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Abstract. In this paper, we extend the group explici methodpioneered by Yousifand Evans (1986) to the solution of
parabolic partial differential equation (p.d.e.) specifically the two dimensional convection-diffusion equation. We
shall also investigate the parallel design ofthis iterative scheme intendedfor a message passing environment. The
computational implementation of the parallel strategy on a cluster of distributed computers at the Parallel
Computing Lab, Dept. ofComputer Science, USM, will be described and discussed.

1 Introduction

Many physical phenomena in ecological and scientific problems can be modeled by equations that relate several
partial derivatives of physical quantities such as forces, momentums, velocities, energy, temperature etc. Some
of these problems involve a combination of diffusion and convection phenomena which are modeled by the
convection-diffusion equation or commonly known as the transport equation:
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in which ax, a y , a~, and a; are positive constants. In solving this equation on a rectangular grid with

spacings t1x = t1y = h in both directions x and y, with Xi = Xo +ih, Yi = yo + jh (i,j = 0,1,2, ...,n) one can use
the implicit finite difference scheme based on the centred difference in time and space formulation about the

point (i,j,k+.!.. ) commonly known as the Crank Nicolson scheme, which transforms (1.1) into
2
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Let the Courant and diffusion numbers be
, t1t t1t

Cx = ax &' Sx = ax t1x2

, t1t t1t
cy = ax t1x' Sy= ax t1x2

so that Equation (1.2) may be simplified to become

(1.2)



(1+sx +Sy)Ui,j,k+1 +(-tsx -icX)Ui_l,j,k+1 +(-tsx +icX)Ui+l,j,k+1 +(-tSy -iCy)U·i,j_l,k+1

+(-tSy +iCy)ui,j+l,k+1 =(1-sx -Sy)Ui,j,k +(tsx +icx)Ui-I,j,k +(tsx -iCx)Ui+l,j,k

+etSy +iCy)Ui,j-l,k +etSy -iCy)Ui,j+l,k

(1.3)

The local truncation error for the difference approximation (1.3) can be established as of order O(h2+ I:::. r) and is
unconditionally stable for all Courant coefficients (cx, cy) and diffusion numbers Sx , sy';cO [2]. In this paper, we
formulate a group iterative method based on this Crank Nicolson scheme in solving this second order parabolic
equation. A brief description of the iterative method studied is presented in Section 2. In Section 3 and 4, we
discuss the strategy used for parallelising the method and Section 5 presents the results of experiments
performed.

2 Formulation of the Explicit Group Method

Assuming n to be odd, the mesh points are grouped in blocks of four points and the centred difference equation
(1.3) is applied to each of these points resulting in the following (4x4) system: (here, U ijk = u(xi'Y j ,tk ) )

where
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rhsi,j = (tsx +icx)Ui-I,j,k+1 +(tSy +iCy)Ui,j_l,k+1 +(1-sx -Sy)ui,j,k +(tsx +iCx)Ui-l,j,k

+(tsx -iCx)Ui+l,j,k +(tSy -tCy)Ui,j+l,k +(tSy +tCy)Ui,j-l,k

rhs i+1,j+l = (tsx -ic X)u i+2,j+l,k+1 +(tSy -iCy)u i+1,j+2.k+1 +(1-sx -sy)ui+l,j+l,k

+ (tsx + iCx)Ui,j+l,k + (tsx - t Cx)Ui+2,j+l,k + (tSy - iCy )Ui+l,j+2,k + (tSy + tCy)Ui+l,j,k

rhsi,j+1 =(tsx +iCX)Ui-l,j+l,k+1 +(tSy -iCy)Ui,j+2,k+1 +(l-s x -Sy)Ui,j+l,k

+ etsx + iCx)Ui-I,j+l,k + (tsx -iCx)Ui+l,j+l,k + etSy -tCy)Ui,j+2,k + (tSy + iCy)Ui,j,k

(2.2)
Using the Mathematica software, the inverse of the (4x4) coefficient matrix on the left hand side is evaluated.
Thus, the explicit form of the system (2.1) can be written as

where

lUi,j,k+1 ] [al
ui+l,j,k+1 _ 1 as

ui+l,j+l,k+1 const a7

Ui,j+1,k+1 as

(2.3)



al = (16 + 48a + 44a2+ l2a3+ 96ab + 44ab2+ ac2+ ad2+ 48b + 44a2b + 44b2+ l2b3+ bc2+ bd2+ C
2+ d2)/16.0,

a2 = (32a + 64a2+ 24a3+ 64ab + 40ab2- 32abc - 32ac + 2ac2- 2ad2 + 64a2b - 32bc - l6c - l2a2c - 20b2c _ C
3

