
 
 
 
 
 
 

GENETIC VARIABILITY AND DIFFERENTIATION OF FERAL AND 
CULTURED POPULATIONS OF ASIAN SEA BASS (Lates calcarifer) 

IN MALAYSIA INFERRED BY MICROSATELLITES  
 
 
 
 
 
 
 

by 
 
 
 
 
 
 

LAI CHOAY HOONG 
 
 
 
 
 
 
 
 
 

Thesis submitted in fulfillment of the 
requirements for the degree of 

Master of Science 
 
 
 
 
 
 
 

June 2008 
 
 
 
 
 
 



ACKNOWLEDGEMENTS 
 
 
 

I would first like to thank my supervisor, Assoc. Prof. Dr. Ahmad Sofiman for 

your support and guidance over the past three years of this project. You have given me 

the opportunity, freedom, and resources to fully pursue a graduate education. I also 

warmly thank my co-supervisor Assoc. Prof. Dr. Siti Azizah for all the inspiring and 

very often pleasantly confusing discussions we had. Special thanks to Dr Thuy Nguyen, 

NACA, for her professional guidance in biostatistics interpretations. Besides, I greatly 

appreciate the assistance of En. Nik Daud from IPPL Tanjung Demong for help in 

making contact with hatchery farms in Sarawak.   

I am very grateful to my friends Saw Peng and Roziana who were always 

willing to join me on my sampling trails. Also, a big thanks to all those volunteers-Yen 

Ping and Choon Siang who actually enjoyed sticking their noses to the fishy smell 

helping me process the samples. Specials thanks to my fellow lab mates, seniors, juniors 

and students (May Pau, Selina, Kak Atul, Magdalene, Su Yee, Din, Emi, Beng Keok, 

Kak Faridah Su Yee, Cui King, Lee Ying, Zue and Rina) for sharing their experiences 

in troubleshooting technical problems and also providing a cheerful atmosphere in the 

lab. I also want to express my heartfelt thanks to my ex-housemates, Shang Wei, Mooi 

Foong, Wai Leng, Yee Wen, Joanne, Jia Zhi and Yi Wei for keeping eyes on me when I 

was sick and also keep me sane when I was desperate and spoke alone in front of the 

computer screen. Haha! 

Last but not the least; I am thankful to my parents, Chee Siong and family 

members for their patient, support and encouragement all along.  

 ii



 

TABLE OF CONTENTS 

Page 
 
ACKNOWLEDGEMENTS ii 

TABLE OF CONTENTS iii 

LIST OF TABLES vi 

LIST OF FIGURES vii 

LIST OF PLATES x 

LIST OF ABBREVIATION xi 

LIST OF APPENDICES xii 

LIST OF PUBLICATIONS & SEMINARS xiii 

ABSTRAK xiv 

ABSTRACT xv 

 
 
CHAPTER ONE : INTRODUCTION 
 

 

1 

1.1 Introduction 1 

 

CHAPTER TWO : LITERATURE SURVEY 

 

4 

2.1 Asian sea bass, Lates calcarifer 4 

 2.1.1   Taxonomy, Species Identification and Genetic Records 4 

 2.1.2   Distribution, habitat and biology 7 

 2.1.3 Fisheries Production in Malaysia 10 

 2.1.4 Status of Aquaculture Asian Sea Bass in South East 

Asia 

13 

2.2 DNA Microsatellites 15 

 2.2.1   General Characters of Microsatellites 15 

 2.2.2   Microsatellite Evolution 17 

 2.2.3   Threoretical Models of Microsatellite Mutation 18 

 2.2.4   Application of Microsatellite in Fisheries and 

Aquacultures 

21 

 2.2.5 Why Choose Microsatellite? 25 

 

 iii



CHAPTER THREE : MATERIALS AND METHODS 28 

3.1 Sample Storage, Details and Tissue Preservations 28 

3.2 Genomic DNA Isolation 31 

3.3 Assessment of Genomic DNA Quantity and Quality 32 

 3.3.1   Agarose Gel Electrophoresis 33 

 3.3.2   UV Spectrophotometry 33 

3.4 Polymerase Chain Reaction (PCR) Screening and Optimization 34 

3.5 PCR Amplification 37 

3.6 6% Non-Denaturing Polyacrylamide Gel Electrophoresis 37 

 3.6.1   Glass Plate Preparation 37 

 3.6.2   Preparation of 6% Non-Denaturing Polyacrylamide Gel 38 

 3.6.3   Sample Loading and Electrophoresis 38 

3.7 Scoring 39 

3.8 Statistical Analysis 39 

 3.8.1   Deviation from Hardy-Weinberg Equilibrium (HWE) 40 

 3.8.2   Detection of Null Alleles, Mis-scoring and Allelic 

Dropout 

41 

 3.8.3   Genetic Variability within Population 41 

 3.8.4   Genetic Differentiation 42 

 3.8.5   Principal Component Analysis (PCA) 43 

 3.8.6   Individual Assignment Tests 43 

 3.8.7   Bottlenecks 45 

 

CHAPTER FOUR : RESULTS 

 

47 

4.1 Quantity and Quality of the Genomic DNA 47 

4.2 PCR Optimization 47 

4.3 Microsatellite Amplifications 49 

4.4 Statistical Analysis 49 

 4.4.1   Deviation from Hardy-Weinberg Equilibrium (HWE), 

Detection of Null Alleles, Mis-scoring and Allelic 

Dropout 

49 

 4.4.2   Genetic Variability within Population 52 

 4.4.3   Genetic Differentiation 64 

 iv



 4.4.4   Principal Component Analysis (PCA) 66 

 4.4.5   Individual Assignment Tests 66 

 4.4.6   Bottlenecks 72 

 

CHAPTER FIVE : DISCUSSION 

 

77 

5.1 Genetic Variability  77 

5.2 Deviation from Hardy-Weinberg Equilibrium (HWE) 80 

5.3 Bottlenecks 82 

5.4 Genetic Differentiation 85 

  

CHAPTER SIX: CONCLUSION AND FUTURE RESEARCH 

 

91 

   

REFERENCES 94 

   

APPENDICES  

  

PUBLICATIONS AND SEMINARS 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

 v



LIST OF TABLES 
       Page 

 
Table 2.1 Methods available for genetically characterizing 

individuals and populations and their applicability to each 
issue. Techniques with + can be used for the purpose 
specified, with several + indicating the technique has high 
utility, ? are cases where the technique is useful in only 
some cases, while – indicates that the technique is not 
useful in this context (Adapted from Frankham et al., 
2002). 
 

