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current density. 
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Figure 4.45 Schematic diagram showing the influence of shift in cathodic 
polarization curve on corrosion potential and limiting current 
density. 
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Figure 4.46 Schematic diagram showing the influence of shift in cathodic 
and anodic polarization curves on corrosion potential and 
limiting current density. 
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Figure 4.47 Polarization curves of (a) cast Al-Si-Mg alloy and (b) ECAP 
with 7 passes through the die with Φ=1200 and Ψ =00. 
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Figure 4.48 SEM images of surface morphology with various number of 
passes of the ECAPed Al-Si-Mg alloy through Φ=1200 
andΨ =00 die after electrochemical test: (a) as cast alloy, (b) 
after 1 pass, (c) after 5 passes, and (d) after 8 passes 
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Figure 4.49 Polarization curves of (a) cast Al-Si-Mg alloy and (b) 
ECAPed with 7 passes through a die with Φ=900 and 
Ψ =200. 
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Figure 4.50 SEM images of surface morphology with various number of 
passes of the ECAPed Al-Si-Mg alloy through Φ=900 
andΨ =200 die after electrochemical test: (a) as cast alloy, 
(b) after 2 passes, (c) after 5 passes, and (d) after 8 passes 
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Figure 4.51 Polarization curves of (a) cast annealed Al-Si-Mg alloy at 500 
0C for 24 h, and (b) ECAPed annealed with 7 passes through 
a die with Φ =900 and Ψ =00. 
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Figure 4.52 SEM images of surface morphology with various number of 
passes of the ECAPed annealed Al-Si-Mg alloy at 5000C for 
24 h through Φ=900 andΨ =00 die after electrochemical test: 
(a) as annealed cast alloy, (b) after 2 pass, (c) after 5 
passes, and (d) after 8 passes 
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Figure 4.53 Polarization curves of (a) cast annealed Al-Si-Mg alloy at 600 
0C for 30min, and (b) ECAPed with 7 passes through the die 
with Φ=900 and Ψ =200 annealed at 230 0C for 30 min 
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Figure 4.54 SEM images of surface morphology with various number of 
passes of the ECAPed annealed Al-Si-Mg alloy at 6000C for 
30 min through Φ=900 andΨ =200 die after electrochemical 
test: (a) as annealed cast alloy at 600 0C for 30 min, (b) after 
1 pass and (c) after 3 passes at 230 0C for 20 min, and (d) 
after 8 passes at 230 0C for 30 min. 
 

151 

Figure 4.55 EDS spectra and SEM morphology of impurities present at 
the surface of corroded ECAPed (after one pass) annealed 
Al-Si-Mg alloy at 500 0C for 24 h: (a  and a#) at wide area, (b 
and b#) at small area 
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e- Electron 
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Ψ  The angle defining the outer arc of curvature at the point of 
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ek  The electronic component of thermal conductivity 

eqε  The equivalent strain  
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lk  The lattice component of thermal conductivity 

TΔ  The temperature gradient 

k Thermal conductivity 
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KESAN SUDUT PENEKANAN SALUR BERSUDUT SAMA TERHADAP 
MIKROSTRUKTUR DAN SIFAT-SIFAT ALOI Al-Si-Mg. 

 
ABSTRAK 

 
Penyelidikan ini bertujuan untuk meningkatkan sifat-sifat fizikal dan 

mekanikal aloi Al-Si-Mg melalui penghalusan struktur ira yang dihasilkan oleh 

kecacatan plastik lampau. Struktur ini diperolehi secara penekanan sudut salur 

sama (equal channel angular pressing (ECAP)). Aloi ini mempunyai komposisi 

(dalam % berat) 1.3 Si, 0.3 Mg, 0.18 Fe, 0.023 Cu, 0.019 Mn, 0.017 Zn, 0.014 

Ga, 0.011 Ti  dan selebihuya Al. Dalam proses ECAP sampel ditekan melalui 

dai bersudut 900 dan 1200 menggunakan laluan BC. Sampel diputar 900 dalam 

arah yang sama diantara setiap urutan penekanan melalui dai ECAP. Sampel 

mengalami kecacatan plastic secara ricihan tulen semasa melalui sudut 

persimpangan. Penilaian mikrostruktur, sifat fizikal dan sifat mekanikal sampel 

Al-Si-Mg yang tersemperit melalui proses ECAP dianalisis menggunakan 

microskop imbasan electron (SEM), ujian kekerasan mikro Vickers, ujian 

tegangan, ujian konduksi terma serta ujian elektrokimia kakisan. Kesan-kesan 

sudut penekanan, terhadap sifat-sifat mekanikal dan penghalusan mikrostruktur 

pada suhu sepuh lindap, (230 0C dan 500 0C) dan suhu ubah bentuk (600 0C) 

