To appear in Int. Journal of Mathematical Eciencer (IJMMS)

STARLIKENESS ASSOCIATED WITH PARABOLIC REGIONS

ROSIHAN M. ALI

ABSTRACT. A parabolic starlike function f of order ρ in the unit disk is characterized by the fact that the quantity zf'(z)/f(z) lies in a given parabolic region in the right-half plane. Denote the class of such functions by $PS^*(\rho)$. This class is contained in the larger class of starlike functions of order ρ . Subordination results for $PS^*(\rho)$ are established, which yield sharp growth, covering and distortion theorems. Sharp bounds for the first four coefficients are also obtained. There exist different extremal functions for these coefficient problems. Additionally, we obtain a sharp estimate for the Fekete-Szegö coefficient functional, and investigate convolution properties for $PS^*(\rho)$.

1. Introduction

Let A denote the class of analytic functions f in the open unit disk $U = \{z : |z| < 1\}$ and normalized so that f(0) = f'(0) - 1 = 0 In [4] Goodman introduced the class UCV of uniformly convex functions consisting of convex functions $f \in A$ with the property that for every circular arc γ contained in U, with center also in U, the image arc $f(\gamma)$ is a convex arc. He derived a two-variable characterization of functions in UCV, that is, $f \in A$ belongs to UCV if and only if for every pair $(z, \varsigma) \in U \times U$,

$$1+\Re\left\{(z-\varsigma)\frac{f''(z)}{f'(z)}\right\}\geq 0.$$

Ma and Minda [7] and Rønning [10] independently developed a one-variable characterization that $f \in UCV$ if and only if for every $z \in U$,

$$\left|\frac{zf''(z)}{f'(z)}\right|<\Re\left(1+\frac{zf''(z)}{f'(z)}\right).$$

Rønning [10] also showed that $f \in UCV$ if and only if the function $zf' \in PS^*$, where PS^* is the class of functions $g \in A$ satisfying

$$\left|\frac{zg'(z)}{g(z)}-1\right|<\Re\frac{zg'(z)}{g(z)},\quad z\in U.$$

Several authors have studied the classes above, amongst which include the works of [4, 6, 7, 8, 9, 10, 12].

In [9] the class PS^* was generalized by looking at functions $f \in A$ satisfying

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < \Re \frac{zf'(z)}{f(z)} - \alpha, \quad z \in U.$$

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Univalent functions, parabolic starlike functions, subordination, coefficient bound, Fekete-Szegö coefficient functional, convolution.

In this paper, we continue the investigation of this generalized class but under a slight modification of parameter. For $0 \le \rho < 1$, let Ω_{ρ} be the parabolic region in the right-half plane

$$\Omega_{\rho} = \left\{ w = u + iv : v^2 < 4(1 - \rho)(u - \rho) \right\} = \left\{ w : |w - 1| < 1 - 2\rho + \Re w \right\}.$$

The class of parabolic starlike functions of order ρ is the subclass $PS^*(\rho)$ of A consisting of functions f such that $zf'(z)/f(z) \in \Omega_{\rho}$, $z \in U$. Thus $f \in PS^*(\rho)$ if and only if for $z \in U$,

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 - 2\rho + \Re \frac{zf'(z)}{f(z)}. \tag{1}$$

Similarly, a function $f \in A$ belongs to $UCV(\rho)$ if and only if for every pair (z, ς) in the polydisk $U \times U$,

$$1+\Re\left\{(z-\varsigma)\frac{f''(z)}{f'(z)}\right\} > 2\rho - 1.$$

A function $f \in UCV(\rho)$ is called an uniformly convex function of order ρ . Thus the classes discussed earlier correspond to $UCV = UCV\left(\frac{1}{2}\right)$ and $PS^* = PS^*\left(\frac{1}{2}\right)$. In [5] Lee showed that

$$g \in UCV(\rho) \quad \Leftrightarrow \quad f = zg' \in PS^*(\rho),$$
 (2)

i.e.,

$$g \in UCV(\rho) \quad \Leftrightarrow \quad \left| \frac{zg''(z)}{g'(z)} \right| < 2(1-\rho) + \Re \frac{zg''(z)}{g'(z)}.$$

In the present paper, we continue the study of $PS^*(\rho)$ realized by Ali and Singh [2], and more recently by Aghalary and Kulkarni [1]. We give examples of functions in the class $PS^*(\rho)$, and establish subordination results, which yield sharp growth, covering and distortion theorems. Sharp bounds on the first four coefficients are also obtained. There exist different extremal functions for these coefficient problems. Additionally, we obtain a sharp estimate for the Fekete-Szegö coefficient functional, and examine convolution properties for $PS^*(\rho)$.