22 

Table 2.2 Some commonly applied molecular marker systems to 
detect differences among closely related populations 
(Adapted from O’Connell and Wright, 1997). 
 

27 

Table 3.1 Sampling site, sample type, sample size and date of 
capture of Lates calcarifer. 
 

30 

Table 3.2 List of 13 microsatellite loci used in this study. 35 

Table 3.3 Solutions and concentration used for the preparation of 6 
% non-denaturing polyacrylmide gel. 
 

38 

Table 4.1 Summary of annealing temperature (Tm), concentration of 
MgCl2, size range (bp) of the alleles and number of alleles 
for each locus screened. 
 

48 

Table 4.2 Detection of null allele, stutter bands and the probability 
(P) of deviations from Hardy-Weinberg Equilibrium in 
each locus for each population. 
 

51 

Table 4.3 Allelic variability at ten microsatellite loci in Lates 
calcarifer. 
 

60 

Table 4.4 Pairwise FST values for Asian sea bass feral and cultured 
populations sampled in Malaysia. 
 

65 

Table 4.5 Proportion of membership (Q) of each L. calcarifer 
population in each of the five genetic clusters which 
identified by STRUCTURE. The major proportion 
membership of cluster in a population was indicated with 
bold values.  

70 

Table 4.6 The table gives the probability that the observed 
heterozygosity is larger than the average hetrozygosity 
calculated by BOTTLENECK program under the Infinite 
allele model (IAM), Stepwise mutation model, (SMM) 
and Two-phase model, TPM (95% Single-step mutations, 
5% Multiple-step mutations) and allele frequencies 
distribution mode for each population. 

75 

 

 vi



LIST OF FIGURES 
 

      Page 
 

Figure 2.1 Morphological characteristics of Lates calcarifer. 
 

6 

Figure 2.2 Life cycle of Asian sea bass, L. calcarifer (Modified 
from Blaber, 2002). 
 

9 

Figure 2.3 FAO global production of Lates calcarifer. (Source: 
http://www.fao.org/figis/servlet/SQServlet?file=/usr/loca
l/tomcat/FI/5.5.23/figis/webapps/figis/temp/ ) 
 

12 

Figure 2.4 FAO norminal production of Lates calcarifer in 
Malaysia. (Source: 
http://www.fao.org/figis/servlet/SQServlet?file=/usr/loca
l/tomcat/FI/5.5.23/figis/webapps/figis/temp/ ) 
 

12 

Figure 2.5 Microsatellite mutations by slipped strand mispairing 
(Adapted from Brohede, 2003). 
 

19 

Figure 3.1 Geographical positions of the sampling sites of Asian sea 
bass collected for this study. The three feral and six 
hatchery populations are indicated by black circles and 
rectangular boxes respectively. Key to population 
identities: Tanjung Piandang (feral) –TP; Pulau Sayak-F 
(feral) –S; Semerak (feral) –R; Pulau Sayak-C (Hatchery) 
–PS;  Merchang (Hatchery) –M; Sungai Pentas 
(Hatchery) –P;  Punang (Hatchery) –N; Sematan 
(Hatchery) –T; Sungai Linggi (Hatchery) –SL. 
 

29 

Figure 4.1 Genomic DNA extractions. Lane 1- 15 are DNA samples 
from Sungai Linggi, Melaka. Lane M is a λ DNA/Hind 
III Marker (Fermentas, USA). 
 

48 

Figure 4.2 PCR products run on 6% non-denaturing polyacrylamide 
gel, stained with ethidium bromide, photographs 
captured under UV light. Lane M is 20 bp Extended 
DNA Ladder (Cambrex Bio Science Rockland, Inc., 
USA). (A) PCR amplification on locus Lc-m15. (B) PCR 
amplification on locus LG220D1107.  

50 

Figure 4.3 (a) Allelic distribution for locus Lc-m07 in nine populations 
of L. calcarifer. 
 

54 

Figure 4.3 (b) Allelic distribution for locus Lc-m13 in nine populations 
of L. calcarifer. 
 

54 

Figure 4.3 (c) Allelic distribution for locus Lc-m15 in nine populations 
of L. calcarifer. 
 

55 

 vii

http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23/figis/webapps/figis/temp/
http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23/figis/webapps/figis/temp/
http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23/figis/webapps/figis/temp/
http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23/figis/webapps/figis/temp/


Figure 4.3 (d) Allelic distribution for locus Lcam24F in nine 
populations of L. calcarifer. 
 

55 

Figure 4.3 (e) Allelic distribution for locus Lcam40F in nine 
populations of L. calcarifer. 
 

56 

Figure 4.3 (f) Allelic distribution for locus LG255D1107 in nine 
populations of L. calcarifer. 
 

56 

Figure 4.3 (g) Allelic distribution for locus LG220D1107 in nine 
populations of L. calcarifer. 
 

57 

Figure 4.3 (h) Allelic distribution for locus cn2953 in nine populations 
of L. calcarifer. 
 

57 

Figure 4.3 (i) Allelic distribution for locus Lc05G017 A04 in nine 
populations of L .calcarifer. 
 

58 

Figure 4.3 (j) Allelic distribution for locus Lc02G056 A07 in nine 
populations of L. calcarifer. 
 

59 

Figure 4.4 Scores of population based on microsatellite genotypes 
plotted on two axes of a Principal Component Analysis 
(PCA) performed using PCAGEN. Key to population 
identities: Tanjung Piandang (feral) –TP; Pulau Sayak 
(feral) –S; Semerak (feral) –R; Pulau Sayak (Hatchery) –
PS;  Merchang (Hatchery) –M; Sungai Pentas (Hatchery) 
–P;  Punang (Hatchery) –N; Sematan (Hatchery) –T; 
Sungai Linggi (Hatchery) –SL. 
 

67 

Figure 4.5(a) Mean L(K) (± SD) over 20 runs for each K value. 
 

68 

Figure 4.5(b) ∆K calculated as ∆K = m|L′′(K)|/ s[L(K)]. The circle 
indicated the highest peak of the graph at K = 6. 
 