telah dinilai. Dari pada pemerhatian perkemangan mikrostruktur proses ECAP 

menghasilkan pengurangan saiz butir daripada 70-100 μ m kepada sekitar 200 

nm. Sampel selepas ECAP yang melalui proses sepuh lindap pada 500 0C 

selama 24 jam sebelum ECAP juga mempamerkan butir-butir dengan saiz 

serupa. Manapun walaubagai proses sepuh lindap pada 230 0C selama 20-30 

minit selepas ECAP membawa kepada peningkatan saiz butir kepada 300 

hingga 600 nm. Kekerasan mikro ditingkatkan sebanyak 250-300 % dan 

terdapat sedikit penurunan di dalam nilai yang di perolehi apabila masa sepuh 
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lindap ke atas sampel ECAP ditingkatkan. Kekonduksian terma bertambah 

sebanyak 19-30%, bergantung kepada sudut salur dan suhu sepuh lindap. Nilai 

yang lebih tinggi diperolehi untuk sudut yang lebih tirus dan suhu sepuh lindap 

lebih tinggi.Kekuatan tegangan sampel tuangan Al-Si-Mg dikaji selepas melalui 

ECAP dengan sudut salur 900. Kekuatan tegangan mutlak, beban maksimum 

dan pemanjangan meningkat dengan bertambahnya bilangan ulangan proses 

ECAP. Keputusan yang diperolehi dari ujian kakisan menunjukkan sampel Al-

Si-Mg yang telah melalui proses ECAP mempunyai rintangan kakisan yang 

lebih baik dalam 3.5% NaCl berbanding sampel Al-Si-Mg yang dituang. Kadar 

kakisan berkurang apabila proses ECAP diulang untuk sampel yang sama 

tetapi kadar kakisan bertambah dengan peningkatan suhu sepuh lindap. Sifat-

sifat benda kerja yang dikaji menunjukkan perubahan yang jelas selepas 

melalui laluan pertama proses ECAP. Adalah diketahui bahawa, proses ECAP 

merupakan proses yang mudah, murah dan berkesan untuk menambahbaik 

sifat-sifat fizikal dan mekanikal aloi Al-Si-Mg. Peningkatan sifat fizikal dan 

mekanikal ini menawarkan potensi yang baik untuk di gunakan di dalam 

pelbagai aplikasi industri. 
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THE INFLUENCE OF EQUAL CHANNEL ANGULAR PRESSING ANGLES 
ON THE MICROSTRUCTURE AND PROPERTIES OF Al-Si-Mg ALLOY 

 

ABSTRACT 

The aim of this research is to improve the physical and mechanical 

properties of Al-Si-Mg alloy by grain structure refinement produced by severe 

plastic deformation through equal channel angular pressing (ECAP). This alloy 

has a composition (in wt. %) of 1.3  Si, 0.3  Mg, 0.18  Fe, 0.023  Cu, 0.019  Mn, 

0.017  Zn, and 0.014 Ga, 0.011 Ti 1.3 Si, 0.3 Mg, 0.18 Fe, 0.023 Cu, 0.019 Mn, 

0.017 Zn, 0.014 Ga, 0.011 Ti balance Al. In ECAP process, the workpieces are 

pressed through a 1200 and 900 dies using route BC. Through this route the 

sample is rotated by 900 in the same direction between each consecutive 

pressing through the ECAP dies. Workpieces undergo plastic deformation by 

pure shear through the intersecting corner. Microstructure evaluation, physical 

and mechanical properties of the extruded Al-Si-Mg workpieces by equal 

channel angular pressing were conducted using scanning electron microscopy 

(SEM), micro-Vickers hardness tester, tensile test machine, heat conduction 

apparatus and auto lab corrosion test system. The effect of die angles on the 

microstructural refinement and mechanical properties at annealing temperature 

(230 0C and 500 0C) and deformation temperature (600 0C) were investigated.  

From the microstructure evolution, ECAPed resulted in reduction of grain size 

from 70-100μ m to about 200nm. The ECAPed workpieces that underwent 

annealing at 500 0C for 24h before ECAP also displayed grains with similar 

sizes. However, annealing process at 230 0C for 20-30min after ECAP leads to 

an increase of grain size to around 300 to 600nm.  Microhardness was 

improved by 250-300% and there was slight reduction in its value obtained with 
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the increase in annealing time of ECAPed workpieces. The enhancement of 

thermal conductivity is by 19-30%, depending on channel angle and annealing 

conditions. It showed higher value for sharper channel angle (900), and higher 

annealing temperature. From the tensile tests, the maximum load, maximum 

stress and elongation to failure increases with the number of passes through 

the ECAP die. Results from the corrosion experiments of deformed Al-Si-Mg 

alloy in 3.5% NaCl solution showed better corrosion resistance compared to as-

cast Al-Si-Mg alloy. The corrosion rate was reduced with the number of passes 

through the ECAP dies but its value increases with increasing annealing 

temperature. In general, a drastic change in all investigated mechanical and 

physical properties occurred after the first pass through the ECAP dies. It is well 

known that the ECAP provides a simple, cheap and effective processing 

technique for producing nanostructured Al-Si-Mg alloy. Consequently the 

improvement in the mechanical and physical properties offers great potential to 

be used in various industrial applications. 

