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STARLIKENESS ASSOCIATED WITH PARABOLIC REGIONS

ROSIHAN M. ALI

ABSTRACT. A parabolic starlike function f of order p in the unit disk is char-
acterized by the fact that the quantity zf'(z)/f(z) lies in a given parabolic
region in the right-half plane. Denote the class of such functions by PS*(p).
This class is contained in the larger class of starlike functions of order p. Subor-
dination results for PS*(p) are established, which yield sharp growth, covering
and distortion theorems. Sharp bounds for the first four coefficients are also
obtained. There exist different extremal functions for these coefficient prob-
lems. Additionally, we obtain a sharp estimate for the Fekete-Szegt coefficient
functional, and investigate convolution properties for PS*(p).

1. INTRODUCTION

Let A denote the class of analytic functions f in the open unit disk U = {z :
|z] < 1} and normalized so that f(0) = f(0) — 1 = 0 In [4] Goodman introduced
the class UCV of uniformly convex functions consisting of convex functions f € A
with the property that for every circular arc v contained in U, with center also in
U, the image arc f(vy) is a convex arc. He derived a two-variable characterization
of functions in UCYV, that is, f € A belongs to UCV if and only if for every pair

(2,6) €U x U,

v1+§R{('z—c)Lfl,l—((g}20.

- Ma and Minda {7} and Rgnning [10] independently developed a one-variable char-

acterization that f € UCV if and only if for every 2 € U,

Zf"(z) Zf”(z)
) <m(”*ﬂu))

Rgnning [10] also showed that f € UCV if and only if the function zf' € PS*,

where PS* is the class of functions g € A satisfying

2g'(2) _ 29'(x)
o(2) 4<mgur €U

Several authors have studied the classes above, amongst which include the works

of [4,6,7,8,9, 10, 12].

In [9] the class PS* was generalized by looking at functions f € A satisfying

zf'(2) zf'(2)
f(Z) —1l<§R—-f—(—z—)——a, zeU.
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In this paper, we continue the investigation of this generalized class but under a
slight modification of parameter. For 0 < p < 1, let 2, be the parabolic region in
the right-half plane

Qp={w=u+iv:?<4(1-p)lu—p)} ={w:|lw-1<1-2+Rw}.

The class of parabolic starlike functions of order p is the subclass PS*(p) of A
consisting of functions f such that zf'(2)/f(z) € Q,, z € U. Thus f € PS*(p) if
and only if for z € U,

2F(2) 2f'(2)
E) @ @

_ Similarly, a function f € A belongs to UCV (p) if and only if for every pair (z,¢)
in the polydisk U x U,

—1|<1—2p+%

fll(z)
| e
A function f € UCV (p) is called an uniformly conver function of order p. Thus the

classes discussed earlier correspond to UCV = UCV () and PS* = PS*(}).In
[5] Lee showed that

1+§%{(z—-() }>2pf1.

geUCV(p) & f=2z¢ € PS*(p), | | (2)

ie.,

29" (2) 29"(2)

o) <2(1-p)+ R IOk

In the present paper, we continue the study of PS*(p) realized by Ali and Singh
[2], and more recently by Aghalary and Kulkarni {1}. We give examples of functions
in the class P.S*(p), and establish subordination results, which yield sharp growth,
covering and distortion theorems. Sharp bounds on the first four coefficients are also
obtained. There exist different extremal functions for these coefficient problems.
Additionally, we obtain a sharp estimate for the Fekete-Szegd coefficient functional,
and examine convolution properties for PS*(p).

geUCV(p) &

© 2. PRELIMINARY RESULTS

From its definition, it is clear that the class PS*(p) is contained in the class
S*(p) of starlike functions of order p, i.e., R(zf'(2)/f(z)) > p, z € U. It is also
fairly immediate that P.S*(p) is related to the class of strongly starlike functions,
where a function f € A is said to be strongly starlike of order @, 0 < @ < 1,if f
satisfies | Arg 2 f'(2)/f(2)| < mea/2, z € U. We state the relation in the theorem

below. ,
Theorem 1. If f € PS*(p), then f is strongly starlike of order v, where v =
tan~! 1—;-3. In other words, for z € U,

f'(2)
ATE =5

A sufficient condition for a function f to be parabolic starlike of order p is given
by the following:

e
—_— 2 .
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Theorem 2. If f € A satisfies
2f'(2)
f(z)

- 1’ <1-p,
then f € PS*(p).