68 

Figure 4.6 Estimated membership proportions for K = 5. Each 
individual is plotted in a single vertical line, separated in 
K coloured segments representing the proportion of 
membership in each one of the K clusters. Black lines 
separate individuals from two different predefined 
populations. Key to population identities: Tanjung 
Piandang (feral) –TP; Pulau Sayak-F (feral) –S; Semerak 
(feral) –R; Pulau Sayak-C (Hatchery) –PS;  Merchang 
(Hatchery) –M; Sungai Pendas (Hatchery) –P;  Punang 
(Hatchery) –N; Sematan (Hatchery) –T; Sungai Linggi 
(Hatchery) –SL. 
 

71 

 viii



Figure 4.7  A map showing proportion of membership (Q) of each L. 
calcarifer population in each of the five genetic clusters 
identified by STRUCTURE. 
 

73 

Figure 4.8 Allele frequency distribution of nine populations of 
Asian sea bass. The far left bar of each plot indicates the 
proportion of rare alleles (frequencies less than 0.1). 
Sematan (T) showing a mode shift in the distribution of 
allele frequencies.  

76 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 ix



LIST OF PLATES 
 

Page 
 

Plate 3.1 Cultivated Asian sea bass collected from Pulau Sayak-C, 
Kedah (Total length = 42cm). 
 

30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 x



LIST OF ABBREVIATION 
 

 
bp Base pair (s) 

CaCl2 Calsium chloride 

°C Celcius  

dNTP Deoxyribonucleotide triphosphates 

DNA  Deoxyribose nucleic acid 

EDTA Ethylene diaminetetraacetic  acid 

Kbp Kilobase pair (s) 

MgCl2 Magnesium Chloride 

T m  Melting temperature 

TEMED N, N, N’,N’ - tetramethylethylenediame 

OD Optical density 

PCR Polymerase chain reaction 

P Probability 

rpm Revolution per minutes 

NaCl Sodium chloride 

SDS Sodium Dodecyl Sulfate 

S.E. Standard error 

TBE Tris-borate-EDTA 

TE Tris-EDTA 

TNES Tris-NaCl-EDTA-SDS 

UV Ultraviolet 

V Volt 

v/v Volume/volume 

w/v Weight/volume 

 
 
 
 
 
 
 
 

 
 
 

 xi



LIST OF APPENDICES 
 

 
1.1 FAO global production of Lates calcarifer.  

(Source: 
http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23
/figis/webapps/figis/temp/ ) 
 

1.2 FAO norminal production of Lates calcarifer in Malaysia. 
(Source: 
http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23
/figis/webapps/figis/temp/ ) 
 

4.1 Adjusted frequencies of alleles at eleven microsatellite loci for nine 
studied populations of Asian sea bass. 
 

4.2 The procedures by Evanno et al. (2005) to indicate modal values of ∆K. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 xii

http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23/figis/webapps/figis/temp/
http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23/figis/webapps/figis/temp/
http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23/figis/webapps/figis/temp/
http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23/figis/webapps/figis/temp/


 
LIST OF PUBLICATIONS & SEMINARS 

 
 

1.1 Choay-Hoong, Lai and Othman, A.S. Utilisation of molecular analysis 
towards the improvement of sea bass, Lates calcarifer breeding programme 
in Malaysia. (Proceedings of the KUSTEM 5th Annual Seminar, 2-3rd May 
2006, Terengganu). BIODIVERSITY AND CONSERVATION: POSTER 
PRESENTATION 
 

1.2 Choay-Hoong, Lai , Othman, A.S. and Siti Azizah M.N. Data mining for 
simple sequence repeats (SSRs) in genome survey sequences (GSSs) from 
Asian sea bass, Lates calcarifer. (Proceedings of 7th National Congress on 
Genetic, 5-7th May 2007, Kelantan). BIODIVERSITY AND 
CONSERVATION: POSTER PRESENTATION 
 

1.3 Choay-Hoong, Lai , Othman, A.S. and Siti Azizah M.N. Neighbour-Joining 
and Factorials Correspondence Analysis (AFC) for discriminating feral and 
cultured Asian sea bass . (Proceedings of 2nd Regional Conference on 
ECOMOD 2007, 28-30 August 2007, Penang) ANALYSIS: ORAL 
PRESENTATION 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xiii



KEVARIABELAN DAN PERBEZAAN GENETIK POPULASI-POPULASI 
FERAL DAN KULTUR IKAN SIAKAP (Lates calcarifer) DI MALAYSIA 

MENGGUNAKAN MIKROSATELIT 
 

ABSTRAK 
 
 

Sepuluh lokus mikrosatelit telah digunakan untuk menyiasat kevariabelan dan 

pembezaan genetik tiga populasi feral (Pulau Sayak, Semerak and Tanjung Piandang) 

dan enam populasi (Pulau Sayak, Sungai Linggi, Merchang, Sungai Pendas, Punang and 

Sematan) kultur ikan siakap, Lates calcarifer di Malaysia. Tahap Kekayaan alel (Ar) 

adalah dalam julat 2.0-11.3 manakala keheterozigotan yang dijangka (He) adalah dalam 

julat 0.234-0.875. Semua populasi feral menunjukkan kevariabelan genetik yang tinggi 

dan hampir sama. Kekayaan alel (Ar) sebar rendah dalam tiga daripada lima populasi 

ikan siakap pusat akuakultur berbanding dengan sampel daripada populasi feral. 

Populasi kultur Sematan mempamerkan anjakan mod dalam frekuensi taburan alel yang 

mencadangkan berlakunya “bottleneck”. Kesignifikanan anggaran pembezaan genetik 

berpasangan di antara populasi feral adalah rendah (FST = 0.0310-0.0899) tetapi 

sederhana antara populasi kultur (FST = 0.0252-0.1637). Ini mencadangkan berlakunya 

hanyutan genetik dalam pusat pembiakan akuakultur dengan setiap daripadanya 

mengamalkan rejim pengurusan yang berbeza. Ini menunjukkan keperluan untuk 

penambahan bahan genetik yang sihat, pengawasan genetik dan program pembiakan 

yang efektif bagi memastikan kesihatan genetik ikan siakap di Malaysia. Analisis 

STRUCTURE menunjukkan bilangan nombor kluster (K) yang paling tepat untuk 

sembilan populasi dalam kajian ini adalah enam. Merujuk kepada keputusan nilai FST 

berpasanga dan Ujian Penagihan Individu, kedua-dua populasi Pulau Sayak-F and 

Semerak telah menerima kemasukan populasi-populasi sama ada daripada ke enam-

enam kluster atau adalah mewakili leluhur species ini menyebabkan pemerhatian 

populasi yang bercampur.  
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GENETIC VARIABILITY AND DIFFERENTIATION OF FERAL AND 
CULTURED POPULATIONS OF ASIAN SEA BASS (Lates calcarifer) 

