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KAJIAN KE ATAS FORMULASI DAN SIFAT-SIFAT MEKANIK 
DAN DINAMIK BAGI ADUNAN GETAH ASLI/GETAH 

KLOROPRENA UNTUK APLIKASI BUSH GETAH 
 
 
 

ABSTRAK 
 

 

          Suatu kajian sistematik, berasaskan formulasi-formulasi adunan getah asli dan 

getah kloroprena (NR/CR), telah dijalankan untuk mendapatkan satu formulasi yang 

sesuai untuk bush getah. Kedua-dua sifat-sifat statik dan dinamik telah diambilkira. 

Sifat-sifat penting yang diambilkira untuk aplikasi bush getah ialah set mampatan yang 

baik, rintangan penuaan yang baik, dan pemencilan getaran yang baik dengan 

transmisibiliti yang rendah. Sebatian permulaan yang digunakan adalah satu formulasi 

100% getah asli biasa yang digunakan untuk galas getaran. 

  

 Berdasarkan Formulasi 1, kajian ke atas sebatian dan vulkanisat gam 100% 

NR, 100% CR dan adunan NR/CR pada nisbah 65/35, 70/30, 75/25, 80/20 dan 85/15 

telah dijalankan. Kadar pematangan bagi 100%CR didapati perlahan berbanding 

dengan 100%NR, dan mempamerkan kekerasan, kekuatan tensil yang rendah dan set 

mampatan yang tinggi. Ciri-ciri pematangan yang lebih baik telah diperhatikan pada 

adunan NR/CR dan amaun NR yang tinggi memberikan resilien, kekuatan tensil, M300 

dan set mampatan yang lebih baik.    

  

Sebatian berpengisi dan vulkanisat berpengisi 100% NR, 100% CR dan adunan 

NR/CR telah dikaji berdasarkan Formulasi 2 iaitu dengan penambahan 40 bsg pengisi 

hitam karbon dan 5 bsg minyak pemprosesan ke dalam Formulasi 1. Penambahan hitam 

karbon mengurangkan masa pemvulkanan dan peningkatan amaun NR meningkatkan 



 xx

kekuatan tensil dan modulus 300 manakala set mampatan dan rintangan penuaan adalah 

lebih baik dengan amaun CR yang lebih tinggi. Berdasarkan kepada sifat-sifat 

keseluruhan kekuatan tensil, resilien, set mampatan dan rintangan penuaan, adunan 

NR/CR pada nisbah 75/25 telah dipilih untuk kajian seterusnya dengan 

mempelbagaikan beban hitam karbon pada 0, 10, 20, 30, 40, 50, 60, 70 dan 80 bsg. 

Peningkatan amaun karbon meningkatkan keeffisienan pemvulkanan dan kekerasan, 

dan menurunkan resilien dan pemanjangan pada takat putus. Kekuatan tensil melepasi 

takat maksimum yang nyata dengan peningkatan beban hitam karbon dan mencapai 

takat optima pada 40 bsg hitam karbon. 

 

Formulasi 3 telah dihasilkan daripada Formulasi 2, dengan kehadiran pencepat 

istimewa Rhenogran ETU-80. Amaun hitam karbon telah ditingkatkan di dalam 

Formulasi 3 berbanding dengan Formulasi 2 dengan sewajarnya dan kekerasan yang 

dikehendaki pada 50, 60, 70 dan 80 Shore A dicapai dengan menambahkan minyak. 

Kekuatan tensil, pemanjangan pada takat putus, histerisis, set mampatan dan rintangan 

penuaan yang lebih baik telah diperolehi dengan Formulasi 3 berbanding dengan 

Formulasi 2 disebabkan oleh kehadiran ETU yang memberikan lebih rantaian yang 

kekal semasa pemvulkanan.  

 

Bush-bush getah telah dibuat berdasarkan Formulasi 2 dan Formulasi 3 pada 

kekerasan 70 Shore A, dan sifat-sifat statik dan dinamik telah ditentukan. Ujian 

mampatan axial dan radial menunjukkan bahawa bush berdasarkan Formulasi 3 

memerlukan daya yang lebih pada canggaan yang tinggi dan memberikan ikatan getah 

kepada logam yang lebih baik daripada Formulasi 2. Ujian dinamik telah dijalankan 

pada arah radial 10 000 putaran. Keputusan menunjukkan bahawa bush berdasarkan 



 xxi

Formulasi 3 memberikan darjah pemencilan yang tinggi dan transmisibiliti yang lebih 

rendah (pemindahan getaran yang lebih rendah)berbanding dengan Formulasi 2. 

