli and local environment, they develop 

into various cell types in vitro (Prockop, 1997, Caterson et al., 2002, Yuasa et 

al., 2004).  

 

1.1.1(b) Cord blood stem cells 

 

Though bone marrow has been represented as the main available 

source of MSC, the use of bone marrow-derived cells is not always acceptable 

owing to high degree of viral exposure and the significant decrease in the cell 

number and the proliferation or differentiation capacity along with age (Campisi, 

2001, Fehrer & Lepperdinger, 2005). In addition, it requires a painful invasive 

procedure to obtain a bone marrow sample. Thus the need to find an alternative 

MSC source has emerged especially if MSC are given repeatedly. It was found 

that the frequency of progenitors in umbilical cord blood (UCB) equals or 

exceeds that of marrow, and greatly surpasses that of adult blood (Broxmeyer 

et al., 1989). Umbilical cord blood (UCB) was well known to be a rich source of 

haematopoietic stem cells (Rubinstein et al., 1995) with practical and ethical 

advantages but the issue about the existence of MSC in UCB has not clearly 

resolved. It was reported that fresh UCB-derived mononuclear cells seeded on 

flasks without supportive stromal layers did not form stroma in long term culture 

conditions (Hows et al., 1992). Wexler and co-researchers (2003) concluded 
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that neither fresh UCB nor peripheral blood with stem cell mobilisation 

contained MSC. Numerous attempts to isolate MSC from UCB have either 

failed (Mareschi et al., 2001, Wexler et al., 2003) or have demonstrated a low 

frequency of mesenchymal progenitors in UCB of full term deliveries (Erices et 

al., 2000, Goodwin et al., 2001).  

 

Optimal combination of different media as well as different growth factor 

cocktail has been evaluated continuously (Kohler et al., 1999, Balducci et al., 

2003). Those experiments resulted in expansion of progenitors but long-term 

culture initiating cells have not been successfully amplified so far. In addition, 

Chivu and colleagues (2004) have tested several culture protocols for in vitro 

maintenance of UCB stem cells and evaluated the influences of different growth 

factors supplement and conditioned medium on UCB cultures. They concluded 

that the in vitro expansion of stem cells from UCB was dependent upon 

controlled experimental conditions of culture.  

 

1.1.1(c) Cord matrix stem cells 

 

In order for the potential of stem cells to be realised, they must be 

available in high numbers and they should be easy to isolate, purify and expand 

in number without induction of spontaneous differentiation and to differentiate 

into the cell type of choice. This requires an easily accessible, plentiful source of 

stem cells. Other than umbilical cord blood, adult stem cells have been isolated 

and propagated from the umbilical cord matrix (Mitchell et al., 2003, Romanov 

et al., 2003, Mizoguchi et al., 2004). The umbilical cord represents the link 
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between mother and fetus and important in the transfer of nutrients and oxygen 

during pregnancy. Mesenchymal connective tissue fills the space between the 

vessels and the simple squamous epithelium lining the surface of the umbilical 

cord. It contains a very low number of cells and high amounts of extra-cellular 

matrix (ECM) components, mainly collagen, hyaluronic acid and several 

sulphated proteoglycans (Nanaev et al., 1997, Gogiel et al., 2003). Cells in the 

umbilical cord matrix (UCM) or tissue are also known as Wharton’s jelly or 

mucous connective tissue (Ross et al., 2002). Within the umbilical cord are 

three large vessels and their walls. Studies by Kobayashi and co-researchers 

(1998) revealed that the stromal cells of Wharton’s jelly at term pregnancy 

possessed the morphological characteristics of myofibroblasts which have a 

contractile function. This function provides the elasticity of Wharton’s jelly and 

protects the umbilical vessels from compression by, for examples, fetal 

movements and uterine contractions (Nanaev et al., 1997, Kobayashi et al., 

1998). The Wharton’s jelly has high amounts of peptide growth factors such as 

insulin-like growth factor I (IGF-I), fibroblast growth factor (FGF), transforming 

growth factor β (TGF-β), platelet-derived growth factor (PDGF) (Sobolewski et 

al., 2005). The high amount of peptide growth factors strongly stimulated the 

cells to produce large amounts of collagen and glycosaminoglycans.  