IN MALAYSIA INFERRED BY MICROSATELLITES  
 
 

ABSTRACT 
 
 

Ten microsatellite loci were used to investigate genetic variability and differentiation of 

three feral (Pulau Sayak, Semerak and Tanjung Piandang) and six cultured (Pulau 

Sayak, Sungai Linggi, Merchang, Sungai Pendas, Punang and Sematan) populations of 

Asian sea bass, Lates calcarifer in Malaysia. Level of allelic richness (Ar) ranged from 

2.0-11.3 while expected heterozygosities (He) ranged from 0.234 to 0.875. All feral 

populations exhibited almost similar and high levels of genetic variation. Genetic 

variation in terms of expected heterozygosity (He) and allele richness was slightly lower 

in three (Sungai Pendas, Punang and Sematan) of five hatchery samples than in samples 

of the feral populations. The Sematan cultured population exhibited a mode shift in its 

allele frequency distribution which suggests a recent bottleneck has occurred. Pairwise 

estimates of genetic differentiation between feral populations were low (FST = 0.0310-

0.0899) but moderately high among cultured populations (FST = 0.0252-0.1637), 

suggesting occurrence of genetic drift in the hatcheries with each hatchery practicing 

different management regime. This demonstrates the need for introduction of healthy 

genetic materials, genetic monitoring and effective breeding programs to ensure the 

genetic health of the Asian sea bass in Malaysia. STRUCTURE analysis suggests that 

the most likely number of cluster (K) for nine the populations in this study was equal to 

six. Based on results of pairwise FST values and Individual Assignment Tests, both 

Pulau Sayak-F and Semerak were suggested to have received either introductions of 

populations representing all the six clusters or represent the ancestral population of the 

species, thus contributing to the observed admixture in the populations.  

 xv
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CHAPTER ONE 

INTRODUCTION 

1.1 INTRODUCTION 

 

The Asian sea bass (Lates calcarifer) is one of the most economically important 

species among our native Malaysian fishes. Most Asian sea bass are produced by 

commercial aquaculture in many Asian countries such as Malaysia, Taiwan, Thailand 

and Indonesia. Mature wild sea bass can only be captured during certain mating season 

and this also depends on the weather. Severe declines in landing Asian sea bass supplies 

throughout the year have led farms to grow this species intensively to meet consumer’s 

demand.  

 

Domestication of Asian sea bass using cage nets has been established by the 

Fisheries Department in Malaysia since 1970s (Awang, 1986a). However, the number 

of founding populations and detailed information on mating scheme were not known. A 

number of private hatcheries in Malaysia have also been utilising broodstock from 

neighbour countries such as Thailand to produce larvae besides local strains. In addition, 

several private hatcheries have even imported fingerlings directly from Thailand instead 

of producing their own fingerlings or purchasing from Fisheries Department in 

Malaysia. Despite a long aquaculture history, the genetic structure of these local stocks 

has not been determined. After more than 30 years of aquaculture activities, guidelines 

based on population genetics are essential for founding and maintaining cultivated 

stocks and more importantly to avoid genetic erosion. 
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Aquaculture practices may inadvertently reduce the levels of genetic variation 

present in farmed stocks by breeding only small numbers of founding broodstocks. 

Selective breeding programs can also lead to inbreeding when they utilize only a small 

number of “superior” individuals (Thai et al., 2007). There is often a high probability of 

selecting related individuals as parents for constructing the next generation and hence 

increasing inbreeding if pedigree records are not properly maintained (Norris et al., 

1999).  

 

Breeding program may also intentionally introduce divergent stocks and utilize 

crossbreeding programs to increase diversity and productivity (Hulata, 1995). Hence, to 

which extend different broodstocks disseminated are important for effective 

management of aquaculture species should also be addressed. Meanwhile, there is also a 

need to evaluate the status of wild stocks in aquaculture species since uncertainty in 

origin of these fish can lead to negative effects on the native strains (Cross, 2000).   

 

It is highly probable that the present native populations of Asian sea bass may be 

contaminated with hatchery escapees given the lack of proper management control. 

Whether the release is accidental or intentional (restocking) the consequence is often 

that the indigenous gene pools are compromised by loss of diversity within populations, 

introgression and eventually extinction of local populations (Ryman et al., 1995 and 

references therein). Identification of wild stocks is also crucial to provide an available 

source of wild genetic diversity in domestication and selective breeding programs.  

 

In the past few years, the use of genetic markers in fisheries management and 

aquaculture has escalated for addressing some of these questions in population genetics. 
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The approach in this study to uncovering cryptic population structure of the sea bass is 

the utilization of microsatellite markers. Microsatellites are sequences made up of a 

short single sequence motif that are tandemly repeated (Hancock, 1999). They have 

been the marker of choice for various types of genetics studies because of their high 

polymorphism level. Over the pass decade, microsatellite markers have been widely 

used in fisheries population genetic studies of various species including Atlantic salmon 

(Mcconnell et al., 1997), oysters (Li et al., 2006), bay scallop (Wang et al., 2007b), 

common carp (Thai et al., 2007) and more. These markers have also gained popularity 

in population genetic studies of several Malaysian species such as Asian Arowana 

(Tang et al., 2004), green-lipped mussel (Ong, 2007) and Tor douronensis (Nguyen, 

2008). 

 

Preliminary population genetic study on total 62 samples from three wild and 

four cultured populations L. calcarifer in Peninsular Malaysia has been done by Sim 

(2004) using 19 microsatellite loci. The previous study has provided the basis for future 

investigation on genetic variation and genetic structure of Asian sea bass in Malaysia. In 

addition, analysis of genetic variation of L. calcarifer using mitochondrial DNA 

markers based on 156 samples from two culture and five wild populations in Peninsular 

Malaysia (Norfatimah, 2007). However, both preliminary studies only referred to a 

small number of individuals. 