 

Boleh disimpulkan bahawa satu formulasi yang sesuai telah berjaya dihasilkan 

untuk galas bush yang memberikan keseimbangan yang baik secara keseluruhan dari 

segi sifat-sifat mekanik, set mampatan, dan rintangan penuaan dengan ciri-ciri 

pemencilan dan transmisibiliti yang baik.  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xxii

STUDIES ON THE FORMULATION AND MECHANICAL AND 
DYNAMIC PROPERTIES OF NATURAL RUBBER/ 

CHLOROPRENE RUBBER BLEND FOR RUBBER BUSHING 
APPLICATION 

 
 
 

ABSTRACT 

 

A systematic investigation, based on natural rubber and chloroprene rubber 

(NR/CR) blend formulations, were carried out to develop a suitable formulation for 

rubber bushing. Both static properties and dynamic properties were considered. The 

important properties considered for rubber bushing application were good compression 

set, good ageing resistance and good vibration isolation with low transmissibility. The 

starting and reference compound used is a typical 100% NR formulation used for 

vibration mounting. 

  

Based on Formulation 1, the investigation of gum vulcanizates of 100% NR, 

100% CR and NR/CR blends of 65/35, 70/30, 75/25, 80/20 and 85/15 by ratio were 

carried out. The cure rate of 100%CR is slower than 100% NR and displays low 

hardness, tensile strength and high compression set. Better cure characteristic was 

observed for the NR/CR blends and higher amount of NR gaves better resilience, 

tensile strength, M300 and compression set. 

  

 Filled vulcanizates of 100% NR, 100% CR and NR/CR blends were 

investigated based on Formulation 2 i.e. by adding 40 phr of carbon black filler and 5 

phr of processing oil into Formulation 1. Addition of filler reduces the vulcanization 

time and higher amount of NR increases the tensile strength and modulus 300 while the 



 xxiii

compression set and ageing resistance are better with higher amount of CR. Based on 

the overall properties of tensile strength, resilience, compression set and ageing 

resistance, the blend of NR/CR at 75/25 ratio was chosen for a subsequent study by 

varying the carbon black loading at 0, 10, 20, 30, 40, 50, 60, 70 and 80 phr. Increased 

in amount of carbon black increases the efficiency of vulcanization and hardness, and 

decreases the resilience and elongation at break. Tensile strength value passes through a 

definite maximum with the increased in carbon black loading and the optimum was 

achieved at 40 phr of carbon black. 

 

 Formulation 3 was developed from Formulation 2, with the presence of special 

accelerator Rhenogran ETU-80. The amount of carbon black was increased in 

Formulation 3 compared to Formulation 2 accordingly and the required hardness of 50, 

60, 70 and 80 Shore A were achieved by adding processing oil. Better tensile strength, 

elongation at break, hysteresis, compression set and ageing resistance were obtained 

with Formulation 3 compared to Formulation 2 due to presence of ETU which gives 

more permanent linkages during vulcanization.   

 

 Rubber bushings were made based on Formulation 2 and Formulation 3 at 

hardness of 70 Shore A, and the static and dynamic properties were determined. Axial 

and radial compression tests showed that bushing based on Formulation 3 requires 

more force at high deflection, and give better rubber to metal bonding than Formulation 

2. Dynamic test was carried out at radial direction for about 10 000 cycles. The results 

shows that bushing based on Formulation 3 gives higher isolation degree and lower 

transmissibility (lower transmission of vibration) compared to Formulation 2.  

 



 xxiv

It can be concluded that a suitable formulation was successfully developed for 

bush mounting that gives an overall good balance in terms of mechanical properties, 

compression set, and ageing resistance with good isolation and transmissibility 

characteristics. 
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CHAPTER 1: INTRODUCTION 

 

1.1 BACKGROUND OF STUDIES 

 

In the study presented, rubber formulations for bush mounting (as shown in 

Figure 1.1) application by considering the mechanical and dynamic properties were 

developed. One of the major concerns of bush mounting is the dynamic application 

where it involves vibration isolation and dynamic stress. The damping causes the 

rubber part to develop heat internally. In an extreme case the part is destroyed by 

overheating and heat aging. To a greater or lesser degree this kind of stress also 

causes irreversible deformation, i.e., viscous flow of the rubber. The consequent 

fatique suffered by the polymer network also causes crack formation and failure. A 

rubber part that is repeatedly elongated or flexed is exposed simultaneously to 

ozone. This, too, may lead to crack formation and destruction. Dynamic stressing of 

the interface or interfaces between rubber and a reinforcing material – metal, may 

destroy the adhesion, causing the part to fail (Rohde, 2001). In this project, natural 

rubber - polychloroprene rubber blends system were chosen to fulfill the above 

mentioned requirement.  