 

Recent studies showed that only a few researchers have isolated stem 

cells from human umbilical cord (Mitchell et al., 2003, Wang et al., 2004a) and 

in animals from porcine (Mitchell et al., 2003, Medicetty et al., 2004). These 

UCM cells have been reported to be able to differentiate into neuron and glial 

cells, epidermal phenotype, osteogenic and adipogenic lineages (Mitchell et al., 

2003, Weiss et al., 2003, Wang et al., 2004a). Studies have shown that this new 
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cell source may be another versatile, replacement material for cardiovascular 

tissue engineering (Kadner et al., 2002, Schmidt et al., 2005). 

 

1.1.2 Isolation and maintenance of mesenchymal stem cells 

 

Mesenchymal stem cells are generally isolated from aspirated of bone 

marrow harvested from the anterior iliac crest of the pelvis in humans 

(DiGirolamo et al., 1999, Pittenger et al., 1999). Many studies have defined 

conditions for isolation of the MSC from adult bone marrow and subsequent 

expansion of these cell populations (Majumdar et al., 1998, Pittenger et al., 

1999). Different protocols exist for isolation and expansion of MSC from bone 

marrow aspirates (Caplan, 1991, Prockop, 1997). These isolation techniques 

generally rely upon density gradient fractionation to isolate the MSC from a 

bone marrow aspirate although density gradient fractionation does not 

completely preclude haematopoietic cell contamination and does not yield a 

pure population of cells. On the other hand, Caterson and co-workers (2002) 

tried to compare the isolation of MSC from bone marrow using both a direct 

plating method and by density gradient fractionation but did not find any 

discernable difference between the MSC populations isolated by both methods. 

Moreover, direct plating is less labour-intensive and allowed greater yield of 

MSC. However, the haematopoietic cell population in contrast to the MSC does 

not adhere to tissue culture plastic. For this reason, subsequent medium 

changes remove the haematopoietic cellular contaminants, thereby leaving a 

relatively pure cell population of proliferating MSC (Caterson et al., 2002). 
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Optimal growth characteristics and maintenance of the multiple 

differentiation potential of the MSC is also dependent upon the appropriate 

selection of a serum lot for medium supplementation (Jaiswal et al., 2000, 

Bieback et al., 2004). According to Dennis & Charbord (2002), stroma formation 

is observed by culturing in a medium containing a high concentration of 

screened horse and fetal bovine serum (FBS) in where they are cultured in 10% 

or 20% FBS. Therefore, serum provides many factors that are important for the 

transport, presentation and utilisation of essential molecules and nutrient 

molecules to support cell growth. Accordingly, the further expansion of MSC 

after isolation from bone marrow is necessary for their application in 

regenerative medicine because the number of MSC in bone marrow aspirate is 

very small (Pittenger et al., 1999). 

 

1.1.3 Characteristics of mesenchymal stem cells 

 

At present, the characterisation of human MSC lags significantly behind 

that of bone marrow haematopoietic cells. Mesenchymal cells isolate by 

adherence to plastic culture surfaces have characteristics properties that have 

been well-defined by a number of investigators (Colter et al., 2000, Weissman, 

2000, Caterson et al., 2002, Cowen & Melton, 2006). Both Weissman (2000) 

and Cowen and Melton (2006) described the stem cells as having the capacity 

for self-renewal and extensive proliferation and differentiation. Another studies 

by Colter and co-workers (2000) noted the MSC to have high cell heterogeneity 

with different expansive capacity depending on the presence of recycling 

uncommitted MSC. When cultures of bone marrow-derived MSC are examined 
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on the basis of cell proliferation status, they appear to be non homogenous 

(Minguell et al., 2001). The work formed by Colter and co-researchers (2000) 

has shown that in stationary cultures of bone marrow, MSC subsist a minor 

population of small and agranular cell (labelled as RS-1 cells) with a low 

capacity to generate colonies. These quiescent RS-1 cells express an antigenic 

profile that is different from that displayed by the most abundant, fast-growing 

and committed precursors found in expanded cultures of MSC. By studying a 

precursor-product relationship between RS-1 cells and committed precursors, 

the authors came to the conclusion that the high expansive capacity of MSC 

depend on the presence of RS-1 cells. In turn, RS-1 cells may cycle under 

stimulation of factors secreted by the most mature mesenchymal progenitor 

cells. Thus, it seems that RS-1 cells may represent an in vitro subset of 

recycling uncommitted MSC (Minguell et al., 2001).  