 

The objectives of this study are:  

(1) To quantify genetic variation within and among cultured and feral populations of 

Asian sea bass, Lates calcarifer; and  

(2) To investigate the current population differentiation of Asian sea bass in Malaysia. 
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CHAPTER TWO 

LITERATURE SURVEY 

2.1 Asian sea bass, Lates calcarifer 

2.1.1 Taxonomy, Species Identification and Genetic Records 

 

Lates calcarifer, locally called ‘Siakap’ or Asian sea bass (as compared to the 

European sea bass - Dicentrarchus labrax) is an economically important finfish in 

Malaysia. This species was first described by Bloch in 1790 from a specimen received 

from Dutch merchants returning from the Indo-Pacific region (Grey, 1986). Due to its 

wide geographical coverage, L. calcarifer is known by various common names such as 

‘barramundi’ in Australia, ‘giant perch’ and ‘anama’ in Papua New Guinea, ‘sea bass’ 

and ‘bhekti’ in India, ‘sea bass’ in Thailand and Philippines, ‘akema’ in Japan and ‘sea 

bass’ in Indonesia, to list a few (Dunstan, 1962; Rabanal and Soesanto, 1982).  

 

Lates calcarifer belongs to the family Centropomidae which comprises of 9 

species. Members from this family inhabit waters from coastal marine, estuaries to 

freshwater including mangrove estuaries and rocky to coral reefs. Some of its species 

are popular and sought-after with high economic importance (Larson, 1999). Lates 

calcarifer is commercially one of the most important coastal finfish and angling species 

within this family. It is marketed as fresh and frozen. The taxonomic classification and 

description of L. calcarifer is given below (FAO, 1974; Grey, 1986; BOLD systems, 

2006). 
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Taxonomic classification: 

 

Phylum : Chordata 

Subphylum : Vertebrata 

Class  : Actinopterygii 

Subclass : Teleostomi 

Order  : Perciformes  

Family  : Centropomidae  

Genus  : Lates  

Species : Lates calcarifer (Bloch) 

 

Taxonomic description: 

 

The species has a compressed and elongate body with a deep caudal peduncle 

(Figure 2.1). The head is pointed with a concave dorsal profile becoming convex in 

front of the dorsal fin. Its mouth is large, slightly oblique with its upper jaw reaching 

behind the eye; the teeth are villiform with no canines present. The lower edge of the 

pre-operculum has a strong spine; the operculum has a small spine with a serrated flap 

above the origin of the lateral line. Its lower first gill is arched with 16 to 17 gill rakers. 

Scales are large, ctenoid. The dorsal fin has 7 to 9 spines and 10 to 11 soft rays with a 

very deep notch almost dividing the spiny from soft part of the fin. The pectoral fin is 

short and rounded with several short, strong serrations above its base. 
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Figure 2.1 Morphological characteristics of Lates calcarifer (Modified from FAO, 

2008).  
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The dorsal and anal fins both have scaly sheaths. The anal fin is rounded, with 3 spines 

and 7 to 8 short rays. The caudal fin is rounded. The colour of this fish is divided into 

two; phases, either olive brown above with silver sides and belly (usually juveniles) or 

green/blue above and silver below. No spots or bars are present on the fins or body 

(FAO, 1974; Grey, 1986).  

 

Lates calcarifer has one of the smallest genomes among food fish species 

(Carrey and Mather, 1999). Its genome is compact (~700 Mb) (Wang et al., 2007a) with 

chromosome numbering 2n= 48 (Arkhipchuk, 1999; Carrey and Mather, 1999). The 

complete mitochondrial DNA (mtDNA) nucleotide sequence of L. calcarifer is 16,535 

bp in length containing 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs, 

and one major noncoding control region (Lin et al., 2006). More recently, the first 

generation genetic linkage map of L. calcarifer was successfully mapped into 24 linkage 

maps using 240 microsatelite markers (Wang et al., 2007a).  The map provides a pivotal 

resource for further study of this species. 

 
 

2.1.2 Distribution, habitat and biology 

 

Lates calcarifer can be found in coastal, estuaries and fresh water habitats. It has 

a very extensive range in tropical and semi-tropical areas of indo-West Pacific. Its 

distribution ranges from western India, around Sri Lanka to Bay of Bengal, and through 

the whole of Southeast Asia to eastern Papua New Guinea and northern Australia 

(Greenwood, 1976; Moore, 1980; Blaber, 2002). This highly opportunistic, fecund 

species has dominated many tropical rivers throughout its range due to a dynamic and 

flexible biology. 
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The Asian sea bass is a protandrous hermaphrodite species (Moore, 1979, 1980; 

Moore and Reynolds, 1982; Reynolds and Moore, 1982; Russell and Garrett, 1983, 

1985; Davis, 1982, 1985). The gonads of L. calcarifer are dimorphic and complete 

reorganization of gonad structure and function takes place after 6 inversions, probably 

under the influence of hormones. Male L. calcarifer spawn several years before sex 

inversion. The sex reversal is initiated as the testes ripen for the last time, and the 

change to ovary takes place rapidly within a month of spawning. The change to female 

usually takes place at about 7 years of age and a body length of about 800 mm, but is 

apparently more related to age than to body length. The body length at which sex 

change occurs varies somewhat across its extensive geographic range, probably due to 

habitat, food and genetic differences (Blaber 2002). Moore (1980) postulated that 

protandrous sex reversal in L. calcarifer allows the larger and more successful females 

to ensure greatest contribution to the gene pool of a particular population.  

 

Lates calcarifer are carnivorous. They feed on fishes as well as some small 

crustaceans mostly prawns. It has a complex life history which occupies various habitats 

at different stages of their life cycle (Figure 2.2). It is a euryhaline and catadromous 

species. It grows to maturity in the upper reaches of freshwater rivers and streams. 

Adults will then move downstream especially during tidal or flooding, to estuaries and 

coastal waters for spawning (Keenan, 1994). According to Moore and Reynolds (1982), 

migrations of Asian sea bass can be up to 300 km along the coast away from the 

influence of fresh water to suitable spawning habitats. 
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Figure 2.2 Life cycle of Asian sea bass, L. calcarifer (Modified from Blaber, 2002). 
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The Asian sea bass spawn after the full and the new moons during the spawning 

season. Figure 2.2 shows its life cycle. Movement to spawning sites takes place at the 

end of the dry season or early in the wet season (Blaber, 2002). Highly fecund adults 

spawn at river mouths, lakes, lagoons or open coastal areas (Moore, 1982) where 

salinity ranges between 28 to 32 PSS (practical salinity scale) (Keenan, 1994). The eggs 

and larval stages can tolerate a narrower range of salinity and temperature than adults 

(Russell and Garrett, 1983). The juvenile fry has been reported to meet optimized 

growth at temperatures from 27 to 36°C (Katersky and Cater, 2005). Juveniles enter and 

remain for shelter in flooded black swamps and floodplains before they dry up during 

the early part of the dry season. The monsoon pattern in Australia and Asia thus has a 

strong link towards the reproductive cycles of L. calcarifer (Russell and Garrett, 1983). 