 

 
Figure 1.1: Rubber bushing 
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Natural rubber is a versatile and adaptable material which has been used  

successfully in engineering applications for 150 years, and remain the pre-eminent 

elastomer for springs and mountings. Natural rubber is a general purpose elastomer 

whose vulcanizates have a wide range of applications when suitably formulated. 

Natural rubber was chosen because it occupies a similar position with regard to rubber 

springs as spring steel does with metal springs (Lindley, 1984). Spring is one of the 

element of a vibratory system. The vibratory system can be idealized as a) mass, b) 

spring, c) damper and d) excitation as shown in Figure 1.2. The spring possesses 

elasticity, and under deformation, the work done is transformed into potential energy 

i.e. the strain energy stored in the spring. Vibration deals mainly with mechanical 

oscillatory motion of a dynamic system. Generally unwanted vibration in a machine 

may cause the loosening of parts and leads to failure. However, for vibrators, they are 

design to enhance vibration. Most frequently rubbery materials are used to control and 

mitigate the unwanted level of vibration and shock (Kamarul, 2000). 

 

 

 

    Spring     Damper 

 

       
 Static equilibrium        Mass               Excitation force     
 position    0    
     
   Displacement   

 

Figure 1.2: Elements of a vibratory system 
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 Major areas of application which employ its outstanding physical properties are 

in vehicles, tyres, offshore and aerospace industries, civil engineering, and railways. 

The major advantage of natural rubber which makes it dominant in many dynamic 

applications, is its dynamic performance and the ability of rubber to carry a high load 

under compression, yet function at high strains and low stiffness compared to metals 

(Roberts, 1988). It has a low level of damping, and its properties remain fairly constant 

over the range 1 to 200 Hz, and show only slight increase to 1000Hz. Often, however, 

there are advantages in blending natural rubber with special elastomer because it 

enables one to confer special properties on the vulcanizates. A blend of chloroprene 

rubber in less than 40% is preferred due to consideration of good ozone, weathering, 

aging and oil resistance of the vulcanizates. It ought also to increase the degree of fire 

resistance (Matenar, 2001). 

 

Natural rubber outstanding success as a spring rubber is due to the following 

characteristics: 

• Excellent dynamic properties with low hysteresis loss. 

• Excellent resistance to fatique, cut growth and tearing. 

• High resilience. 

• Low heat build-up. 

• Very efficient bonding to both metals and other reinforcing materials. 

• Low cost and ease of manufacture. 

• A wider range of operating temperature than most other rubbers. 
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Changes can occur in a rubber component as a result of the conditions under 

which it is stored or used. Most mechanical properties of rubbers are temperature 

dependent, but the changes are completely reversible provided that no chemical effects 

have occurred. Natural rubber is prone to degradation by oxygen at high temperatures; 

further vulcanization may also occur, resulting in increased hardness and decreased 

mechanical strength. The attack of oxygen proceed only slowly with natural rubber at 

normal atmospheric temperature, but the rate increases with temperature. In poorly 

protected vulcanizates, oxidation leads to increased long-term creep and stress 

relaxation, and to a general deterioration in mechanical properties. If unprotected 

natural rubber vulcanizates are subjected to tensile deformation, the concentration of 

ozone in the atmosphere at ground level (typically about 1 part per hundred million of 

air) is sufficient to cause surface cracking within a few weeks (Lindley, 1984).  

  

 Chloroprene rubber is a polar polymer with improved resistance to attack by 

non-polar oils and solvents. It has high toughness, good fire resistance, good 

weatherability and is easily bonded to metals. Polychloroprene is widely used for 

rubber goods subjected to dynamic stressing, for example; damping elements and 

spring components for motor vehicles and machinery, V-belts and timing belts, 

bellows, joint protection boots especially axle boots and conveyor belts (Rohde, 2001).  