. 
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CHAPTER ONE 

INTRODUCTION 

 

It is well known that there are significant advantages to be gained from 

deforming metallic alloys to very high plastic strains. These include 

microstructural refinement (Segal, 1995) and enhanced mechanical properties 

(Valiev et al., 1993 and Markushev et al., 1997). 

 

In conventional processes, like gas condensation (Sanders et al., 1997; 

Glieter, 1989), ball milling with subsequent consolidation (Koch and Cho, 1992; 

Eckert et al., 1992; Kock, 1997) and  rolling (Philippe, 1994) one or more of the 

material dimensions are continuously being reduced with strain, can only be 

achieved in foils or filaments, which have few structural applications. In other 

words, it is possible to use these methods for producing ultrafine grain structure 

even to the size of nanometer, but it is not easy to use these methods to 

produce large  bulk workpieces, which then limits the industrial applications. 

The inert gas submicrocrystalline process is capable of producing small 

crystallites with a narrow size distribution. Mean grain size is controlled by 

operation temperature and the inert gas pressure. The powder produced is 

compacted in vacuum to form samples. Besides, nanocrystalline materials can 

also be synthesized by high energy ball milling of elemental, intermetallic 

compound, or immiscible powders (Jang and Kock, 1990). However, it should 

be pointed out that the residual porosity in compacted samples and impurities 

from ball milling would not be easily eliminated, and the mechanical and 
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physical properties inherent to various nanostructured materials are influenced 

by these imperfections (Valiev et al., 1992). 

  

Recent investigations have shown that severe plastic deformation (SPD) 

is an effective method for forming submicron grain material (Segal, 2002; Yu et 

al., 2005). Three requirements should to be taken into account while developing 

methods of severe plastic deformation (SPD) for production of nanostructures in 

bulk workpieces. Firstly, it is essential to obtain submicrometer grain structures 

with high angle grain boundaries. Secondly, to achieve stable properties of the 

processed materials, the nanostructures must be uniform within the whole 

volume of the workpiece. Thirdly, the workpiece should not have any 

mechanical cracks or damage when it is exposed to large plastic deformation. 

Traditional methods can not meet these requirements (Valiev et al., 2000).  

 

Different techniques have been used to introduce large quantities of 

plastic strain into metals. Rolling is the most conventional technique, but higher 

strain levels (greater or equal to 10) have been achieved more recently for 

example by torsion under high pressure (Valiev, 1993; Gertsman et al.,1994; 

Alexandrov et al., 1998), by cycle’s extrusion (Korbel and Richert, 1985), or by a 

specific method involving simple shear inside a localized zone called equal 

channel angular pressing (ECAP) (Iwahashi et al., 1996; Segal, 1995). 

 

ECAP, invented by Segal et al., (1981) in the beginning of the 1980s, has 

been the subject of intensive study in recent years due to its capability of 

producing large full density samples containing an ultrafine (or nanometer 
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scale) grain size by repeating the process while maintaining the original cross-

section of the workpiece. 

 

Processing by ECAP involves pressing a sample through a die within a 

channel that is bent into an L-shaped configuration. In general, the equivalent 

strain is close to ~1 when the two parts of the channels intersect at 900 

(Iwahashi et al., 1996). There are many parameters that affect the 

microstructural evolution in materials. Among them are, the die angle, which 

determines the strain introduced in the material for each deformation pass 

(Iwahashi et al., 1996; Nakashima et al., 1998; Luis Perez, 2004), and the 

number of passes through the die, which corresponds to the total accumulated 

strain applied to the workpiece. The deformation route, which involves rotating 

the workpiece between each successive passes, is another important 

parameter in microstructure development (Furukawa et al., 1998; Iwahashi et 

al., 1997 and 1998a). In addition, the content of impurities (Iwahashi et al., 

1998b), pressing speed (Berbon et al., 1999), the deformation temperature Cao 

et al., 2003; Zheng et al., 2006), and the friction between the die walls and the 

workpiece are also essential parameters (Semiatin et al., 2000; Oruganti et al.,  

2005).  

 

However, different microstructures can be developed in ECAP by rotating 

the workpiece between extrusion cycles (Iwahashi et al., 1997, 1998a, 1998c). 

It is possible to define four distinct processing routs A, BA, BC and C, which are 

classified by how the workpiece is rotated with respect to the die for each 

subsequent pass. When the workpiece is rotated after each pass around its 
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longitudinal axis through the angles: 00 (route A), 090± (route BA), + 900 (route 

BC), and +1800 (route C).  