 

At the end of the wet season, older juveniles disperse into permanent tidal creeks 

and estuaries and migrate upstream where they remain until they reach maturity 

(William et al., 2004). Sea bass becomes sexually mature between 3 to 4 years of age. 

Maturing males typically move downstream at the onset of the wet season to tidal 

waters to spawn. Males and females range freely in tidal waters and occasionally further 

upstream (Russell and Garrett, 1983).    

 

2.1.3 Fisheries Production in Malaysia 

 

Fishery is a major sector for many developing countries promoting economic 

growth including Malaysia. The fisheries sector has played an important role as a major 

supplier of animal protein to the Malaysian population (FAO, 2008). The sector consists 

of two components, namely capture fisheries and aquaculture. The greater bulk of fish 
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landings have always come from the capture fisheries and the rest coming from 

aquaculture. 

 

In Malaysia, the fish is normally captured during its spawning season from 

February to October (Ali, 1986a) depending on weather conditions. With the 

development of aquaculture capacity the global and Malaysia’s production of L. 

calcarifer have increased (Figures 2.3 and 2.4; Appendix 1.1 and 1.2) to meet 

consumer’s demand. 

 

According to the FAO Fishery Statistics (2008), Thailand is the main 

aquaculture producer of Asian sea bass besides Saudi Arabia, Hong Kong, Indonesia, 

Malaysia, Singapore, Brunei, Taiwan, Australia and French Polynesia. Asian sea bass is 

sold fresh and also in chilled form. In Malaysia, most Asian sea bass are marketed at 

500-900 g/piece. Small numbers of larger fish (1-3kg) are also sold.  

 

Normally, wild Asian sea bass fetch relatively better price than cultured type. 

For live cultured fish, the current prices range from RM13.00 to RM15.00/kg whereas 

wild Asian sea bass captured from the open sea can fetch around RM16.00/kg or higher 

especially during festive and Monsoon seasons. The retail prices in supermarket of the 

whole chilled Asian sea bass form usually cost lower ranging from RM10.00 to RM 

13.00/kg. 
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Global Production of Lates calcarifer (FAO Fisheries statistics) 
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Figure 2.3 FAO global production of Lates calcarifer. (Source: 
http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23/figis/webap
ps/figis/temp/ ) 
 

 

FAO Norminal Production Data of Lates calcarifer  in Malaysia
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Figure 2.4 FAO norminal production of Lates calcarifer in Malaysia. (Source: 
http://www.fao.org/figis/servlet/SQServlet?file=/usr/local/tomcat/FI/5.5.23/figis/webap
ps/figis/temp/ ) 
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2.1.4 Status of the Asian sea bass aquaculture in South East Asia 

  

The Asian sea bass cage culture was first studied at the Songkla Fisheries station, 

Thailand in 1971. In 1973, wild Asian sea bass were successfully induced to spawn 

(Maneewong, 1986). The successful breeding of Asian sea bass in Thailand allowed 

Malaysian’s farmers to start their culture of this species using imported fries from 

Thailand. Since then, this has encouraged the popularity of culturing Asian sea bass in 

Malaysia for grow-out. As the Asian sea bass culture expanded in the late 1970s the 

supply of seeds from this source was found to be inadequate and inconsistent (Awang, 

1986a). 

 

 In 1985, larval propagation of L. calcarifer was first achieved at the Fisheries 

Research Institute, Penang (Awang et al., 1985). The success in Asian sea bass 

propagation has subsequently overcome the insufficient supply of fries in private 

hatcheries. These fries are obtained at nominal cost (Ong, 1986). At the moment, 

researches on spawning of this species are still being carried out at the Pusat 

Pengeluaran and Penyelidikan Ikan Laut in Tanjung Demong, Terengganu.  

 

The juveniles are usually cultured in floating or fixed nursery cages in rivers, 

coastal areas or directly in freshwater or brackishwater nursery tanks (Ali, 1986b). 

Production of cultivated Asian sea bass has increased rapidly over the years in Malaysia. 

Although most farmers are interested on culturing fish species with higher price, such as 

groupers, Asian sea bass is still an ideal candidate for aquaculture as it grows rapidly, 

reaching a harvestable size (350 g – 3 kg) in six months to two years (Boonyaratpalin, 

1991; FAO, 2008). Universally, Asian sea bass is regarded as a fine table fish and has 
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the uncommon ability to synthesis long chain omega-3 fatty acids, whose importance to 

human health has been increasingly recognised (Peet, 2006). It is a relatively hardy 

species that tolerates crowding and has wide physiological tolerances. The high 

fecundity of female fish provides plenty of eggs for hatchery production of seed. 

Besides, Asian sea bass feed well on pellet diets, and juveniles are easy to wean to 

pellets (FAO, 2008).    

  

The main culture problem of this species at the early larval stage is the 

cannibalistic behaviour of the fries. Most of the mortality during the later larviculture 

stages is due to cannibalism among frys when they are about 12-15 days old (about 5 

mm TL) (Awang, 1986b; Maneewong, 1986; Suteemechaikul and Petchrid, 1986). 

However, cannibalism can be reduced by grading the fish at regular intervals (usually at 

least every 3-5 days) to ensure that the fish in each cage are similar in size (Awang, 

1986b; Maneewong, 1986). 

`  

Numerous diseases that infect Asian sea bass have been reported such as 

vibriosis, edwardsiellosis and haemorrhagic septicaemias. The causative agents include 

parasitic organisms, bacteria, fungal, viruses, malnutrition and environmental stresses 

such as extremes of temperature, low dissolved oxygen, or poor handling of the fish 

(Chonchuenchob et al., 1986; Humphrey and Langdon, 1986; Barlow, 1997; Moullac et 

al., 2003). Diseases control was achieved on a combination of three factors: diagnosis, 

prevention and treatment. Preventive approach involves vaccination; maintenance of 

water quality; reduction in environmental stress such as low dissolved oxygen, 

temperature extremes, regulations to prevent transfer of pathogens from one host 
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population to another; chemical prophylaxis; control of hatchery sanitation and 

disinfection (Ruangpan, 1988). 