Polychloroprene rubber with mercaptan modified general purpose grade has a medium 

rate of crystallization and Mooney viscosity [ML(1+4)@100C = 45 – 53]. It provides a 

good resistance to heat, oil and weather and it has an excellent storage stability. 

Mooney scorch and cure rate are quite stable during the storage of raw rubber. Its 

compounds band well and quickly on mixing mills, and fillers and oil can be 
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incorporated into it rapidly in an internal mixer (Musch, 2001). The structure of the 

polychloroprene is such that it is intrinsically highly resistant to ozone (Rohde, 2001).   

 

Thus, blending of natural rubber with a suitable rubber such as chloroprene 

rubber at certain ratio is preferable to increase the resistance to environment and heat 

aging to achieve better static and dynamic properties of a bush mounting.  

 

1.2 PROBLEM STATEMENT 

 

According to Lindley (1973), the main requirement of most rubber engineering 

components is that their load-deformation behaviour should remain within the specified 

limits for a specified period of time. For mountings more relevant properties are 

stiffness, resilience, and resistance to creep. Other important parameters are fatique 

resistance, low compression set and a minimal dependence of properties on strain 

amplitude, frequency of deformation and temperature. Many engineering components 

must be serviceable for over 30 years and therefore resistance to ageing is also a major 

consideration (Roberts, 1988). By considering the good dynamic properties for bush 

mounting (low compression set, lower natural frequency, high frequency ratio, high 

vibration isolation and lower transmissibility) a formulation with blend of natural 

rubber and chloroprene rubber will be studied. Natural rubber is the best rubber for 

superior dynamic properties except poor environmental resistance with respect to poor 

heat ageing resistance and is prone to degradation to oxygen and ozone attack. Pure 

natural rubber based rubber bushing can easily form cracks due to heat ageing, oxygen 

and ozone attack during the dynamic application.  Polychloroprene rubber has a very 

good resistance to heat and ozone.  
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For dynamic application parts such as bush mounting, it is very important to 

have a good resistance to dynamic stressing as mentioned earlier. Provided that 

vulcanizates of equal hardness are compared, investigation of the relationship between 

compound formulation and resistance to dynamic stressing shows that the behaviour of 

the vulcanizates depends mainly on the crosslinking system (Rohde, 2001). Rhenogran 

ETU-80 is a special thiourea crosslinking system which is suitable for chloroprene 

rubber. The resistance to permanent deformation caused by static load or dynamic 

compressive stressing is an important criterion of the serviceability of such parts as 

bush mounting. Previous studies on chloroprene rubber shows that the compression set 

decreases as the Shore hardness rises and the reading are most favorable in the case of 

chloroprene rubber vulcanized with ETU (Rohde, 2001). For NR/CR blend, beside 

sulphur crosslinking system, the effect of addition of Rhenogran ETU-80 will be 

studied. It is expected to have a better crosslinking which contribute to lower 

compression set with the presence of Rhenogran ETU-80.       
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1.3 OBJECTIVES 

 

The main aim of the research is to develop a suitable formulation, based on 

NR/CR blends, that has a good balance of mechanical properties, load-deflection and 

compression properties, and dynamic properties for a bush mounting application. 

Experimentally, the main objectives of the study are as follows: 

 

1) To study the effect of blend ratio on the mechanical properties of   NR/CR gum 

vulcanizates and filled vulcanizates. 

2) To study the effect of carbon black loading on the vulcanizate properties of 

NR/CR blends. 

3) To study the effect of special crosslinking system (ETU-80) on the cure 

characteristics, compression set and aging properties of NR/CR blend 

vulcanizates. 

4) To study the effect of carbon black and processing oil on the mechanical and 

dynamic properties of NR/CR blends in the presence of ETU-80.  

5) To study the load-deflection behaviour of NR/CR rubber vulcanizates at 

different hardness.  

6) To study the axial and radial compression properties of NR/CR-based bush 

mounting. 