 

The SPD techniques may form grains with sizes in the order of 100-200 

nm and with high angle grain boundaries (Valiev et al., 2000). The SPD 

materials should be described as nanocrystalline, since they often have a mean 

grain size of about 20-100 nm. Several articles have reported that the 

deformation structure of most alloys processed by ECAP at room temperature 

exhibit homogeneous equiaxed grains with a high fraction of high angle grain 

boundaries (65%) (Sun et al., 2002). 

 

 Many ultrafine-grain aluminum alloys have been produced by ECA 

pressing and attractive mechanical properties such as high strength and 

superplasticity have been reported from ECAPed aluminum alloys (Wang and 

Prangnell, 2002; M-Morris et al., 2003; May et al., 2005). Several recent steps 

have been taken to evaluate the overall potential of the ECAP process. First, it 

was shown that ECAP processing may be scaled up relatively easily to produce 

large bulk materials having properties similar to those achieved in small-scale 

laboratory investigations (Horita et al., 2001). Second, various procedures were 

developed to simplify the procedure for imposing high total strains including the 

use of a multi-pass pressing facility (Nakashima et al., 2000) and by adopting 

alternative devices such as a rotary die (Ma et al., 2005). Third, there have 

been recent attempts to incorporate the ECAP process into conventional cold 

rolling for the continuous production of metal strip (Han et al., 2004). In general, 
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the major advantage of an ECAP process is that it is relatively cheap and is 

arguably less complex than the other SPD processes. 

 

In the present study, ECAP with different die angles was used to deform 

the material and obtain ultrafine grained structure. The present work has many 

objectives. The first is to advance our understanding of the deformation 

mechanism in ECAP, and investigate the effect of some parameters that affecte 

the microstructure evolution such as die angles and thermal annealing for the 

Al-Si-Mg alloy. Second, to estimate the mechanical properties such as the 

refinement of grains, microhardness and tensile strength of the Al alloy 

subjected to significant grain refinement and strengthened through ECAP. 

Third, to study the possibility to enhance the thermal conductivity and corrosion 

resistance through consecutive passes of Al alloy during the ECAP die. The 

characterization of ultrafine grain structure mainly relies on scanning electron 

microscopy (SEM).  
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CHAPTER TWO 

LITERATURE SURVEY 

 

2.1 Aluminum and Aluminum Alloys 

Aluminum is the second most plentiful metal on earth, but until the late 

1800s, was expensive and difficult to produce because Al2O3 can not be 

reduced by heating it with coke. Development of electrical power and the Hall 

(in the USA)-Heroult (in France) process for electrolytically reducing Al2O3 to 

liquid metal allowed aluminum to become one of the most widely used and 

inexpensive materials. 

 

2.1.1 Aluminum and Aluminum Alloys Properties 

The development of applications for Al and Al alloys can be attributed to 

several of their properties which include: 

 

• Lightness: Aluminum is one of light metals. Its density is 2700 kg.m-3, or one 

third the density of steel. The strength of some Al alloys comparable to that 

of mild carbon steel can approach 700MPa. This indicates that the strength 

of these alloys is higher by 30 times than that of pure aluminum. This 

combination of high strength and lightness makes aluminum well suited to 

transportation vehicles such as ships, aircraft, rockets, trucks, automobiles, 

along with portable structures such as ladders, scaffolding, and gangways. 

(Donald, 2001). 

•    Corrosion resistance: Aluminum has an excellent resistance to corrosion , it 

reacts with oxygen very rapidly even at room temperature  to produce a thin 
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but very dense film of oxide (Al2O3) which forms on the metal surface to 

protect the underlying metal from many corrosive environments and quickly 

reform when damaged. 

• Thermal conductivity: An excellent thermal conductivity for aluminum makes 

it very suitable for heating and cooling applications such as for the 

manufacture of domestic cooking utensils, automobile radiators, refrigerator 

evaporator coils and heat exchangers. (Higgins, 1997) 

• High electrical conductivity: The electrical conductivity is around two third of 

copper but its conducts twice electricity as an equal weight of copper, 

therefore aluminum is an ideal for use in electrical transmission cables. 

Aluminum bars and tubes are widely used in connecting stations for high 

and medium voltage outdoor networks. 

• Reflectivity: Aluminum is an excellent reflector of radiant energy such as 

heat and lamp reflectors. 

• High toughness at cryogenic temperature: At low temperature has a higher 

strength and toughness, making it useful for cryogenic vessels. 

• Nontoxic: Because aluminum and any corrosion product which are formed 

are nontoxic, aluminum is used in the packaging of food and sweets, 

cooking utensils and vessels in food processing. 

•  The ease of fabrication: Aluminum is easy to form and fabricate by various 

processes such as extruding, bending, drawing forging casting, rolling and 

machining. 

• The ease of use: Specific tools not necessary to process aluminum alloys 

and they lend themselves to joining techniques such as welding, bolting, 

riveting, clinching, adhesive bonding, and brazing (Martin, 2004). 
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• The diversity of aluminum alloys: There are eight or nine series of aluminum 

alloys which give a very wide range of compositions, properties and uses 

(James, 2004).  