 

2.2 DNA Microsatellites 

2.2.1 General Characters of Microsatellites 

 

Microsatellite loci were discovered in the late 80s. Microsatellites, also called 

simple sequence (Tautz, 1989) and short tendem repeats (STRs; Edwards et al., 1991) 

have probably become the most popular and powerful method for identifying highly 

polymorphic Mandel markers (Hancock, 1999; Li et al., 2002; Scribner and Pearce, 

2002). Their wide applicability span over areas namely populations genetics, parentage 

and kinship analysis, genome mapping, forensic DNA studies, identifying individuals, 

reconstruction of human origin, hybridization studies, molecular epidemiology and 

pathology (O’Connell and Wright, 1997; Goldstein and Schlötterer, 1999 and references 

therein; Liu et al., 1999; Chistiakov et al., 2006).  

 

Microsatellites are made up of 1-6 base pairs sequences which are tandem 

repeated and typically span between twenty to a few hundred bases (Beckmann and 

Weber, 1992; Hancock, 1999; Schlötterer, 2000). It has been detected within every 

organism so far investigated, in eukaryotic as well as prokaryotic genomes. These loci 

appear to be highly abundant and dispersed throughout the genome (Weber and Wong, 

1993).  

 

Microsatellite generally has higher mutation rates than non-repetitive DNA. 

Mutation rates of microsatellite are estimated at 10-3 to 10-4 per locus per gamete per 
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generation whereas point mutation in non-repetitive DNA gives rates of the order of 10-9 

to 10-10 (Weber and Wong, 1993; Jarne and Lagoda, 1996; Primmer et al., 1996; 

Goldstein and Pollock, 1997; Schug et al., 1997).  

 

Microsatellites demonstrate high levels of polymorphism (Litt and Luty, 1989; 

Tautz, 1989; Weber and May, 1989). The variability is mostly due to changes in the 

number of copies of the microsatellite repeat. In general, mutation in a microsatellite 

allele generates changes in size of one repeat, but sometimes several repeat units could 

be changed (Weber and Wong, 1993; Di Rienzo et al, 1994; Primmer et al., 1996).  

 

Molecular markers can be divided into type I (coding) markers which associated 

with genes of known functions and type II (non-coding) markers which associated with 

anonymous genomic sequences (O’Brien, 1991). In general, most microsatellites 

represent type II markers as they are commonly located in non-coding intergenic 

regions. However, there are also markers developed from coding regions and they are 

more difficult to develop (Liu et al., 1999). Non-gene sequences are free to mutate, 

causing higher levels of polymorphism. Sequences within protein-coding regions 

generally show lower levels of polymorphism due to functional selection pressure 

(Chistiakov et al., 2006). 

 

Although all microsatellites are composed of repeated arrays of a specific DNA 

sequence, they may be further differentiated by the specific composition of their core 

sequence. They can thus be divided into four categories (Schlötterer and Zangerl, 1999) 

according to the composition of their core sequence: 
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a) Uninterrupted microsatellite (consists of single repeat type only), e.g. 

GTGTGTGTGTGTGTGTGT 

 

b) Interrupted microsatellite (where the core repetitive unit is interrupted by 

base substitutions), e.g. 

GTGTGTGTGAGTGTGTGT 

 

c) Composite microsatellite (consist of different types or lengths of tandem 

repeated sequences), e.g. 

GTGTGTGTGTCTCTCTCT 

 

d) Cryptic simple sequence (consists of many interruptions including the 

addition of a few different motifs), e.g. 

GAGTGTCTTCTTGTCTGTGTTTTG 

 

2.2.2 Microsatellite Evolution 

 

Although the physical mutational mechanism of microsatellite loci is not yet 

fully understood, such high rates of mutation in microsatellite can be explained by two 

potential mutational mechanisms: unequal crossing-over (UCO) or gene conversion 

(Smith, 1976; Jeffrey et al., 1994) and slipped-strand mispairing, SSM (also referred to 

as DNA polymerase slippage) (Levinson and Gutman 1987; Eisen, 1999; Hancock, 

1999; Zane et al., 2002). In unequal crossing-over, the two chromosome strands are 

misaligned during crossing-over, which results in a deletion in one DNA molecule and 

an insertion in the other. This happens most easily for tandem repeated sequences where 
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the recombination machinery cannot easily determine the correct annealing between two 

strands (Hancock, 1999).  

 

In slipped-strand mispairing, the nascent DNA strand and the template strand 

temporarily dissociate from each other during DNA replication. This does not pose a 

problem when non-repetitive sequences are replicated. If this occur while a repeat 

region is being replicated, the nascent strand may re-anneal out of phase with the 

template strand. When replication is continued, the eventual nascent strand will be 

longer or shorter than the template, depending on whether the looped-out bases have 

occurred in the nascent strand or the template strand.  If the looped-out bases occurred 

in the nascent strand, this will create a longer product whereas if the looped-out bases 

occurred in template strand, this will create a shorter product. In other words, a loop on 

the nascent strand will result in an insertion mutation while an excised loop on the 

template strand will create a deletion mutation (Hancock, 1999; Brohede, 2003) (Figure 

2.5). Generally, length difference is recognized by the DNA mismatch repair system 

which will remove the mismatch. Yet, deficiencies in the mismatch repair system lead 

to increase of microsatellite instability, indicating that the mismatch repair system 

restores the original microsatellite length (Schlötterer and Pemberton, 1998).  

 

2.2.3 Threoretical Models of Microsatellite Mutation 

 

A complete understanding of the mutational process that shape microsatellite 

evolution is essential to utilize the information revealed by these markers. Although 

microsatellite loci have been used for numerous applications in evolutionary genetics, 

the mutational events in these markers is still not fully understood (Garza et al., 1995).  
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Figure 2.5 Microsatellite mutations by slipped strand mispairing (Adapted from 

Brohede, 2003). 
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Two classical models that have been suggested to explain microsatellite mutational 

evolutionary events are the Infinite Allele Model (IAM, Kimura and Crow, 1964) and 

Stepwise Mutational Model (SMM, Kimura and Ohta, 1978). 