 

Mesenchymal stem cells are multipotent adult progenitor cells which 

have the ability to develop into a number of different cell types and contribute to 

the regeneration of mesenchymal tissue such as bone, cartilage, adipose, 

tendon, ligament and muscle (Minguell et al., 2000, Caterson et al., 2002). 

These adult mesenchymal stem cells have been isolated from bone marrow that 

is taken from the iliac crest and expanded. Studies have characterised these 

cells by their ability to proliferate in culture and they resemble a fibroblast-like 

morphology (Digirolamo et al., 1999, Colter et al., 2001). Upon isolation, these 

cells uniformly test positive for adhesion molecules (CD105, CD166) (Bowen et 

al., 1995, Barry et al., 1999, Alsalameh et al., 2004), extra-cellular matrix 

(CD44, CD90) (Oswald et al., 2004, Campioni et al., 2006) and other surface 
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proteins. In addition, these cells are able to maintain normal karyotypes and 

telomerase activity even at high passages (Pittenger et al., 1999). 

 

Another feature of the mesenchymal stem cells (MSC) is that it changes 

dramatically with the age of the individual. Caplan (2006) suggested there were 

a few possibilities of how MSC decrease with age, for examples (1) the 

decrease in cell-to-matrix ratios during the differentiation events in 

embryogenesis and (2) many of the progenitor cells have been converted to 

differentiated cells during formation of tissues in embryo. Furthermore, from 

birth to teens, the increase in body-part sizes is many fold, thereby involve the 

direct conversion of MSC into differentiated phenotypes decreasing further the 

level of MSC. Based on the knowledge that MSC have large expansive 

potential, Digirolamo and colleagues (1999) proposed that MSC apparently lose 

their multipotentiality and approach and/or express apoptotic features with 

increasing age. 

 

1.1.4 Differentiation of mesenchymal stem cells 

 

Mesenchymal stem cells, other than been defined by their plastic 

adherent growth and subsequent expansion under specific culture conditions; 

their MSC characteristics can also be thought of as a committed lineage with 

limited potential for in vitro and in vivo differentiation (Javazon et al., 2001). The 

differentiation of a MSC into an osteoblast was proposed to have four main 

stages: (1) mesenchymal stem cells, (2) osteoprogenitor cells, (3) pre-

osteoblasts, (4) osteoblasts and (5) mature osteocytes (Long, 2001, Heng et al., 
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2004). Induction of differentiation into osteoblasts, adipocytes and chondrocytes 

under appropriate culture conditions have been demonstrated extensively 

(Jaiswal et al., 1997, Mackay et al., 1998, Pittenger et al., 1999, Kotobuki et al., 

2005). What drives the differentiation of human MSC is not entirely known. 

Induction of MSC with osteogenic medium (OS) which consisted of β-

glycerophosphate, ascorbic-2-phosphate, dexamethasone and fetal bovine 

serum (Leboy et al., 1991, Cheng et al., 1994, Jaiswal et al., 1997, Coelho & 

Fernandes, 2000b, Hoshi et al., 2001) triggers a series of molecular events 

including activation of signal transduction pathways (Jaiswal et al., 2000, 

Karsenty, 2001) and expression of osteogenic marker genes including alkaline 

phosphatase, osteopontin, osteonectin, osteocalcin and Cbfa1 (Weaver et al., 

1997, de Oliveira et al., 2003, Thorwarth et al., 2005). When cell cultured in 

monolayer in the presence of these supplements, the cells acquire an 

osteoblastic morphology with up regulation of alkaline phosphatase activity and 

deposition of a calcium-rich mineralised extra-cellular matrix (Calvo et al., 1996, 

Seibel, 2005) with a heterogeneous populations of cells and mixed differential 

potentials (Candeliere et al., 2001).  