• Recyclability: Aluminum made from recycled material requires only 5% of 

the energy needed to produce aluminum from bauxite which contains 

aluminum oxide. The recycling rate of end of life aluminum is roughly; 

(Martin, 2004). 

• 85% in the building industry and public amenities 

• 80% in the transport sector, 

• 70% in mechanical and electrical engineering, and 

• 65% in house hold application.   

 

2.1.2 Aluminum Series 

Aluminum alloys are classified into two categories, wrought alloys, those 

that are worked to shape, and cast alloys, those that are poured in a molten 

state into a mold that determines their shape. The diversity of alloys and the 

wide range of certain properties explain the growth in applications from 

aeronautics to packaging. All aluminum products belong to one of eight alloy 

series listed in appendix A (James, 2004 and Martin, 2004). 
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2.2 Severe Plastic Deformation (SPD) Techniques 

It is well established that three axis forging, high pressure torsion 

straining(HPT) and equal channel angular pressing (ECAP) are known methods 

of providing large plastic deformation. However, the last two methods are the 

most well known processes used to reduce the grains in polycrystalline 

materials to submicrometer or nanometer level (Valiev et al., 1991). These 

procedures are capable of producing large samples without the presence of 

residual porosity for a wide range of industrial application. This advantage gives 

these techniques super priority over other methods for preparing materials with 

submicrostructure grain sizes. The deformation imposed during both processes 

introduces a high dislocation density into the deformed workpieces and this 

leads to arrays of grains which are highly deformed and having grain 

boundaries which tend to be poorly defined and tend to be curved or wavy 

(Valiev et al., 1993 and Wang et al., 1993).  

 

2.2.1 Multiple Forging (MF) 

This method is one of the nanostructure creation methods in rather brittle 

materials because processing starts at elevated temperatures and specific 

loads on tooling are low. The principle of this method is shown in Figure 2.1. It 

assumes multiple repeats of free forging operations, setting drawing with a 

change of the axis of the applied strain load. The efficiency of this technique to 

provide homogeneous strain is less than that of the torsion straining and ECAP. 

Multiple forging was used for microstructural refinement in many materials and 

alloys, such as pure Ti, Ti alloys, Ni alloys (Salishchev et al., 1994), and others.  
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Fig. 2.1: Principle of multiple forging: setting and pull broaching along the first 
axis (a), (b), (c); setting and pull broaching along the second axis (d), (e), (f); 
setting and pull broaching along the third axis (g), (h), (i)  (Valiev et al., 2000). 
 

2.2.2 High Pressure Torsion (HPT) 

The high pressure torsion process is capable of forming uniform 

nanostructures having smaller grain sizes than other severe plastic deformation 

methods; also it is able to introduce continuously variable magnitudes of 

deformation, thus the microstructure evolution studies are attainable. An 

important change in the microstructure is noticed after deformation by half 

rotation, but to obtain homogenous nanostructure several rotations are required 

(Valiev, 1997). HPT has two advantages: (i) it is capable to produce small grain 

sizes, often in the nanometer range ~100nm (ii) providing a capability for 

processing brittle materials such as intermetallic and semiconductors 
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(Languillaume et al., 1993 and Islamgaliev et al., 1994) and the disadvantage of 

HPT is that the workpieces fabricated by this technique are usually of a disk 

shape not exceeding 20 mm in diameter and 1 mm in thickness (Lowe and 

Valiev, 2000). Also, the precise deformation conditions and constraints during 

HPT may vary since they depend on friction between the rotating anvil and the 

workpiece. 

Submicrocrystalline and nanocrystalline structures may be obtained by 

torsion using the Bridgman technique (Bridgman, 1952) where the deformation 

occurs by torsion of the workpiece under high pressure. In this process the 

workpiece is subjected to large plastic deformation by torsion where the 

workpiece is held between anvils and strained in torsion under applied pressure 

of several GPa as shown in Figure 2.2. A lower holder rotates and surface 

friction forces deform the workpiece by shear.  After several rotations the 

deformation by the given mode often results in similar refinement of a 

microstructure in the center of the workpieces as well the processed 

nanostructure is usually homogeneous at the radius of samples. This 

homogeneity has been confirmed by the uniform distribution of microhardness 

values across the test workpieces section. The strain imposed in the workpiece 

is given by: (Valiev, 1997) 

l
RNπγ 2

=    ..………………………………………………………………………    2.1   

Where, N is the number of rotations, R is the distance from the axis of the disk 

and l  is the thickness of the workpiece. Two points can be concluded from the 

above formula; (i) the strain value should change linearly from zero in the center 

of the workpiece to the maximum value at the end of its diameter; (ii) during 

deformation the initial thickness of the workpiece is reduced by approximately 
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50% under high compression pressure. Two forms of torsional deformation of 

thin disks have been described. The first, due to Bridgman, comprises 

simultaneous compression and torsion of a disk which is not constrained 

laterally, therefore; its diameter is free to expand beyond that of the tooling 

anvils (Bridgman, 1935). The second one is a comprise compression /torsional 

deformation of a disk situated between a tight fitting cylindrical plunger and die, 

a geometry which prevents lateral expansion of the workpiece (Valiev et al., 

1997a). The torsional technique is used with more or less success in the 

laboratory since it does not fully meet the requirements of commercial 

technologies. Therefore; Bridgman’s technique is applicable for obtaining 

nanocrystalline structure in thin foil form workpieces. 