2. Preliminary results

From its definition, it is clear that the class $PS^*(\rho)$ is contained in the class $S^*(\rho)$ of starlike functions of order ρ , i.e., $\Re(zf'(z)/f(z)) > \rho$, $z \in U$. It is also fairly immediate that $PS^*(\rho)$ is related to the class of strongly starlike functions, where a function $f \in A$ is said to be strongly starlike of order α , $0 < \alpha \le 1$, if f satisfies $|\operatorname{Arg} zf'(z)/f(z)| < \pi\alpha/2$, $z \in U$. We state the relation in the theorem below.

Theorem 1. If $f \in PS^*(\rho)$, then f is strongly starlike of order γ , where $\frac{\pi}{2}\gamma = \tan^{-1}\sqrt{\frac{1-\rho}{\rho}}$. In other words, for $z \in U$,

$$\left|\operatorname{Arg} \frac{zf'(z)}{f(z)}\right| \leq \frac{\pi\gamma}{2}.$$

A sufficient condition for a function f to be parabolic starlike of order ρ is given by the following:

Theorem 2. If $f \in A$ satisfies

$$\left|\frac{zf'(z)}{f(z)}-1\right|<1-\rho,$$

then $f \in PS^*(\rho)$.

Proof. The given condition implies that

$$\Re \frac{zf'(z)}{f(z)} - \left| \frac{zf'(z)}{f(z)} - 1 \right| + 1 - 2\rho \ge 2(1 - \rho) - 2\left| \frac{zf'(z)}{f(z)} - 1 \right| > 0.$$

The following two examples are now easily established from Theorem 2.

Example 1. The function $f(z) = z + \alpha z^n \in PS^*(\rho)$ if and only if $|\alpha| \leq \frac{1-\rho}{n-\rho}$

Example 2. The generalized hypergeometric function is defined by

$$F(a_1, \dots, a_p; b_1, \dots, b_q; z) = 1 + \sum_{n=1}^{\infty} \frac{(a_1)_n \dots (a_p)_n}{(b_1)_n \dots (b_q)_n} \frac{z^n}{n!}, \qquad (b_j \neq 0, -1, \dots)$$

where $(\lambda)_n$ is the Pochhammer symbol defined by

$$(\lambda)_n = \left\{ \begin{array}{c} 1, & n = 0 \\ \lambda(\lambda+1)(\lambda+2)\cdots(\lambda+n-1), & n = 1, 2, \cdots . \end{array} \right.$$

If
$$\left|\frac{zF'(z)}{F(z)}\right| < 1 - \rho$$
, then $zF \in PS^*(\rho)$.

Ali and Singh [2] showed that the normalized Riemann mapping function q_{ρ} from U onto Ω_{ρ} is given by

$$q_{\rho}(z) = 1 + \frac{4(1-\rho)}{\pi^2} \left[\log \frac{1+\sqrt{z}}{1-\sqrt{z}} \right]^2 = 1 + \sum_{n=1}^{\infty} B_n z^n.$$

Here

$$B_1 = \frac{16(1-\rho)}{\pi^2}$$
 and $B_n = \frac{16(1-\rho)}{n\pi^2} \sum_{k=0}^{n-1} \frac{1}{2k+1}$, $(n=2,3,\cdots)$.

Since the latter sum is bounded above by $1 + \frac{1}{2} \log(2n - 1)$, (see [7]), an upper bound for each coefficient is given by

$$B_n < \frac{16(1-\rho)}{n\pi^2} \left(1 + \frac{1}{2}\log(2n-1)\right).$$

However these bounds do not yield sharp coefficient estimates for the class $PS^*(\rho)$. We shall return to the coefficient problem in the next section.

Let $k \in PS^*(\rho)$ be defined by k(0) = k'(0) - 1 = 0 and

$$\frac{zk'(z)}{k(z)} = q_{\rho}(z).$$

In [6], Ma and Minda established a general result that leads to the following result.