Proof. The given condition implies that
p2fi(z) _|2f1(2)
f(2) f(2)

2f'(2)
Fi%)

—1l+1-2p>2(1—p)—2

-1|>0

The following two examples are now easily established from Theorem 2.
‘Ezample 1. The function f(z) = z + az™ € PS*(p) if and only if |a] < %—_—3
Ezample 2. The generalized hypergeometric function is defined by

. - (al) (G‘P)n, z"
F{a,, ,8p3 by, bq,z) 1+Zmn!, (b] #0,-1,---)
" where (M) is the Pochhammer symbol defined by
Wn =1 1, n=20
T AMA+FD)A+2)-(A+n—1); n=1,2,--

< 1- p, then zF € PS*(p).

n=1

If

ngz!

‘Ali and Singh [2] showed that the normalized Riemann mapping function g, from
U onto §}, is given by

4(1—/)) 1+\/;2 — n
gp(z) =1+ = [log =1+Zan.

1__\/2 n=1
Here
_16(-p) 160-0) 3 ,
Bi=—"g— ad B=—g Z2k+1’ (R=128,)

Since the latter sum is bounded above by 1 + £ log(2n — 1) (see [7}]), an upper
bound for each coefficient is given by

16(1 - p) 1 .
B, < . —"n—ﬂ_z—'— 1+§log(2n 1) .
However these bounds do not yield sharp coefficient estimates for the class PS*(p).
We shall return to the coefficient problem in the next section.
Let k € PS*(p) be defined by k(0) = k'(0) — 1 =0 and
2k'(z)
k(z) q (Z).
In [6], Ma and Minda established a general result that leads to the following result.
Theorem 3. [6] If f € PS*(p), then
() zf(zj)' < 1'7: 5 and a4 ﬂzﬂ:
() —k(-r) <|f) < k(r), l2f<r<,



4 ROSIHAN M. ALI

() |Arg 22| < maxyio, [Arg 22|, 1ol <7 <1,
@ K- SIf RN <K), 2l <7<l
Equality in (b), (c), and (d) holds for some z # 0 if and only if f is a rotation of
k. ,

Since the function k is continuous in U, —k(-1) = lim,,; —k(~7) and k(1) =
lim,_,; k(r) exist. Rgnning [9] established the following corollary.

Corollary 1. [9]

(a) Let f € PS*(p). Then either f is a rotation of k or f(U) D {w: Jw| <
—k(—1)}, where the Koebe constant is —k(—1) = e~(1~#)(1.25475)

(b) The functions in PS*(p) are uniformly bounded by the sharp constant k(1) =
£3-41023(1—p)

3. COEFFICIENT BOUNDS

We first give another sufficient condition for a function f to belbng to PS*(p).

Theorem 4. If f(z) = z+ Z an2" satisfies 2 (n—1)jan| < 322 =2, then f € PS*(p).

The constant —_3 cannot be replaced bya larger number.

o0
Proof. Let g(2) = f —S—ldf =z+ Z Enlz" In view of (2), it suffices to show that
=2
_ 9eUCV(p). Slnce

Zlanl_z p

n=2 ,D
it follows that

1+ R(z —- c)g"(z)‘ > 1 - Zmea(® = Dlanllz"

> lz—¢}>2p-1.
g'(2) 1= 30 laaliz[n—
Thus g € UCV (p). The function f(z) = z + 2—_%2 in Example 1 shows that the
constant —:ﬁ is the best posmble O

Let us next consider the problem of finding

A, = max |ay|.
" fePS‘(p)I ol

If f(z) = z+a22% + a3z’ - € PS*(p), and h(2) = zf'(2)/ f(2), then there exists
a Schwarz function w deﬁned in U with w(0) = 0, |Jw(z){ < 1, and sa.tlsfymg