 

Fig. 2.2: Principle of torsion under high pressure. 
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2.2.3  Equal Channel Angular Pressing (ECAP) 

Equal channel angular pressing is one of the most promising processes 

that can produce ultrafine grained materials through the process of simple shear 

by pressing a workpiece through a die with two intersecting channels, equal in 

cross section as shown in Figure 2.3 (Iwahashi et al., 1996). Various techniques 

are used to analyze the microstructure development of Al alloys, for example, 

(Iwahashi et al., 1997) used transmission electron microscopy (TEM) with 

selected area electron diffraction (SAED) to observe the microstructure of Al 

material. While (Gholinia et al., 2000) used high resolution electron 

backscattered diffraction to quantitatively measure the misorientation of 

boundary. Many researchers used Scanning electron microscopy (SEM) for 

testing the shape and size of the grains. 

 

Fig. 2.3: Angles for equal channel angular pressing and ECAPed workpiece. 
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ECAP has many advantages comparing with other severe plastic 

deformation processes;  

 

• ECAP may be used to attain a microstructure where it is possible to achieve 

superplastic forming at very high strain rates. 

• ECAP is being applicable producing a deformation with no change in the 

cross sectional dimensions of the workpiece on passage through the die. 

• ECAP may be readily scaled up for the production of relatively large bulk 

workpieces that may be suitable for use in industrial applications. 

• There have been new developments in utilizing the ECAP method including 

using a rotary die or multipass facility in order to achieve high strains without 

removing the workpiece from the ECAP die. 

• Deformation in ECAP occurs at the shear plane, which is lying at the 

intersection of the two channels. Therefore; the deformation in the ECAP 

processed workpiece is very localized and homogenous in the localized 

deformation zone. 

• ECAP has been combined with other metal working process to provide a 

more versatile procedure.  

 

2.3 Principle of ECAP 

The principle of ECAP is shown schematically in Figure 2.4, where two 

equal cross section channels intersected at two angles, Φ  is the internal angle 

between the two intersecting channels and Ψ is the angle defining the outer arc 

of curvature at the point of intersection of the two channels. Figures 2.4(a) and 

(b) correspond to the limiting conditions of Ψ =0 and Ψ = −π Φ , respectively, 
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and Figure 2.4(c) corresponds to an intermediate situation where Ψ  lies at an 

arbitrary angle between Ψ =0 and Ψ = −π Φ . 

In Figure 2.4(a) where Ψ =0, a small element in the workpiece, initially square in 

cross section with dimensions given by abcd, becomes deformed by shear on 

passage through the die into the configuration given by dcba ′′′′ ,,, . Using the 

notation in Figure 2.4(a), it is follows that the shear strain,γ  is given by:  

qa′  / dq ′ , where 

dq ′=ad, and ba ′= cd ′  = pa′  = pq = ad cot (Φ /2) 

so that, 

qa′ =2ad cot (Φ /2). 

Therefore, for the condition where Ψ =0,  

γ =2cot (Φ /2)                  ………………………. ………………………………… 2.2 

In Figure 2.1(b) where Ψ = −π Φ , the shear strain is given by  

γ = r c′ / br ′ , where  

br ′ = da = (oa-od) and 

ba ′= cd ′  =oaΨ =(r c′+odΨ ) so that, 

r c′= (oa-od)Ψ . 

Therefore, for this condition, 

γ =Ψ                 ……………………………………………………………………   2.3 

In Figure 2.4(c) where Ψ  represents an intermediate situation, the shear strain 

is: 

γ = ua′  / ud ′  where  

ud ′ =ad and ua′  may be obtained from the relationships  

ua′ = ( ta′  + tu) = (r c′+as), 
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as = ad cot ⎟
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ba ′= cd ′  = (as+osΨ ) = r c′  +odΨ  , then 

r c′= (os-od) Ψ +as   , 

∴ =′ua (os-od) Ψ +2as, 

Q(os-od) = ad cosec ⎟
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+
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Therefore, the shear strain for this intermediate condition is given by  

γ =2cot ⎟
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    …...……………………………………  2.4 

When Ψ =0, equation (2.4) reduces to equation (2.2) and to equation (2.3) 

when  

Ψ  = −π Φ . 