7) To study the dynamic properties i.e. loss angle, dynamic stiffness, natural 

frequency, frequency ratio, vibration isolation and transmissibility of NR/CR-

based bush mounting. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 LITERATURE REVIEW 

 

The majority of rubber is used in the form of blends, an industrial fact of life, 

which is sufficient in itself to show the importance of vulcanization of blends. The aim 

of blending is to combine the desirable features of each component, but often the 

properties obtained are worse than anticipated from those of the component rubbers, 

and generally, the properties of vulcanized blends cannot be linearly interpolated from 

those of the individual rubber vulcanizates. Previous studies has been done on the 

rubbers and their ratio factors (Corish, 1994; Tinker & Jones, 1998; Livingstone & 

Longone, 1967), phase morphology (Hess et al., 1993; Andrews, 1966; Roland, 1989) 

and the distribution of filler between the rubbers or at the interface (Herd & Bomo, 

1995; Tsou & Waddell, 2002; Walters & Keyte, 1962; Mangaraj, 2002; Van de Ven & 

Noordermeer, 2000). The distribution of plasticizer (Aris et al., 1995) and crosslinks 

(Tinker, 1995; Cook, 1999) between the rubbers and the interface: interpenetration of 

polymer chain segments, adhesion and crosslinking (Schuster et al., 2000; Datta & 

Lohse, 1996) are special factors for blends.  

 

2.1.1   Vulcanization of blends – crosslinking distribution and its effect on  

               properties  

 

 Vulcanization is most commonly achieved by using a sulphur based cure 

system, and the complexities of this are well documented, if not completely understood 

yet. This complexity increases when rubber blends are vulcanized. This review is 
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focused on the crosslink distribution between rubber phases, which arise when blends 

of rubbers are vulcanized, how these distribution may be evaluated and controlled, and 

how they impact upon the properties of the blends (Chapman & Tinker, 2003). The 

blends are divided into three categories: 

1) Rubbers differing primarily in polarity 

2) Rubbers differing primarily in degree of unsaturation 

3) Rubbers differing little in either polarity or degree of unsaturation 

 

2.1.1 (a)     Blends of rubbers differing mainly in polarity 

 

 The most extensively studied blends falling into this category are blends of NR 

with nitrile rubber, NBR, and there have been numerous reports of crosslink 

distribution for blends covering a range of acrylonitrile contents in NBR from 18% to 

41% (Loadman & Tinker, 1989; Lewan, 1998; Brown et al., 1993). Whilst NBR may 

appear to have a substantially lower level of unsaturation relative to NR, due to being a 

copolymer, in practice the higher density of NBR and lower molecular weight of the 

butadiene repeat unit lead to a molar concentration of unsaturation of about 11 x 103 

mol/m3 for high acrylonitrile NBR in comparison with about 13 x 103 mol/ m3 for NR. 

The primarily influence on crosslink distribution is therefore the difference in polarity 

of the two elastomers and its effect on distribution of curatives and vulcanization 

intermediates. 
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 Sulphur will always distribute in favour of the NBR phase due to its high 

solubility parameter (29.8 MPa ½). The solubility parameter of NR is 16.7 MPa ½ , 

whilst those for NBR lie between 17.8 MPa ½ and 21.3 MPa ½ . Control of crosslink 

distribution will therefore depend largely on how the accelerator(s), and vulcanization 

intermediates, partition between the rubbers (Chapman & Tinker, 2003). 

 

 An extreme example is provided by NBRs with acrylonitrile contents of 18% 

and 41% (NBR 18 and NBR 41 respectively) cured with cure systems containing 

related accelerators differing greatly in polarity – TMTD and N, N’- diisopropylthiuram 

disulphide (ODIP) (Lewan, 1998). Crosslinking densities as determined by swollen-

state NMR spectroscopy are presented in Figure 2.1. It should be noted that the two 

thiuram accelerators were used at equimolar levels. The data in Table 2.1 show a 

decrease in efficiency of vulcanization in the NBR phase of NR/NBR 18 blends and an 

increase in efficiency in the NR phase of NR/NBR 41 blends when ODIP is substituted 

for TMTD. 
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Crosslink density, mol/m3  

 
             41% Acrylonitrile 
    140 - 
 
    120 -                                                                                            NR      
 
    100 -                                                                                            NBR       
                  18% Acrylonitrile        
      80 - 
 
      60 - 
 
      40 - 
 
      20 - 
                
        0 -    
                 1.5 S +       1.5 S +1.93                 1.5 S +       1.5 S +1.93 
              0.6 TMTD         ODIP                 0.6 TMTD         ODIP 
 
 
Figure 2.1: Crosslinking densities (Chapman & Tinker, 2003) 
 
 

Table 2.1: Percentage of each type of sulphidic in the NR and NBR phases of 50:50  

                 NR:NBR blends cured with 1.5phr sulphur and either 0.6phr TMTD or  

                 1.93phr ODIP (Chapman & Tinker, 2003) 

 
 