 

In one study it has been reported that human bone marrow 

mesenchymal stem cells could be passage in medium containing fetal calf 

serum up to the 38th population doubling level while still maintaining their 

osteogenic potential (Bruder et al., 1997). In support of these findings, a study 

by Stenderup and colleagues (2001) showed that the number and proliferative 

capacity of osteoprogenitor cells in vitro are maintained during aging. 

Conversely, a study by D'Ippolito and colleagues (1999) demonstrated that the 
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number of MSC with osteogenic potential decreased early during aging in 

humans and may be responsible for the age-related reduction in osteoblast 

number (Sekiya et al., 2002, Suguira et al., 2004). Addition evidence for the 

decreased osteogenic potential of MSC with age is shown by Huang and co-

researchers (2001). Their study showed decreased osteoblastic function of 

mouse pre-osteoblastic cells (MC3T3-E1) after serial passage as was detected 

by the changes in the expression pattern of selected genes by micro-array 

analysis. 

 

Thus, the exact environment needed for MSC to differentiate into each 

different cell type is not well understood, but includes varying combinations of 

nutrients (Jager et al., 2003, Stute et al., 2004), growth factors (Stringa et al., 

1995, Kanatani et al., 2002, Weismann et al., 2003, Salasznyk et al., 2004) and 

mechanical stimulus (Mueller et al., 1999, Gerber & ap Gwyn, 2002). These 

researchers rigorously analysed bone marrow MSC in order to prove their 

adherence to the "stem cell" definition. They studied the progeny of colonies 

expanded from single adherent marrow cells, proving self-renewal and 

multilineage differentiation. This showed that at least some marrow cells 

represent true pluripotent stem cells rather than a mixture of committed 

progenitor cells. To date, the self-renewal capacity of MSC remains in question. 

Nonetheless, these in vitro studies (Kotobuki et al., 2005, Mauney et al., 2005, 

Ohgushi et al., 2005) and other in vivo studies (Bruder et al., 1998a, Chen et al., 

2002, Mauney et al., 2005, Gravel et al., 2006) showed that MSC can commit to 

the bone cell lineage and develop to the state of matrix mineralisation. 
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1.1.5 Human MSC cell surface markers 

 

Mesenchymal stem cells isolated from the bone marrow by culture of 

adherent had shown considerable heterogeneity in terms of morphology and 

immunotype (Colter et al., 2001) and thus currently, there is still the lack of a 

definitive marker for identification of MSC. Surface markers are useful in 

characterising the stem cell as isolated or cultured, and as a means to begin to 

understand its potential interactions with neighbouring cells and the cell 

environment (Pittenger & Martin, 2004). Antigenic phenotype of MSC is not 

unique but represents features of mesenchymal, endothelial and epithelial cells 

(Minguell et al., 2001).  

 

Recently, a pattern of surface molecule expression typical of MSC has 

been identified; based on evidence of an extensive panel of monoclonal 

antibodies, including lineage specific markers (Gronthos & Simmons, 1995, 

Barry et al., 1999), adhesion molecules (Pittenger et al., 1999, Pittenger & 

Martin, 2004), extra-cellular matrix (Prockop, 1997) and growth factor receptors 

(Pittenger et al., 1999, Minguell et al., 2001). For examples, the development of 

a series of monoclonal antibodies raised towards surface MSC antigens (Bruder 

et al., 1997) along with other antibodies developed to characterise bone marrow 

stromal cells (Simmons & Torok-Storb, 1991, Gronthos & Simmons, 1995) have 

been identified for MSC. Haynesworth and colleagues (1992) proposed that the 

presence of specific, distinct antigens that were identified by the monoclonal 

antibodies on the cell surface of marrow-derived MSC, while these antigens 

were negative for osteoblasts suggested that these recognised epitopes were 
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regulated during development. Currently, many investigators have explored 

CD105 (endoglin) as an important antigenic determinant in the identification of 

mesenchymal stem cells (Barry et al., 1999, Alsalameh et al., 2004, Stute et al., 

2004) and also for CD166 (activated leukocyte cell adhesion molecule/ALCAM) 

(Bruder et al., 1998b, Arai et al., 2002, Alsalameh et al., 2004). Both are 

monoclonal antibodies directed against cell adhesion molecules that mediate 

static cell-cell interactions.  