The equivalent strain, eqε is represented by  

eqε =

2
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………………………………… 2.5 

so that the strain ε , after one cycle is 

ε =
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Since in each passage through the die the same strain is accumulated, the 

following  equation represent a more general relationship allowing one to 

calculate the strain value of the workpiece during ECAP for N passes. 

ε N= N

⎥
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⎥
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⎤

⎢
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⎢
⎢

⎣

⎡
⎟
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⎞
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⎝
⎛ Ψ

+
Φ

Ψ+⎟
⎠
⎞

⎜
⎝
⎛ Ψ

+
Φ

3
22

cos
22

cot2 ec
     ……………………………………. 2.7 

During ECAP the direction and the number of workpiece passes through die are 

very important for microstructure refinement. 

 

 
 
 
 
 
Fig. 2.4: Principles of ECA pressing: (a) Ψ  = 00, (b)) Ψ  = −π Φ , (c) Ψ  is 
between Ψ  = 00 and Ψ = −π Φ  (Iwahashi et al., 1996). 
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2.4 Estimations of the Strain in ECAP 

The strain imposed on the workpiece in ECAP depends upon the two 

angles defined in Figure 2.4, Φ  andΨ . Segal (1995) showed that the strain 

accumulated after N cycles through the die is given by: 

2
cot

3
2 Φ

=
N

Nε             …..………………………………………………………… 2.8 

The above equation was also derived by (Utyashev et al., 1996). 

Iwahashi et al., (1996) obtained equation 2.7 which including the influence of 

the geometric process parameters of the die such asΦ  and Ψ angles. 

         

It is apparent that equation 2.7 reduces to equation 2.8 when 0=Ψ 0. According 

to equation 2.7, the magnitude of the equivalent strain depends upon the values 

of Φ  and Ψ  angles, where it decreases with increasing of both angles. The 

equivalent strain during ECAP can decrease from the maximum of 1.15 at 

minimum value of Ψ =00 to the minimum of 0.907 at the maximum value of 

Ψ =900, when channel angle is fixed as Φ =900. The channel angleΦ  has more 

influence on the strain generated during ECAP than the die corner angle 

Ψ (Prangnell et al., 1997); (Delo and Semiatin, 1999); (Semiatin et al., 2000). 

Wu and Baker (1997) reported good agreement with equation 2.7 in model 

experiments where workpieces were extruded through Plexiglas die. 

Measurements of the shear strain from single and multipass extrusions showed 

that the center of the workpieces (away from the die wall) did indeed undergo 

deformations which were well predicted by equation 2.7. However, the 

workpiece regions near the die wall underwent substantially lower strains due to 

sticking friction. In order to avoid a reduction in the cross-sectional dimensions 

of the workpiece as it passes through the die, there is a maximum value of the 
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arc angle, Ψ max, given by ( Φ−π ) (Iwahashi et al., 1996). At the maximum 

value, Ψ max, 

 

( )
33
maxΨ

=
Φ−

=
NN

N
πε               ……………………………………………….. 2.9 

 

2.5 Microstructure Evolution 

The microstructure develops as a natural consequence of the evolution 

of the deformed state, therefore; the meaning of submicron or nanocrystalline 

grain structure is not immediately apparent after using severe plastic 

deformation processing. A severely deformed alloy with an average grain size 

less than1 μ m may still contain many low angle grain boundaries and the 

grains can be highly elongated in the deformation direction (Bowen et al., 

2000a).The definition proposed here is; the average grain size of high angle 

grain boundaries (boundaries misorientated by > 150) must be less than 1μ m, 

or 100 nm in all orientations and, the proportion of high angle grain boundary 

(HAGB) area must be > 70% relative to the total boundary area in the material. 

This proportion of HAGB is required to produce a stable grain structure and is 

suggested on the basis that it has been shown, experimentally (Gholinia et al., 

2000) and theoretically (Humphreys et al., 1999). 
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2.5.1 Mechanism of Microstructural Evolution during ECAP  

 

 2.5.1(a) Grains Subdivision  

A very numerous increase in the HAGB area within a material is required to 

form a submicron grain structure. During ECAP at low temperature less than 0.5 

Tm, where Tm is a material melting temperature, new HAGB area can be created 

by two main mechanisms that operate simultaneously; (i) the extension of pre 

existing boundaries in proportion to the applied strain (Gill Sevillano et al., 1980) 

and (ii) the generation of new HAGBs formed by grains subdividing (Hughes 

and Hansen, 1997). The general principals of new HAGBs formed by grain 

subdivision using route BC are summarized bellow: 

 

• The first pass through the die divides the large grains into arrays of 

subgrains that are well delineated; these subgrains are elongated and lie 

in bands structure. The selected area electron diffraction (SAED) 

patterns consist of discrete diffraction spots showing that the grain 

boundaries have low angles of misorientation. 