(a)
$$\frac{zf'(z)}{f(z)} \prec \frac{zk'(z)}{k(z)}$$
 and $\frac{f(z)}{z} \prec \frac{k(z)}{z}$,
(b) $-k(-r) < |f(z)| < k(r)$, $|z| < r < 1$,

(b)
$$-k(-r) \le |f(z)| \le k(r), |z| \le r < 1,$$

(c) $\left| \operatorname{Arg} \frac{f(z)}{z} \right| \le \max_{|z|=r} \left| \operatorname{Arg} \frac{k(z)}{z} \right|, \quad |z| \le r < 1,$ (d) $k'(-r) \le |f'(z)| \le k'(r), |z| \le r < 1.$

Equality in (b), (c), and (d) holds for some $z \neq 0$ if and only if f is a rotation of

Since the function k is continuous in \overline{U} , $-k(-1) = \lim_{r \to 1} -k(-r)$ and k(1) = $\lim_{r\to 1} k(r)$ exist. Rønning [9] established the following corollary.

Corollary 1. [9]

- (a) Let $f \in PS^*(\rho)$. Then either f is a rotation of k or $f(U) \supset \{w : |w| \leq$ -k(-1), where the Koebe constant is $-k(-1) = e^{-(1-\rho)(1.25475)}$.
- (b) The functions in $PS^*(\rho)$ are uniformly bounded by the sharp constant k(1) = $e^{3.41023(1-\rho)}$.

3. Coefficient bounds

We first give another sufficient condition for a function f to belong to $PS^*(\rho)$.

Theorem 4. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ satisfies $\sum_{n=2}^{\infty} (n-1)|a_n| \leq \frac{1-\rho}{2-\rho}$, then $f \in PS^*(\rho)$. The constant $\frac{1-\rho}{2-\rho}$ cannot be replaced by a larger number.

Proof. Let $g(z) = \int_{0}^{z} \frac{f(\xi)}{\xi} d\xi = z + \sum_{n=2}^{\infty} \frac{a_n}{n} z^n$. In view of (2), it suffices to show that $g \in UCV(\rho)$. Since

$$\sum_{n=2}^{\infty} |a_n| \le \frac{1-\rho}{2-\rho},$$

it follows that

$$1+\Re(z-\varsigma)\frac{g''(z)}{g'(z)}\geq 1-\frac{\sum_{n=2}^{\infty}(n-1)|a_n||z|^{n-2}}{1-\sum_{n=2}^{\infty}|a_n||z|^{n-1}}|z-\varsigma|\geq 2\rho-1.$$

Thus $g \in UCV(\rho)$. The function $f(z) = z + \frac{1-\rho}{2-\rho}z^2$ in Example 1 shows that the constant $\frac{1-\rho}{2-\rho}$ is the best possible.

Let us next consider the problem of finding

$$A_n = \max_{f \in PS^*(\rho)} |a_n|.$$

If $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \in PS^*(\rho)$, and h(z) = zf'(z)/f(z), then there exists a Schwarz function w defined in U with w(0) = 0, |w(z)| < 1, and satisfying

$$h(z) = \frac{zf'(z)}{f(z)} = q_{\rho}(w(z)). \tag{3}$$

If $h(z) = 1 + b_1 z + b_2 z^2 + \cdots$, the first equality in (3) implies that

$$(n-1)a_n = \sum_{k=1}^{n-1} a_k b_{n-k}.$$
 (4)

Since q_{ρ} is univalent in U and $h \prec q_{\rho}$, the function

$$p(z) = rac{1 + q_{
ho}^{-1}(h(z))}{1 - q_{
ho}^{-1}(h(z))} = 1 + c_1 z + c_2 z^2 + \cdots$$

belongs to the class P consisting of analytic functions p in the unit disk U with positive real part such that p(0) = 1 and $\Re p(z) > 0$, $z \in U$. In other words,

$$h(z) = q_{\rho} \left(\frac{p(z) - 1}{p(z) + 1} \right). \tag{5}$$

While (4) gives a_n in terms of the coefficients b_k , (5) expresses the b_k 's in terms of the coefficients c_m 's and B_m 's. It is now easily established that

$$a_{2} = \frac{8(1-\rho)}{\pi^{2}}c_{1}$$

$$a_{3} = \frac{8(1-\rho)}{2\pi^{2}} \left[c_{2} - \left(\frac{1}{6} - \frac{8(1-\rho)}{\pi^{2}}\right)c_{1}^{2}\right]$$

$$a_{4} = \frac{8(1-\rho)}{3\pi^{2}} \left[c_{3} - \left(\frac{1}{3} - \frac{12(1-\rho)}{\pi^{2}}\right)c_{1}c_{2} + \left(\frac{2}{45} - \frac{2(1-\rho)}{\pi^{2}} + \frac{32(1-\rho)^{2}}{\pi^{4}}\right)c_{1}^{3}\right]$$

$$(6)$$

Thus the coefficient estimates for $PS^*(\rho)$ may be viewed in terms of non-linear coefficient problems for the class P.