 

1.1.5(a) CD105 (Endoglin) 

 

Currently, there is still the lack of a definitive marker for MSC although 

many attempts have been made to use cell-surface antigens as reagents in the 

isolation and identification of MSC. In general, these antibodies have been 

raised against intact human MSC (Haynesworth et al., 1992, Bruder et al., 

1997, Pittenger et al., 1999). Examples of antibodies that have been described 

against human MSC include SH-2, SH-3 and SH-4 (Haynesworth et al., 1992). 

The SH-2 antigen present on the surface of human MSC has been further 

characterised and has been shown to react with CD105 or endoglin (Barry et 

al., 1999), a member of the transformation growth factor-beta family. Previous 

studies demonstrated that this cell surface antigen is highly expressed on 

human endothelial cells (Cheifetz et al., 1992) and expressed in bone marrow of 

patients with haematologic malignancies (Campioni et al., 2006). In addition, 

Cheifetz and colleagues (1992) found out that these antibodies recognised 

epitopes present on the surface of MSC and not on haematopoietic cells and 

the antigens disappeared upon osteogenic differentiation. In another study, 
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Pittenger and co-workers (1999) suggested the most accepted profile for 

immunotyping is the co-expression of CD105 and CD73 although CD44, CD90 

and CD29 are also important antigenic determinants. However, none of these 

antigens are exclusive to MSC. Similarly in other studies, the co-expression of 

CD105 and CD166 has been suggested to differentiate MSC from other mature 

mesenchymal cells (Alsalameh et al., 2004, Oswald et al., 2004). Endoglin was 

also expressed in other source of stem cells such as human umbilical cord 

blood-derived mononuclear cells (Erices et al., 2000) and the Wharton’s jelly of 

umbilical cord matrix (Wang et al., 2004a).  

 

1.1.5(b) Activated leukocyte cell adhesion molecule (ALCAM/CD166) 

 

ALCAM was first identified on thymic epithelial cells (Patel et al., 1995) 

and activated leukocytes (Bowen et al., 1995). The expression of ALCAM on 

MSC was initially reported by Bruder and colleagues (1998b) where SB-10 

antibody identified reacted with MSC and osteoprogenitor cells and later known 

as activated leukocyte cell adhesion molecule (ALCAM or CD166). This 

expression disappears once the MSC embark on an osteogenic pathway and 

begin to express alkaline phosphatase (ALP). The expression of ALCAM on 

MSC was also reported by Pittenger and co-workers (1999). These 

observations indicate that ALCAM may play a role in the progress of osteogenic 

differentiation although the precise mechanism of that activity remains to be 

elucidated (Bruder et al., 1998b). Alternatively, it means that the use of 

antibodies can, not only be used to confirm the presence of committed 

osteoprogenitors but also be used to identify MSC which may potentially 
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differentiate into osteoblasts (Arai et al., 2002); suggests the ALCAM positive 

MSC to have a role in early bone development. Other than MSC, ALCAM is 

also expressed on human blastocysts (Fujiwara et al., 2003), perichondrium 

(Arai et al., 2002) and endothelial cells (Ikeda & Quertermous, 2004). ALCAM 

was thought to play a role as an adhesion molecule involved in the development 

of haematopoietic stem cells and endothelial progenitors (Ohneda et al., 2001). 

 

1.2 BONE 

 

1.2.1 Bone structure and function  

 

Bone is a dynamic tissue, which remodels and repairs itself throughout 

life. Bone tissue has three major functions in the body: it offers mechanical 

support to the body, it protects major vital organs and serves as a mineral 

reservoir and maintains calcium and phosphate homeostasis (Cullinane & 

Einhorn, 2002). The feature that distinguishes bone from other connective 

tissue is the mineralisation of its matrix, which produces an extremely hard 

tissue capable of providing support and protection. Bone also provides the 

environment for haematopoiesis, which takes place in the marrow of long bones 

in adults (Ross et al., 2002, Knothe Tate et al., 2004). The diversity of functional 

requirements of bone tissue is reflected by its complex architecture. In the adult 

skeleton bone tissue is either arranged in a trabecular pattern (cancellous bone) 

or in a compact pattern (cortical bone) (Ross et al., 2002). Cortical bone is 

almost solid with less than 10% porosity and ubiquitously present in long, short 

and flat bones. In contrast, cancellous bone is organized in a porous sponge-
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like pattern (Christenson, 1997, Kneser et al., 2006). This type of bone harbours 

a large part of the bone marrow and is essentially present in the metaphysis of 

long bones, the iliac crests and the vertebral bodies (Moore & Dalley, 1999). 