+ cd2)/64.0,
a3 = (4ab + 4ab2- 2abc - 2abd + acd - 2ad + 4a2b - 2bc + bcd - 2b2c +: cd - 2a2d)/8.0,
a4 = (64ab + 64ab2- 32abd - 32ad + 32b + 40a2b + 64b2+ 24b3- 2bc2- 32bd + 2bd2- l6d - 20a2d - l2b2d +

c2d - d3)/64.0,
as = (32a + 64a2+ 24a3+ 64ab + 40ab2+ 32abc + 32ac + 2ac2- 2ad2+ 64a2b + 32bc + l6c + l2ic + 20b2c + c3

- cd2)/64.0,
lI(j = (4ab + 4ab2+ 2abc - 2abd - acd - 2ad + 4a2b + 2bc - bcd + 2b2c - cd - 2a2d)/8.0,
a7 = (4ab + 4ab2+ 2abc + 2abd + acd + 2ad + 4a2b + 2bc + bcd + 2b2c + cd + 2a2d)/8.0,
ag = (64ab + 64ab2+ 32abd + 32ad + 32b + 40a2b + 64b2+ 24b3- 2bc2+ 32bd + 2bd2 + l6d + 20a2d + l2b2d-

c2d + d3)/64.0,
a9 = (4ab + 4ab2- 2abc + 2abd - acd + 2ad + 4a2b - 2bc - bcd - 2b2c - cd + 2a2d)/8.0,
and
const = (256 + I024a + l408a2 + 768a3 + l44a4 + 3072ab + 2816ab2 + 768ab3 + 64(abc2+ abd2 + ac2 + ad2) +
1024b + 2816a2b + 768a3b +1408b2 + l248aV + 768b3+ l44b4 + 64bc2 + 64bd2 + 32c2+ 24a2c2 + 40bV + c4

+ 32d2+ 40a2d2+24b2d2- 2c2d2+ d4)/256.
(2.4)

Here, a = sx, b = Sy, c = Cx and d = Cy' Note that at any time level, the computational molecule of the
approximation (2.3) is similar to the one shown in Figure 1.

Level k+l

Level k

Figure 1. Computational molecule of the approximation (2.3)

The EG method proceeds with iterative evaluation of solutions in blocks of four points using these formulae
throughout the whole solution domain until convergence is achieved. Also it may be observed that the formula
(2.3) has the advantage ofbeing explicit and thus suitable for parallelization.

3 Spatial Multicolour Strategy For Parallelism

It is imperative to note that every time step of the parabolic problem is an elliptic problem. Thus parallelism is
exploited in the spatial dimension, in which at anyone time level, the x-y plane at time level k+1 is decomposed
into a number of horizontal strips consisting of two rows of four point groups arranged in the order shown in
Fig. 2 for the case n = 9.
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Figure 2. Points involved in updating the fOUf point groups at time level (k+ I) for n=9

At each time level, each iteration is split into 2 stages; the four points blocks coloured in white (W) are updated
in the fIrst stage, then the block ofpoints in grey (G) are updated in the second stage as illustrated in Figure 3.

Figure 3. Decomposition of2-coloured strips for parallelisation on x-y plane at each time level (k+I)

Updating the white group followed by the grey group in natural ordering using discretisation (2.3) will result in
the coeffIcient matrix A of the linear system Au = B at each time level k+1 to have the following form

(3.1)

with D, C and F being block diagonal, lower and upper triangular matrices respectively. Hence, for each time

level, the matrix A is 1t-consistently ordered and has property A(x) so that the theory of block Successive
OverRelaxation (SOR) is valid and thus the scheme converges.

At eacQ. time level (k+1), the iterative evaluatioILof the system (3.1) may t!J.en be written as

U(k+l) = D-I[B -CU(k)]_w _ W _G

(k+l) _ D -1 [B _F (hi)]
~G - _ G ~W . (3.2)



It may be observed that the computations in each coloured group are indepepdent of each other and therefore
parallelisable. The strategy used in distributing the points at any particular time level is the same as in the
elliptic case [1]. At each time level, a subset of equal number of consecutive strips are distributed to each
processor available. Each processor iterates on its own group of points and checks for its own local
convergence. After local convergence is achieved, a check for global convergence is made. The converged
solutions will then be passed to the next time level as the initial guess for the next iteration process. The
solution process continues until solutions at all the desired time levels have been obtained.