We now introduce the following functions in $PS^*(\rho)$. Define $k_n, G, H \in A$ respectively by

$$\frac{zk_n'(z)}{k_n(z)} = q_{\rho}(z^{n-1}), \quad \frac{zH'(z)}{H(z)} = q_{\rho}\left(\frac{z(z-r)}{1-rz}\right), \quad \frac{zG'(z)}{G(z)} = q_{\rho}\left(-\frac{z(z-r)}{1-rz}\right), \quad 0 \le r \le 1.$$

It is clear from (3) that $k_n, G, H \in PS^*(\rho)$, and that $k_2(z) = k(z)$. Since

$$k_n(z) = z + \frac{16(1-\rho)}{(n-1)\pi^2}z^n + \cdots,$$

we find that

$$A_n \ge \frac{16(1-\rho)}{(n-1)\pi^2}.$$

On the other hand, Ali and Singh [2] proved that

$$(n-1)A_n < 2\sqrt{2}(1-\rho)e^{4(1-\rho)^2}$$

which also yield the sharp order of growth $|a_n| = O\left(\frac{1}{n}\right)$.

It can also be deduced from a result of Ma and Minda [6] the following solution to the Fekete-Szegö coefficient functional over the class $PS^*(\rho)$. We shall omit the details.

Theorem 5. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \in PS^*(\rho)$. Then

$$\left|a_3-ta_2^2\right| \leq \left\{ \begin{array}{ll} \frac{16(1-\rho)}{3\pi^4} \left[24(1-\rho)(1-2t)+\pi^2\right], & t \leq \frac{1}{2} - \frac{\pi^2}{96(1-\rho)} \\ \frac{8(1-\rho)}{\pi^2}, & \frac{1}{2} - \frac{\pi^2}{96(1-\rho)} \leq t \leq \frac{1}{2} + \frac{5\pi^2}{96(1-\rho)} \\ \frac{16(1-\rho)}{3\pi^4} \left[24(1-\rho)(2t-1) - \pi^2\right], & t \geq \frac{1}{2} + \frac{5\pi^2}{96(1-\rho)} \end{array} \right.$$

If $\frac{1}{2} - \frac{\pi^2}{96(1-\rho)} < t < \frac{1}{2} + \frac{5\pi^2}{96(1-\rho)}$, equality holds if and only if $f = k_3$ or one of its rotations. If $t < \frac{1}{2} - \frac{\pi^2}{96(1-\rho)}$ or $t > \frac{1}{2} + \frac{5\pi^2}{96(1-\rho)}$, equality holds if and only if $f = k_2$ or one of its rotations. If $t = \frac{1}{2} - \frac{\pi^2}{96(1-\rho)}$, equality holds if and only if f = H or one of its rotations, while if $t = \frac{1}{2} + \frac{5\pi^2}{96(1-\rho)}$, then equality holds if and only if f = G or one of its rotations.

The above estimates can be used to determine sharp upper bounds on the second and third coefficients respectively, which we shall state below. In addition, the sharp bound on the fourth coefficient A_4 is determined with the aid of the following lemma.

Lemma 1. [3] Let $p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k \in P$. If $0 \le \beta \le 1$ and $\beta(2\beta - 1) \le \delta \le \beta$, then

$$|c_3 - 2\beta c_1 c_2 + \delta c_1^3| \le 2.$$

In particular,

$$\left| c_3 - 2\beta c_1 c_2 + \beta c_1^3 \right| \le 2.$$

When $\beta = 0$, equality holds if and only if

$$p(z) := p_3(z) = \sum_{k=1}^3 \lambda_k \frac{1 + \epsilon e^{-2\pi i k/3} z}{1 - \epsilon e^{-2\pi i k/3} z}, \quad (|\epsilon| = 1, \lambda_k \ge 0),$$

with $\lambda_1 + \lambda_2 + \lambda_3 = 1$. If $\beta = 1$, equality holds if and only if p is the reciprocal of p_3 . If $0 < \beta < 1$, equality holds if and only if

$$p(z) = \frac{1+\epsilon z}{1-\epsilon z}, \quad |\epsilon| = 1, \quad or \quad p(z) = \frac{1+\epsilon z^3}{1-\epsilon z^3}, \quad |\epsilon| = 1.$$