 

1.2.2 Embryology of bone development  

 

In embryology, the skeletal system develops from the mesoderm which 

will later divide into paraxial and lateral plate mesoderm (Moore & Persaud, 

1993). From the differentiating mesoderm, there arise two lineages with 

osteogenic potential. The paraxial mesoderm differentiates into somites which 

give rise to the axial skeleton; whereas the lateral plate mesoderm gives rise to 

the appendicular skeleton (Sadler, 1990, Moore & Persaud, 1993). The process 

of bone development involves four distinct phases: (1) migration of cells with 

osteogenic potential (mesenchymal cells) to the site of future skeletogenesis; 

this is followed by (2) mesenchymal–epithelial interactions that lead to (3) 

condensation (or aggregation) of mesenchymal cells and (4) subsequent 

differentiation into either the chondrogenic or osteogenic lineage (Heng et al., 

2004). 

 

1.2.3 Bone cell development 

 

Bone cell development can be classified into two phases: (1) 

osteopoiesis and (2) osteogenesis/bone ossification (Long, 2001). The cellular 

hierarchy of bone precursor cells development is artificially divided into a 

number of developmental stages: (1) mesenchymal stem cells, (2) 
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osteoprogenitor cells, (3) pre-osteoblasts, (4) osteoblasts, and (5) mature 

osteocytes (Long, 2001, Heng et al., 2004). Once the pluripotent progenitor 

cells have committed to the osteoblastic lineage, they progress through three 

developmental stages of differentiation: proliferation, matrix maturation and 

mineralisation (Dworetzky et al., 1990).  

 

1.2.3(a) Osteoprogenitor cells 

 

Mesenchymal stem cells are a pluripotent population capable of 

generating multiple stromal cell lineages (Deans & Moseley, 2000, Herzog et 

al., 2003). It is unclear whether these are derived from more primitive 

progenitors but one of the primitive progenitors that is the osteoprogenitor cells; 

which are committed to the bone cell lineage are responsible for the expansion 

of osteoblast numbers and can be detected by antibody specific for 

osteoprogenitor cells (Joyner et al., 1997). Human osteoprogenitor cells have 

been cultured from both adherent (D'Ippolito et al., 1999, Nishida et al., 1999) 

and non-adherent (Long et al., 1995, Oyajobi et al., 1999) populations of human 

bone marrow, although the relationship between the two phenotypes is 

unknown. Autoradiography using tritiated thymidine shows that osteoprogenitor 

cells are undifferentiated mesenchymal cells that are found in the stroma 

surrounding bone marrow (Qidwai, 2004). Since these mesenchymal cells have 

the ability to develop into a number of different cell types and contribute to the 

regeneration of mesenchymal tissue such as bone, cartilage, adipose, tendon, 

ligament and muscle; they are multipotent adult progenitor cells (Minguell et al., 

2000, Caterson et al., 2002).  
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When cultured on biodegradable scaffolds under mineralising conditions, 

human osteoprogenitor cells were observed to grow and differentiate into 

osteogenic phenotype (Yang et al., 2001, Mauney et al., 2005) as demonstrated 

by the formation of mineralised foci of bone cell development. Osteoprogenitor 

cells were first used to delineate the process of osteogenesis and to define the 

developmental hierarchy of murine bone lineage cells (McCulloch et al., 1991) 

and the number of osteoprogenitor cells in bone marrow act as an index of 

skeletal growth and maturation (Nishida et al., 1999). 