 

•  A second pass through the die, following a rotation by 900 in the same 

sense between passes, leads to microstructure, where the subgrain 

structure has broken into an array of ultrafine grains .This breaking up of 

the subgrain bands is due primarily to the development of a second set 

of bands. SAED shows some spreading of the diffraction spots, so that 

the misorientations across the boundaries between neighboring grains 

have increased with increasing strain. 
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•  After three passes, there is no longer any evidence for the initial 

formation of the subgrain bands, the microstructure consists of an 

essentially equiaxed array of grains. The SAED patterns exhibit diffracted 

beams scattered around rings, this indicating that some of the grain 

boundaries have high angles of misorientation. 

•  After the forth passes, there is now an equiaxed array of grains on each 

of the three orthogonal planes of sectioning. There is no evidence for the 

earlier formation of subgrain bands, and the SAED patterns consist of 

rings of diffraction spots showing that the grain boundaries have high 

angle of misorientation on each plane of sectioning. (Nakashima et al., 

1998; Iwahashi et al., 1997; Iwahashi et al., 1998c). 

 

Segal, (1999) explained the effectiveness of producing an ultrafine grained 

structure by the intersection of shear bands. Two conditions to optimize the 

ECAP were improvement; (i) ECAP should provide uniform and intensive simple 

shear at each pass and (ii) develop of high angle grain boundaries during 

multipass processing. Condition (i) is performed using a die with Φ =900 and 

Ψ =00 under frictionless condition. During the first pass, coarse grains are 

subdivided by shear bands with a large portion of high angle grain boundaries. 

During the following passes new groups of shear bands are induced while the 

first pass groups remain stable and change their orientations thus defining 

various networks of high angle boundaries for different routes. 

 

For route A, as shown in Figure 2.5 the shear plane for the second pass 

is perpendicular to the shear plane at the first pass, and the shear bands 
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formed in the second pass intersects the workpiece axis at an angle of 450, 

while the shear bands created in the first pass changes orientation on angle of 

about 200 to the workpiece axis. Intersection of the first pass shear bands with 

the following passes groups subdivide the structure for subgrains elongated 

along the flow direction.  

With route C, the shear plane is retained at any pass. Beyond the first pass the 

shear bands boundaries are saturated by dislocations. During the following 

passes, for further strain accommodation, another mechanism including  

subdivision of shear bands for equiform subgrains and their progressive rotation  

(Nesterenko et al., 1997). 

With route BC, the shear plane orientation changed with the number of passes, 

as shown in Figure 2.6, intersection of these shear planes develop an 

approximate uniform network into the material. Therefore, an equiaxial and 

ultrafine structures with high angle grain boundaries are attained for rout BC with 

lowest number of passes. Thus, route BC is more effective than routes C and A, 

and it is more suitable for grain refinement (Segal, 1999). Other researchers 

Chakkingal et al., (1998); Shin et al., (2000) have studied the microstructure 

evolution, and they noticed that the misorientation between subgrains increases 

and some of these subgrains will become grains with HAGBs with increasing 

number of ECAP passes. 



 23

 

 

 

Fig. 2.5 Route A: billet orientations; (Segal, 1999).           

 

 
 

Fig. 2.6 Shear plane orientation after four passes, Φ =900 route BC (Segal, 
1999).                              .                                                  
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According to Iwahashi et al. (1998a) investigation, in route BC with a 900 

die angle, the shearing planes intersect at 1200. As a result of this duality in 

shearing directions, subgrain bands are developed on repetitive pressing along 

two separate and intersecting sets of planes, and this leads to a reasonably 

equiaxed array of high angle grain boundaries HAGBs. In route A, the shear 

planes intersect at an angle of 900 and route C keep the same orientation. 

Therefore it was inferred that route BC is the preferable procedure for use in 

ECAP experiments. Iwahashi et al. (1997) established that the effectiveness of 

producing fine grained structure is in the order of C>A, because route C permits 

the shear to build continuously on a single set of planes, whereas in route A the 

extent of shearing is divided equally between two sets of orthogonal planes.  

 

Prangnell et al. (2000) deformed an Al–3% Mg–0.2% Zr–0.2% Fe alloy 

using a die with Φ  angle 1200 with all four ECAP routes. They found that route 

A is the most effective route in producing grain refinement and HAGBs, 

because it does not produce redundant strain. In route BC, the next odd pass 

reverse the strain from the previous odd pass and the next even pass reverse 

the strain from the previous even pass, therefore route BC is less effective than 

route A in refining the grain size. While in route C the shear strain from the even 

pass reverse the strain from the previous odd pass, therefore creating 

redundant strain making it least effective in refining grains. Oh-Ishi et al. (1998) 

processed pure Al using a die with Φ =900 and they found that BC>BA. 

Furukawa et al. (1998) explain these experimental observations through 

studying the deformation of cubic workpieces processed with each ECAP 

routes. They inferred that the effectiveness of the routes is BC>C>A≈  BA 
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