(Z) v
h(z = q,(w(z 3
If h(z) =14 b1z + baz? + -- -, the first equa.lity in (3) implies that

n-—1

(n~1an = arba_t. (4)

k=1

. Since g, is univalent in U and h < g,, the function
1+ g, (h(2))

p(z) = —E—==

1-¢ (h(z))

=14cz+ecgz®+---
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belongs to the class P consisting of analytic functions p in the unit disk U with
positive real part such that p(0) =1 and Rp(z) > 0, z € U. In other words,

_ p(z) - 1
Mo = o (B55): ®)

While (4) gives a, in terms of the coeflicients b, (5) expresses the by ’s in terms of
the coeflicients ¢,, 's and B,, 's. It is now easily established that

_-n),
S [02 _ (é _ ﬂl.ﬂ_;fl) cg] | (6)

aq = §%1:2—p) [ca - (% - %TFT——Q) ccy + <425 2(17; ) + 32(17; p)z) c?]

Thus the coefficient estimates for PS*(p) may be viewed in terms of non-linear
coefficient problems for the class P. :

We now introduce the following functions in PS*(p). Define k,,,G,H € A re-
spectively by

Zkn(z) ne1 zH'(2) _ z2(z—r) 2G'(z) z2(z—71)
ka(2) =6 ’)’ H(z) S\ 5 ) G(z) = 1—rz }' Osr<t
It is clear from (3) that kn, G, H € PS*(p), and that k2(2) = k(2). Since
— 16(1 — p) oL,
kn(2) =2 + —————-(n — 1)'rr2z +oeey,
we find that

"= (n-1)n?’

On the other hand, Ali and Singh [2] proved that

(n - 1)An < 2v2(1 — p)e4(1"’)2,

which also yield the sharp order of growth |a,| =
It can also be deduced from a result of Ma and Mmda [6] the following solution

to the Fekete-Szegd coefficient functional over the class PS*(p). We shall omit the
details.

Theorem 5. Let f(2) = z + as2® + aaz® +--- € PS*(p). Then

16(120) [24(1 - p)(1 - 2t) +7%], t<}- g
2. 8 1— 2 a2
la'3 —ta2| < T £ ’ P 96(7;——/)) ;t < % + 96511——,05
10(120) [24(1 - p)(2t = 1) — 7 B, t2 5+ iy

Ifi WI_T <t<ji+g —6(1—_3, equahty holds if and only if f = k3 or one of its
rotations. If t < m ort> 3 + —EH—P, equality holds if and only if f = ks

or one of its rotatzons Ift= - mi?ﬁ’ equality holds if and only if f = H or one

of its rotations, while ift = 1 5+ —6—(1——-,;)-, then equality holds if and only if f = G or
one of its rotations.

—
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The above estimates can be used to determine sharp upper bounds on the second
and third coefficients respectively, which we shall state below. In addition, the
sharp bound on the fourth coefficient Ay is determined with the aid of the following
lemma.

Lemma 1. [3] Let p(2) = 14+ 02 ex2* € P IF0< < 1 and B(2B-1)<5< 8,
then ;
|03 —2Bcycp + 5c:1”| <2.
In particular,
Ica — 2Becic + ﬁcﬂ <2.
When # = 0, equality holds if and only if

1 4 ee~2mik/3,

3
p(2) =pa(2) = é)\kl—m; (lef =1, > 0),

with Ay + X+ A3 =1. Ifg =1, equality holds if and only if p is the reciprocal of
p3. If 0 < B < 1, equality holds if and only if : v

1+ez 1+ €28
= =1 = — =1].
pl)=7——, ld=1, or p(z) T ld=1

Theorem 6. Let f(2) = 2z + a2 + agz® + - -- € PS*(p). Then

16(1 — p)
w2

with equality if and only if f = k or its rotations. Further
8(1—p) (2 16g1—p)) <p<]_x
|03|S{ Bf__ (3+ T ’ O—~p2—1 48
J;fﬂ, 1-F <p<lL

For0<p<1- 2’—;—, equality holds if and only if f = k or its rotations. For

2

1- I—;— <p <1, equality holds if and only if f = ks or its rotations. If p=1— Z_
equality holds if and only if f = H or its rotations, Additionally,

16(1~p) |128(1~p)2 , 16(1—p 23 2 89
o< [ [ ) o, cry g (- B
T 1+5(1-/8) <p<1.
Equality holds in the upper expression of the right inequality ifand only if f = & .