Theorem 6. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \in PS^*(\rho)$. Then

$$|a_2| \leq \frac{16(1-\rho)}{\pi^2},$$

with equality if and only if f = k or its rotations. Further

$$|a_3| \le \begin{cases} \frac{8(1-\rho)}{\pi^2} \left(\frac{2}{3} + \frac{16(1-\rho)}{\pi^2} \right), & 0 \le \rho \le 1 - \frac{\pi^2}{48} \\ \frac{8(1-\rho)}{\pi^2}, & 1 - \frac{\pi^2}{48} \le \rho < 1. \end{cases}$$

For $0 \le \rho < 1 - \frac{\pi^2}{48}$, equality holds if and only if f = k or its rotations. For $1 - \frac{\pi^2}{48} < \rho < 1$, equality holds if and only if $f = k_3$ or its rotations. If $\rho = 1 - \frac{\pi^2}{48}$, equality holds if and only if f = H or its rotations. Additionally,

$$|a_4| \le \begin{cases} \frac{16(1-\rho)}{3\pi^2} \left[\frac{128(1-\rho)^2}{\pi^4} + \frac{16(1-\rho)}{\pi^2} + \frac{23}{45} \right], & 0 \le \rho \le 1 + \frac{\pi^2}{16} \left(1 - \sqrt{\frac{89}{45}} \right) \\ \frac{16(1-\rho)}{3\pi^2}, & 1 + \frac{\pi^2}{16} \left(1 - \sqrt{\frac{89}{45}} \right) \le \rho < 1. \end{cases}$$

Equality holds in the upper expression of the right inequality if and only if f = k or its rotations, while equality holds in the lower expression of the right inequality if and only if $f = k_4$ or its rotations.

Proof. In the light of Theorem 5, we are left to finding an estimate on the fourth coefficient. The relation (6) gives

$$a_4 = \frac{8(1-\rho)}{3\pi^2} \left[c_3 - \left(\frac{1}{3} - \frac{12(1-\rho)}{\pi^2} \right) c_1 c_2 + \left(\frac{2}{45} - \frac{2(1-\rho)}{\pi^2} + \frac{32(1-\rho)^2}{\pi^4} \right) c_1^3 \right]$$

$$:= \frac{8(1-\rho)}{3\pi^2} E.$$

We shall apply Lemma 1 with

$$2\beta = \frac{1}{3} - \frac{12(1-\rho)}{\pi^2}$$
 and $\delta = \frac{2}{45} - \frac{2(1-\rho)}{\pi^2} + \frac{32(1-\rho)^2}{\pi^4}$.

The conditions on β and δ are satisfied if

$$1 + \frac{\pi^2}{16} \left(1 - \sqrt{\frac{89}{45}} \right) \le \rho < 1.$$

Thus $|a_4| \leq 16(1-\rho)/3\pi^2$, with equality if and only if the function p in (5) is given by $p(z) = \left(1 + \epsilon z^3\right)/\left(1 - \epsilon z^3\right)$. This implies that $f = k_4$. In view of the fact that $0 < \delta < 1$, and $\delta - \beta \geq 0$ provided

$$1+\frac{\pi^2}{16}\left(1-\sqrt{\frac{89}{45}}\right)\geq \rho,$$

Lemma 1 yields

$$|E| \le |c_3 - 2\delta c_1 c_2 + \delta c_1^3| + 2(\delta - \beta)|c_1 c_2|$$

$$\le 2 + 8\left(\frac{32(1 - \rho)^2}{\pi^4} + \frac{4(1 - \rho)}{\pi^2} - \frac{11}{90}\right)$$

$$= 2\left(\frac{128(1 - \rho)^2}{\pi^4} + \frac{16(1 - \rho)}{\pi^2} + \frac{23}{45}\right).$$

Equality holds if and only if the function p in (5) is given by $p(z) = (1+\epsilon z)/(1-\epsilon z)$, i.e., f = k. This completes the proof.

Theorem 7. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \in PS^*(\rho)$. For $\mu \in C$ and

$$\lambda(\mu) = \frac{1}{3} + \frac{16(1-\rho)}{\pi^2}(2\mu - 1),$$

$$\left|a_3 - \mu a_2^2\right| \leq \begin{cases} \frac{16(1-\rho)}{3\pi^4} \left| 24(1-\rho)(1-2\mu) + \pi^2 \right|, & |\lambda(\mu) - 1| \geq 1\\ \frac{8(1-\rho)}{\pi^2}, & |\lambda(\mu) - 1| \leq 1 \end{cases}$$

Equality holds in the upper expression of the right inequality if f = k or its rotations, while equality holds in the lower expression of the right inequality if $f = k_3$ or its rotations.