Crosslink 

NBR 18 NBR 41 
TMTD ODIP TMTD ODIP 

NBR NR NBR NR NBR NR NBR NR 
 
Poly- 
 
Di- 
 
Mono- 
 

 
14 
 

41 
 

45 

 
100 

 
- 
 
- 

 
39 
 

22 
 

39 

 
100 

 
- 
 
- 

 
24 
 

26 
 

30 

 
100 

 
- 
 
- 

 
26 
 
- 
 

74 

 
22 
 

78 
 
- 
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 The impact of both choice of accelerator and acrylonitrile content of the NBR is 

immediately apparent. The highly polar TMTD is clearly a poor choice of accelerator 

for NR/NBR blends-the extreme inbalance of crosslinks in favour of the NBR phase 

may be attributed to partition of both sulphur and TMTD in favour of NBR. When 

TMTD is replaced by the less polar ODIP, the imbalance in crosslink distribution is 

reduced in NR/NBR 18 blends through a doubling of crosslink density in the NR phase. 

This may be attributed to an increase in concentration of accelerator in the NR phase. A 

greater increase in NR crosslink density is seen in NR/NBR 41 blends, and this is 

accompanied by a dramatic decrease in crosslinking of the NBR phase; there is a 

substantial reduction in overall crosslink density. This may be explained by the NBR 

phase containing the majority of the sulphur due to a favourable partition coefficient, 

but the NR phase containing most of the accelerator. The large phase sizes in this blend 

(> 20μm ) preclude diffusion of vulcanization intermediates playing a significant role 

in determining crosslink distribution. 

 

 This explanation receives support from a consideration of the type of crosslinks 

present in each phase, as determined by a combination of chemical probe treatment 

thiol-amines (Saville & Watson, 1967; Campbell, 1969) and swollen- state NMR 

spectroscopy (Lewan, 1998) 

 

2.1.1 (b)   Blends of rubbers differing primarily in degree of unsaturation 

 

 The classic example of this type of blend is NR with EPDM, and the great 

commersial potential of this system has resulted in numerous attempts (Mueller & 

Frueh, 2000; Ghosh & Basu, 2002) to overcome the inherent difficulties associated 
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with vulcanizing two elastomers differing so much in unsaturation. It should also be 

recognized that there will be a tendency for curatives and vulcanization intermediates to 

partition in favour of the NR phase (Hess et al., 1993); indeed the use of 

dithiophosphate accelerators, which have high solubility in both NR and EPDM, has 

been found to lead to improved blend properties (Mueller & Frueh, 2000; Ghosh & 

Basu, 2002). 

 

 Success in increasing crosslinking in the EPDM phase was generally inferred 

from an improvement in physical properties, particularly modulus and tensile strength 

as illustrated in Table 2.2 and 2.3, which summarize results obtained by (Hopper, 1976) 

when modifying EPDM with N-chlorothioamides and (Coran, 1988) when modifying 

maleic anhydride. Although the two approaches are different, the former aiming to 

enforce sulphur vulcanization in the EPDM by attaching a pendent prevulcanization 

inhibitor and the later aiming to introduce a second, ionomeric network in the EPDM, 

the net result is similar. 
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Table 2.2: Effect of modification of EPDM with N-chlorothioamide on physical  

                 properties of 70:30 IR/EPDM blend ** (Hopper, 1976) 

Property Unmodified EPDM Modified EPDM* 
 
Rheometer torque, Nm 
 
M300, MPa 
 
Tensile strength, MPa 
 
Elongation at break, % 
 

 
6.52 

 
12.9 

 
17.7 

 
400 

 
7.73 

 
14.3 

 
22.8 

 
450 

 
** Blends of Natsyn 200 with Nordel 1470 containing 50 phr FEF black, 4phr ZnO,  
     1.5phr stearic acid, 1phr phenolic antioxidant, 2phr sulphur, 1phr MBS 
*   Modified with 0.14mol/kg N-chlorothio-N-methyl-p-toluenesulphonamide. 
 