4 Numerical Experiments

(4.1)

(4.2)

In this section, we report on some preliminary results obtained for solving the convection-diffusion problem
(1.1) on a Linux cluster located at the Department of Computer Science, USM. Communication between

We consider theprocessors is performed using Parallel Virtual Machine (PVM) communication library.
solution ofproblem (1.1) for 0 < x < X, 0 <y <Y, t > 0 with initial conditions

_ {-(X-XO)2 (y_YO)2}
U(x, y,O) - exp ,

ax a y
and boundary conditions

1 {-(a~t + XO)2 (y - a~t - YO)2}UO t =--ex( ,Y,) 4t+1 P ax(4t+1) a y (4t+l)

{

• 2
1 -(X - ax t - xo)

U t =--ex(X,Y,) 4t+1 P a x(4t+1)

1 1~x-a~t-xo)2
Ux Yt =--ex(, ,) 4t+1 P a x(4t+l)

1 1~x-a~t-xo)2
UxO t =--ex( , ,) 4t+1 P a x(4t+l)

The exact solution on the region 0 =:; x =:; X, 0 =:; y =:; Y is [4]:

1 {-(x-a~t-xo)2 (y-a~t-Yo)2}
U x t = --ex t > O.( ,Y,) 4t+1 P I1:x(4t+1) a y(4t+l) , (4.3)

The absolute test was used in the local and global convergence tests with tolerance 8 = 10-5
• Experiments

were performed on the model problem for various sizes of n with number of processors ranging from 1 to 6. Six·.
mesh sizes have been used ranging from 121 to 721. A Single Program Multiple Data (SPMD) paradigm
consisting of one parent process and one or more than one child processes is used in distributing the tasks. The
main responsibility of the parent process is to spawn the child processes, distribute the data to the processes
evenly, collect the computed data and print out the results. In addition to these, the parent process will also be
involved in the computation processes and will not be left idle. Whilst the child processes will receive the
spawned tasks, compute the data, and send the results to the parent. The timing results are presented in Table 1.
The speedup values plotted against the number ofprocessors for different n are shown in Figure 4.



Table I. EXECUTION TIMES (IN SECS.) FOR THE PARALLEL ALGORITHM (t= 0.01, I1t = 0.0005,

ax =ay =0.9, a~ =a~ =O.1,xo =Yo =0.5)

Convection No. Of Iter Error Time Speedup
Diffusion· Proces
EO sors
N-121 1 180 0.000545 0.378054 1.000000
W: 1.4536 2 180 0.000545 0.258850 1.460514

3 180 0.000545 0.217236 1.740292
4 180 0.000545 0.288120 1.312141
5 180 0.000545 0.306627 1.232944
6 180 0.000545 0.310484 1.217628

N=241 1 260 0.000617 2.791991 1.000000
W:1.6186 2 260 0.000617 1.485046 1.88007

3 260 0.000617 1.000897 2.789489
4 260 0.000617 0.881286 3.168087
5 260 0.000617 0.800575 3.487482
6 260 0.000617 0.763433 3.657153

N-36l 1 360 0.000695 7.688926 1.000000
W:1.7200 2 360 0.000695 4.260272 1.804797

3 360 0.000695 3.155303 2.436827
4 360 0.000695 2.593486 2.964707
5 360 0.000695 2.086896 3.684384
6 360 0.000695 1.780085 4.319415

N-481 1 520 0.001185 16.451758 1.000000
W:I.7252 2 520 0.001185 8.937741 1.840707

3 520 0.001185 6.514518 2.525399
4 520 0.001185 5.236424 3.141793
5 520 0.001185 4.424787 3.71809
6 520 0.001185 4.001257 4.111647

N-601 1 704 0.001694 32.729571 1.000000
W:I.7275 2 704 0.001694 17.408637 1.880077

3 704 0.001694 12.427545 2.633631
4 704 0.001694 10.115257 3.235664
5 704 0.001694 8.335114 3.926709
6 704 0.001694 7.180388 4.55819

N=721 1 866 0.002246 57.396197 1.000000
W:1.7353 2 866 0.002246 30.071938 1.90863

3 866 0.002246 21.086880 2.721891
4 866 0.002246 16.501501" 3.478241
5 866 0.002246 13.713812 4.185284
6 866 0.002246 11.794802 4.866228

5. CONCLUSIONS

From the results in Table 1, it can be seen that the speedup curve for the proposed algorithm gets closer to the
'ideal' graph as n gets larger. It can be observed that a slightly greater speedup is obtained when the mesh size
is larger indicating that the amount of computations carried out over the total overheads in this method is
slightly greater compared to the smaller mesh size. From this work, we may conclude that the new parallel
group iterative algorithm is able to benefit from parallelism when solving the convection-diffusion equation on a
cluster of PC's.
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