 

1.2.3(b) Pre-osteoblasts 

 

The pre-osteoblasts are transitional in nature, bridging the progenitor 

cells with the mature osteoblasts (Long, 2001). Pre-osteoblasts lack the well-

developed protein-synthesising capability of the mature osteoblasts and do not 

have the characteristically localised, mature rough endoplasmic reticulum or 

Golgi apparatus of the mature cell (Sims & Baron, 2000). Also, these cells 

usually stain less intensely for alkaline phosphatase; which implied that they 

have not yet acquired all the characteristics of mature osteoblasts (Puzas, 

2000). By ultrastructural observation of the Haversian canal, it is identified by its 

location between the lining of the blood vessels and the mineralised zone of the 

osteoid seam; a layer which has a significant role in bone modelling and 

osteogenesis (Hirohata et al., 1981). 
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1.2.3(c) Osteoblasts 

 

Osteoblasts are the bone forming cells arise from osteoprogenitor cells, 

which are found in endosteum and periosteum and responsible for formation 

and remodelling of bone matrix in particular at sites of active bone production 

(Laros, 1976, Olsen et al., 2000). They range from 20 to 30 micron in maximum 

diameter, and are best seen along the osteoid seam where new bone is being 

formed (Laros, 1976, Hirohata et al., 1981). The plasma membrane of the 

osteoblast is characteristically rich in alkaline phosphatase enzyme; whose 

concentration in the serum is used as an index of bone formation (Jaiswal et al., 

1997, Sims & Baron, 2000). Mature osteoblastic cells are highly polarised with a 

well-developed Golgi apparatus typical of highly secretory cells, intensely 

basophilic cytoplasm and abundant rough-surfaced endoplasmic reticulum 

(Hirohata et al., 1981; Sims & Baron, 2000). The main secretory product of 

osteoblasts is type 1 collagen (90% of the total matrix protein) (Fedarko & 

Robey, 2000). The predominant non-collagenous protein is osteocalcin (Irie et 

al., 1998) but osteoblasts secrete other non-collagenous proteins including 

osteopontin (Irie et al., 1998, Gerstenfeld, 1999, Perrien et al., 2002), 

osteonectin (Mundlos et al.,1992, Yan & Sage, 1999), bone growth factors 

(Weir et al., 2000), cytokines (Alsina & Roodman, 2000) and certain hormone 

receptors (Martin et al., 2000). 
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1.2.3(d) Osteocytes 

 

After the completion of bone formation, a small portion (10-20%) of 

osteoblasts embedded within the newly formed extra-cellular matrix that they 

produced called osteocytes (Junqueira et al., 1998, Ross et al., 2002). 

Osteocytes are concerned more with bone maintenance than with new bone 

formation (Laros, 1976). Osteocytes are smaller than osteoblasts and they have 

lost many of their cytoplasmic organelles. Osteocyte cell bodies are found in 

lacunae inside the bone matrix and have numerous processes which extend out 

from the lacunae into canaliculi and contact processes from other osteocytes 

(Knothe Tate et al., 2004). The canalicular and lacunar surfaces add 

tremendously to the surface area of mineral available for exchange with tissue 

fluids and adjacent cells (Laros, 1976, Junqueira et al., 1998). Even though the 

metabolic activity of the osteoblast decreases dramatically once it is fully 

encased, these cells still produce matrix proteins. Before becoming trapped in 

the matrix, the osteocytes test positive for the presence of alkaline phosphatase 

activity as functional mature osteoblasts. Osteocytes express a number of 

osteoblast markers in low levels including osteopontin, osteonectin, osteocalcin 

and bone sialoprotein (Knothe Tate et al., 2004).  

 

1.2.3(e) Osteoclasts 

 

The osteoclast is a large multinucleated cell which is responsible for 

bone resorption (Ross et al., 2002). It is usually found in contact with a calcified 

bone surface and within a lacuna which is the result of its own resorptive 
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activity. They are generally located in the part of the cell away from the bone 

surface. The most prominent features of the osteoclast are the zone of contact 

with the bone characterised by the presence of a ruffled border due to multiple 

infoldings of plasma membrane, producing the brush border characteristics of 

an active osteoclast (Hirohata et al., 1981, Gay, 2005) and the surrounding 

zone of attachment (sealing zone). The ruffled border provides an extensive 

surface area of specialised plasma membrane through which acid is secreted 

and hydrolytic enzymes are released (Gay, 2005). The sealing zone is a ring of 

contractile proteins that attach the osteoclast to the bone surface thus appears 

to function as a seal around the bone-resorbing compartment (Hirohata et al., 

1981, Sims & Baron, 2000). Mitochondria are abundant, indicating that 

osteoclasts have a high level of aerobic metabolism and osteoclasts contained 

numerous granules rich in calcium phosphate (Gay, 2005). The osteoclasts 

appears to undergo apoptosis after a cycle of resorption (Kameda et al., 1995), 

characterised by loss of the ruffled border, detachment from the bone surface 

and condensation of the nuclear chromatin (Hirohata et al., 1981). 