 
 
Table 2.3: Effect of modification of EPDM with maleic anhydride on physical  

                 properties of 70:30 NR/EPDM blend ** (Coran, 1988) 

Property Unmodified EPDM Modified EPDM* 
 
M300, MPa 
 
Tensile strength, MPa 
 
Elongation at break, % 
 
Fatique life: 
0 – 100% Strain, kcs 
 
0 – 10 kg/cm2 Energy, kcs 
 

 
7.7 

 
14.8 

 
500 

 
 

26 
 

18 

 
8.0 

 
23.3 

 
602 

 
 

46 
 

41 

 
** Blends of SMR5 with Epsyn 70-A containing 50phr N326 black, 10phr oil, 5.5phr  
     ZnO, 2phr stearic acid, 2phr sulphur, 0.5phr TBBS. 
* Modified with 2% maleic anhydride. 
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 Similar levels of crosslinking may be attained in NR/EPDM blends if the 

EPDM has very high ENB level (Wirth, 1970) and also of very high molecular weight 

(Rooney et al., 1994), as shown in Table 2.4. The effect of both ENB level and 

molecular weight is confirmed by a swollen-state NMR study which did not go to the 

length of calibrating peak width against crosslink density (Van Duin et al., 1993). 

 

Table 2.4: Crosslink densities in 60:40 NR: EPDM** blends cured to optimum (t95+5)  

                 and overcured at 1660C (2phr sulphur, 0.5phr MBS) (Rooney et al., 1994) 

 
Cure time, min 

 
12 

 
30 

 
NR n phys, mol/m3 
 
EPDM  n phys, mol/m3 

 
61 
 

25.5 

 
47 
 

25 
 
** Polysar experimental polymer: 10.5wt%ENB, 
     Mooney viscosity ML(1+4) at 1500C = 70. 
 
 
 
 The use of a hybrid accelerated sulphur/peroxide cure has also been advocated 

(Brodsky, 1994; Ferrandino & Hong, 1997). Although some partitioning of the 

peroxide is to be expected, any peroxide in the EPDM phase will result in crosslinking 

of the EPDM. Only low levels of peroxide will be necessary to induce the moderate 

crosslink density known to be needed for good properties, and 0.6phr dicumyl peroxide 

has been found to give improvements in cut growth and dynamic ozone resistance. This 

approach has parallels with that of (Coran, 1988), in that the crosslinks formed in the 

EPDM may be expected to be predominantly not sulphidic in nature. Recent studies 

have indicated that satisfactory blend properties can be achieved if an EPDM with high 

ethylene content is used (Pechenova et.al., 2001); the importance of filler distribution 

was also stressed.  
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2.1.1 (c)    Blends differing little in polarity or unsaturation 

 

 These blends are exemplified by blends of the general purpose rubbers – NR, 

BR and SBR. Of these, blends of NR or IR and BR have received most attention. At 

first sight, these elastomers would appear to differ so little that it might be anticipated 

that an even distribution of crosslinks would be norm. In practice, there are significant 

differences, and not those which may be inferred from a simple comparison of the 

rheometer cure behaviour of comparable compounds of the two; this shows the NR to 

cure much quicker, but the naturally occurring cure activators and accelerators might be 

expected to partition fairly evenly between the two rubbers once they are blended, and 

so NR would lose this advantage. 

 

 A deeper consideration of the rubber and the literature points to BR being likely 

to crosslink preferentially in a blend with NR. Both sulphur and the common 

sulphenamide accelerators will partition slightly in favour of the BR (Freitas et al., 

2003). Moreover, it has been argued that the unsaturation in BR may be more reactive 

towards sulphur vulcanization (Butring et al., 1997). The concentration of double bonds 

is also greater for BR, about 17 mol/dm3 versus about 13 mol/dm3 for NR.  

 

 The first reports of crosslink density distribution for NR/BR blends cured with 

sulphur / sulphenamide or sulphur / TMTD were in accord with this prediction: the BR 

was the more highly cured phase (Brown & Tinker, 1993). Subsequently, a study of 

IR/BR blends through the cure by swollen-state NMR spectroscopy indicated that, 

whilst the BR phase was the more highly crosslinked at optimum cure, crosslinks 

formed preferentially in the IR phase in the early stages of vulcanization (Shershnev et 
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al., 1993). However, a later report of the vulcanization of NR/BR blends with 

conventional and semi-EV cure systems based on the three most common 

sulphenamide accelerators indicated that the BR phase begins to cure before the NR 

phase at 150 0C, and that the latter tends not to catch up.   