Proof. From the relation (6), we get

$$a_3 - \mu a_2^2 = \frac{4(1-\rho)}{\pi^2} \left[c_2 - \frac{\lambda(\mu)}{2} c_1^2 \right]$$

The well-known estimate

$$\left|c_2 - \frac{1}{2}c_1^2\right| \le 2 - \frac{1}{2}|c_1|^2$$

leads to

$$\left|c_2 - \frac{\lambda(\mu)}{2}c_1^2\right| \leq \left|c_2 - \frac{1}{2}c_1^2\right| + \frac{|1 - \lambda(\mu)|}{2}\left|c_1\right|^2 \leq 2 + \frac{|\lambda(\mu) - 1| - 1}{2}|c_1|^2,$$

which yields the desired result.

4. Convolution Properties

The convolution of $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ is defined to be the function $(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n$. For $\alpha < 1$, denote by R_{α} the class of prestarlike functions of order α consisting of $f \in A$ such that $f * \frac{z}{(1-z)^{2-2\alpha}} \in S*(\alpha)$. Here $S*(\alpha)$ is the class of starlike functions of order α . An important result in convolution is contained in the following lemma of Ruschewevh.

Lemma 2. [11, p. 54] If $f \in R_{\alpha}$, $g \in S^*(\alpha)$, and H is an analytic function in U,

 $\frac{f * gH}{f * g}(U) \subset \overline{co} H(U),$

where $\overline{co} H(U)$ is the closed convex hull of H(U).

Theorem 8. If $f \in R_{\rho}$ and $g \in PS^*(\rho)$, then $f * g \in PS^*(\rho)$.

Proof. Since g also belongs to $S^*(\rho)$ and $H(z) = \frac{zg'(z)}{g(z)} \prec q_{\rho}(z)$, Lemma 2 yields

$$\frac{z(f\ast g)'}{f\ast g}(U) = \frac{f\ast zg'}{f\ast g}(U) = \frac{f\ast g\frac{zg'}{g}}{f\ast g}(U) \subset \overline{co}\frac{zg'}{g}(U) \subset \overline{\Omega}_{\rho},$$

and hence, $f * g \in PS^*(\rho)$.

Since $R_{1/2} = S^*(\frac{1}{2})$ (see [11]), and $R_0 = C$, where C is the class of convex functions in A, a similar proof also yields the following result.

Corollary 2.

- (a) If f, g ∈ PS*(ρ) for ρ ≥ 1/2, then f * g ∈ PS*(ρ).
 (b) If f ∈ C and g ∈ PS*(ρ), then f * g ∈ PS*(ρ).

Acknowledgment. This research was supported by a Universiti Sains Malaysia Fundamental Research Grant. The author is greatly indebted to Prof. V. Ravichandran for his helpful comments in the preparation of this paper.

REFERENCES

- [1] R. Aghalary and S. R. Kulkarni, Certain properties of parabolic starlike and convex functions of order ρ, Bull. Malays. Math. Sci. Soc. 26 (2003), 153-162.
- R. M. Ali and V. Singh, Coefficients of parabolic starlike functions of order ρ , Comp. Methods Function Theory, World Scientific (1995), 23-36.
- [3] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. 26 (2003), 63-71.
- A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.
- S. K. Lee, Characterizations of parabolic starlike functions and the generalized uniformly convex functions (in Bahasa Malaysia), M.Sc. Thesis, Universiti Sains Malaysia (2000).
- W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proc. Conf. on Complex Analysis, Tianjin (1992), 157-169.
- W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math 57 (1992), 165-175.
- [8] W. Ma and D. Minda, Uniformly convex functions II, Ann. Polon. Math 58 (1993), 275-285.
- [9] F. Rønning, On starlike functions associated with parabolic regions, Ann. Univ. M. Curie-Sklodowska Sect. A 45 (1991), 117-122.
- [10] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196.

- [11] St. Ruscheweyh, Convolutions in geometric function theory, Sém. Math. Sup. 83, Presses Univ. de Montréal, Montréal, 1982.
- [12] T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, Comp. Methods Function Theory, World Scientific (1995), 319-324.

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

E-mail address: rosihan@cs.usm.my