 

1.2.4 Osteogenesis (bone formation) 

 

Bone formation in situ can take place in two different ways (Olsen et al., 

2000). First, endochondral ossification, in which mineralised bone tissue forms 

on a cartilage scaffold, and second, intramembranous ossification, in which 

condensed mesenchymal cells differentiate into osteoblasts at ossification 

centres in the absence of a cartilaginous scaffold (Olsen et al., 2000, Marks & 

Odgren, 2002). 
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1.2.4(a) Intramembranous ossification 

 

During intramembranous ossification, mesenchymal cells proliferate 

within a highly vascularised area of the embryonic connective tissue forming cell 

condensations (Junqueira et al., 1998, Ross et al., 2002). These cells will 

synthesise a woven bone matrix while at the periphery, mesenchymal cells 

continue to differentiate into osteoblasts. Once the blood vessels are 

incorporated between the woven bone trabeculae, they will form the 

haematopoietic bone marrow. Later, this woven bone will be remodelled and 

progressively replaced by mature lamellar bone (Sims & Baron, 2000). 

 

1.2.4(b) Endochondral ossification 

 

Endochondral ossification is the process by which the skeletal cartilage 

scaffolds are replaced by bone (Junquiera et al., 1998). The scaffolds elongate 

and expand in width by proliferation of chondrocytes as well as by deposition of 

cartilage matrix. Shortly after their formation, chondrocytes in the central region 

of the cartilage undergo further maturation to hypertrophic chondrocytes 

(Junqueira et al., 1998, Ross et al., 2002). Angiogenic factors secreted by 

hypertrophic chondrocytes induce sprouting angiogenesis from the 

perichondrium. With the vessels come the osteoblasts, osteoclasts and the 

haematopoietic cells. These result in the formation of primary ossification 

centres (Olsen et al., 2000) where within these centres, the hypertrophic 

cartilage matrix is degraded, the hypertrophic chondrocytes undergo apoptosis, 

osteoblasts replace the disappearing cartilage with trabecular bone followed by 
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the formation of the bone marrow (Ross et al., 2002). At the same time, 

osteoblasts in the perichondrium form a collar of compact bone around the 

middle portion (diaphysis) of the cartilage, so that the primary ossification centre 

ends up being located inside a tube of bone. At one or both ends (epiphyses) of 

the cartilage, secondary ossification centres are formed, leaving a plate of 

cartilage (growth plate) between epiphysis and diaphysis. In the growth plate, a 

coordinated sequence of chondrocyte proliferation, hypertrophy and apoptosis 

results in longitudinal growth of long bones (Junqueira et al., 1998, Ross et al., 

2002). At the same time, these processes are coordinated with growth of the 

epiphysis and radial growth of the diaphysis (Sims & Baron, 2000). 

 

1.2.5 Mechanism of bone formation 

 

Once the pluripotent progenitor cells have committed to the osteoblastic 

lineage, bone formation occurs by three coordinated processes of proliferation 

with matrix secretion, matrix maturation and mineralisation of the osteoid matrix 

(Dworetzky et al., 1990). According to them, in normal adult bone these 

processes occur at the same rate so that the balance between matrix 

production and mineralisation is equal. Proliferation phase consists of cell 

multiplication, growth, maturation and the development of extra-cellular matrix. 

Type I collagen, one of the first products formed during bone maturation and on 

which future mineralisation will take place is initially deposited rapidly without 

mineralisation, producing a thickening osteoid seam (Laros, 1976). The second 

phase, matrix maturation is characterised by early osteogenic markers such as 

alkaline phosphatase, osteopontin and osteonectin (Dragoo et al., 2003). This is 
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