“or its rotations, while equality holds in the lower expression of the right inequality
if and only if f = ks or its rotations. '

laz| <

Proof. In the light of Theorem 5, we are left to finding an estimate on the fourth
coefficient. The relation (6) gives '

_8(1-p) 1_121-p) 2 _2l-p) | 32(1-p)
a4 = 352 [03 - (-:; - o2 cicy + E - 72 + g, ) C?
- 81-p) ’
-— _3;2—_E.
We shall apply Lemma 1 with
_1 121~ p) _ 2 21-p)  32(1-p)2
S R e A ke
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The conditions on 8 and § are satisfied if

w2 89
1=/} <« .
1+16(1 45)_p<1

Thus |ay| < 16(1 ~ p) /372, with equality if and only if the function p in (5) is given
by p(z) = (1+€22) / (1 —€2®). This implies that f = k,.
In view of the fact that 0 < § < 1, and ¢ — 8 > 0 provided

w2 89
—_— — _ >
14 72 (1 45> > p,

Lemma 1 yields
1Bl < l63 —28c100 + Jcﬂ +2(6 - B)lercal
— )2 —
< 2+8(32(1 ) | 41-p) _g)

s w2 90
_o 1280 —p)*  16(1-p) 23
=2 ( md et 45/

. Equality holds if and only if the function pin (5) is given by p(z) = (1+ez)/ (1—e2),
i.e., f = k. This completes the proof. ]

Theorem 7. Let f(z) = 2 + a2z +ag2B + ... € PS*(p). For p € C and

Ap) =5+ 2000, gy

1

3 72

las — | < a2 | 24(1 - p)(1~2p) + 72|, M) — 1| > 1
PTHRRISA il ) —1] <1

Equality holds in the upper ezpression of the right inequality if f = k or its rotations,
while equality holds in the lower ezpression of the right inequality if f = ky or its
rotations.

Proof. From the relation (6), we get

4(17; p) [62 ) 62:,

2 _

The well-known estimate

1 1
-5 <2- olaf
leads to
A 1 -~ ~1)-1
m——%cf < 02—56% +L2)\(/0l|01|2 <2+ M%——lcﬂzy

which yields the desired result. O
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4, CONVOLUTION PROPERTIES

o0 [e2)
The convolution of f(z) = 5 an2z™ and g(z) = 3 b,2" is defined to be the
’ n=0 :

n=0
e o) .
function (f x g)(2) = 3. anbpz™ For a < 1, denote by R, the class of prestarlike

n=0 :
functions of order a consisting of f € A such that fx rl—_—jz—_w € Sx(c). Here S*(a)
is the class of starlike functions of order a. An important result in convolution is
contained in the following lemma of Ruscheweyh.

Lemma 2. [11, p. 54] If f € Ry, g € S*(a), and H is an analytic function in U,

then H
ff*g (U) c e H(U),

where €6 H(U) is the closed convez hull of H(U).
Theorem 8. If f € R, and g € PS*(p), then f * g € PS*(p).

Proof. Since g also belongs to S*(p) and H(z) = %’%l < g,(2), Lemma 2 yields

Afrg) o frag o fro® zg'
Fo =T =T es =L v)c,,
and hence, f * g € PS*(p). 0

Since R/, = S*(}) (see [11]), and Ry = C, where C is the class of convex
functions in A, a similar proof also yields the following result.

Corollary 2.

(a) If f,g € PS*(p) for p > 1/2, then f * g € PS*(p).
(b) If f € C and g € PS*(p), then fxg € PS*(p).
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