 

The main difference between the two models is whether mutation results in 

unique alleles or not. The SMM holds that mutation of microsatellite alleles occur by 

loss or gain of a single tandem repeat and hence alleles may possibly mutate towards 

allele states already present in the population (Estoup and Cornuet, 1999). This infers 

that two alleles that differ by one repeat are more closely related (have a more recent 

common ancestor) than alleles that differ by many repeats. In other words, size matters 

when carrying out statistical tests on population substructuring. The genetic distance 

statistic that uses this model is called RST. The SMM is generally the preferred model 

when calculating relatedness between individuals and population substructuring, 

although there is the problem of homoplasy. 

 

In contrast, The IAM describes that mutation of microsatellites involves any 

number of tandem repeats and always give rise to a new allele that is not previously 

encountered in the population (Estoup and Cornuet, 1999). An 18-repeat allele could be 

just as closely related to a 15-repeat allele as a 16-repeat allele. All that matters is that 

they are different alleles. In other words, size is not important. The statistic that uses this 

model is called FST. IAM is considered to be a more appropriate model when the 

mutational process is unknown (O’Connell and Wright, 1997). 

 

Besides the two extremes models IAM and SMM, other mutation models that 

have been introduced are often found to be variants of SMM or IAM, for example the 
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two-phase model (TPM) (Di Rienzo et al., 1994) and the K-allele model (KAM) (Crow 

and Kimura, 1970). 

 

2.2.4 Application of Microsatellite in Fisheries and Aquacultures 

 

Microsatellite markers have been successfully applied in a variety of research 

fields and practical disciplines because of their multi-allelic nature, codominant 

inheritance, small length, extensive genome coverage and relative abundance (Powel et 

al., 1996). The applications of microsatellite markers are relevant to the general 

audience in a wide range of fundamental and applied fields of biology and medicine. 

Table 2.1 shows the use of various techniques including microsatellites to study a vast 

range of issues. In general, DNA based methods such as mtDNA sequences analysis, 

RAPDs, DNA fingerprints and especially microsatellites are suitable for most of the 

purposes listed. 

 

In the field of fisheries and aquaculture, microsatellites are useful for the 

characterization of genetic stocks, broodstock selection, constructing dense linkage 

maps, mapping economically important quantitative traits and identifying genes 

responsible for these traits and application in marker-assisted (MAS) breeding 

programmes. The genetic variability of microsatellites is expansively exploited in 

evolutionary studies of a wide variety of fish species (Chistiakov et al., 2006). 

Microsatellite markers can reveal much higher levels of genetic diversity than 

phenotypic or allozyme markers (Miller and Kapuscinski, 1996; Shaw et al., 1999; 

Triantafyllidis et al., 2002; Corujo et al., 2004).  
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Table 2.1 Methods available for genetically characterizing individuals and populations and their applicability to each issue. Techniques with 

+ can be used for the purpose specified, with several + indicating the technique has high utility, ? are cases where the technique is useful in only 

some cases, while – indicates that the technique is not useful in this context (Adapted from Frankham et al., 2002). 

Issue Chromosomes Allozymes mtDNA RAPD Microsatellites DNA 
fingerprint 

Non-instrusive sampling - - +++ ++ +++ - 
Forensics - + +++ ++ ++ ++ 
Population size - - +++ + + ? 
Estimating Ne - ++ ++a - +++ ? 
Demographic history - - ++ - + ? 
Detecting and dating bottlenecks - ++ ++a ++ +++ ? 
Detecting selection + + +++ + +++ ++ 
Migration and gene flow - ++ +a ++ +++ ++ 
Individual identification and tracking - - ++ + +++ - 
Population structure - ++ +? ++ +++ ++ 
Phylogeography - - +++ - +++ - 
Source populations to recover endanger species - ++ + ++ +++ +++ 

Introgression + ++ +a ++ +++ ++ 
Secondary contact - - +++ - +++ + 
Taxonomic status +++ ++ ++ +++ +++ +++ 
Sites for reintroduction - - + + +++ - 
Populations for reintroduction - ++ + ++ +++ +++ 
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Table 2.1 (continued) 

 

Issue Chromosomes Allozymes mtDNA RAPD Microsatellites DNA 
fingerprint 

Reproductive systems - ++ - + +++ ? 
Paternity - + - + +++ +++ 
Founder relationships - ? - +++ ++ +++ 
Sources for new founders for endangered populations - ++ + ++ +++ ++ 
Sexing birds  - - - ? ? 
Detecting disease - - ++? ++ + ++ 
Diet - - +++ ++ ++ ++ 

 

Note: a Can detect only female contributions. 
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 Rainbow trout was one of the first species to be investigated for within and 

among population variability using microsatellites (Nielsen et al., 1994). Their survey 

revealed similar patterns of differentiation for mtDNA and the microsatellite locus 

employed. Similar study has been performed on potadromous rainbow trout populations 

from Lake Ontario investigated using both microsatellite loci and mtDNA (Dueck, 1994; 

O'Connell et al., 1996). A comparison of marker sets revealed that the number of 

mtDNA haplotypes was similar to the number of alleles observed at microsatellite loci, 

although single and the combined microsatellite loci data revealed significantly higher 

levels of differentiation.  

 

 The almost random distribution of microsatellites and their high level of 

polymorphism greatly facilitate the construction of genetic maps (Dietrich et al., 1994). 

The mapping applications in several economically important fish using microsatellites 

include studies on the Nile tilapia (Cnaani et al., 2002), zebrafish (Knapik et al., 1998), 

Atlantic salmon (Koop and Davidson, 2005), rainbow trout (Sakamoto et al., 2000), 

channel catfish (Liu et al., 2001; Waldbieser et al., 2001; Karsi et al., 2002), European 

sea bass (Chistiakov et al., 2005). Of special interest to the present study Wang et al. 

(2007a) successfully constructed a first generation linkage map of Asian sea bass based 

on 240 microsatellites.  

 

 Microsatellites is also suitable for the investigation of kinship relationship and 

paternity analysis in understanding mating pattern in the wild and management of 

captive management (O’Connell and Wright, 1997; Schlötterer, 2000). By using just 

two microsatellite loci, Colbourne et al. (1996) examined parentage in bluegill sunfish 

(Lepomis macrochirus), from eggs deposited within a natural nest. The study 
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