 

The question remains as to whether changing the crosslink distribution will 

improve the properties of NR/BR blends. Figure 2.2 shows how the crosslink density 

distribution in a 70:30 black-filled vulcanizate can be adjusted by modification of one 

of the phases prior to crossblending. This altered crosslink distribution led to improved 

passenger tyre wear performance, as shown in Figure 2.3. In a very recent study of 

unfilled NR/BR blends (Butring et al., 1997), crosslink density distributions were not 

determined, but it was found that promotion of crosslinking in the NR phase (by 

incorporating the sulphur, zinc oxide and stearic acid in the NR before crossblending) 

led to reduced tensile strength and elongation at break. However, all of the reported 

tensile strengths (of both the blends and the individual rubbers) were much lower than 

normally expected for these rubbers. 
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S/CBS equivalent, phr 
                                                                                   NR       
 1.6  -  
                                                                                   BR      
 1.4  - 
 
 1.2  - 
 
 1.0  - 
 
 0.8  - 
 
 0.6  - 
 
 0.4  - 
 
 0.2  - 
 
    0   
 
                      Normal     Modified 
 
Figure 2.2: Crosslink density distribution (Grovres, 1998) 
 
 
 
Wear rating 
                                                                                  Normal blend       
   
                                                                                   Modified blend      
 120 - 
 
 100  - 
 
  80  - 
 
  60  - 
 
  40  - 
 
  20  - 
 
    0   
    

    1.5 0                               0.5 0 
                 Slip angle     
                  

Figure 2.3: Passenger tyre wear performance (Chapman & Tinker, 2003) 
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 Even blends which are not considered to be problematic and which appear to 

differ little in either polarity or degree of unsaturation, such as NR/BR blends, have 

been shown to suffer uneven crosslink distribution in sulphur vulcanization. 

Improvements in properties have been achieved by manipulating the crosslink 

distribution. 

 

 Control of crosslink distribution is important if the best is to be obtained from 

vulcanized blends. Application of the principles described here has provided 

improvements in physical properties and allowed successful use blends which have 

problematic in the past. 

 
 
2.1.2  Curing characteristics and mechanical properties of natural rubber /  

              chloroprene rubber and epoxidized natural rubber / chloroprene  

              rubber blends 

 

 Polymer blends are being used extensively in numerous applications. A blend 

can offer a set of properties that may give it the potential of entering application areas 

not possible with either of the polymers comprising the blend. Chloroprene rubbers are 

homopolymers of chloroprene. The polymer chains have an almost entirely trans-1,4-

configuration. Because of this high degree of stereoregularity they are able to 

crystallize on stretching. Consequently, the gum vulcanizates have high tensile strength 

and resemble natural rubber gum vulcanizates (Nagdi, 1993). Epoxidized natural rubber 

is a modified natural rubber having properties resembling those of synthetic rubbers 

rather than natural rubber (Davis et al., 1983; Baker & Gelling, 1985). ENR has unique 

properties such as good oil resistance, low gas permeability, improved wet grip and 
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rolling resistance, coupled with high strength. Many blends based on ENR and other 

polymers, like SBR (Nasir & Choo, 1989; Ismail & Suzaimah, 2000), NR (Poh & 

Khok, 2000), BR (Baker et al., 1985) and PVC (Ishiaku et al., 1999) have been 

reported.  

 

 A typical formulation used for this study is shown in Table 2.5. Cure 

assessment was carried out using a Mooney Viscometer MV 2000 at three different 

temperatures, 120 0C, 130 0C and 140 0C (Ismail & Leong, 2000). The MV 2000 gives 

digital outputs of curing characteristics such as t5 (time required to achieve 5 Mooney 

units above the minimum viscosity), t35 (time required to achieve 35 Mooney units 

above the minimum viscosity) and minimum Mooney viscosity. 

 

Table 2.5: The formulation used in the preparation of a rubber blend compound (Ismail  
 
                 & Leong, 2000) 
 
 phr 

Rubber blend 

Stearic acid 

Zinc oxide 

Magnesium oxide 

CBS 

ETU 

Sulphur 

100 

1.0 

5.0 

2.0 

1.0 

0.5 

2.5 
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The Mooney scorch time, t5 with blend ratio for SMR L/CR and ENR 50/CR 

blends at three different temperatures: 120 0C, 130 0C and 140 0C exhibits negative 

deviation of the scorch time of the blend from calculated value based on the 

interpolation between the scorch time of the two components elastomers. The scorch 

time, t5 of CR is longer than SMR L and ENR 50 and this is a cure characteristic of 

CR, that is, the prevention of scorch (Vanderbilt, 1990). At 130 0C, the t5 for both 

blends shows that the t5 of ENR 50 is shorter than SMR L followed by CR. Owing to 

the activation of an adjacent double bond by the epoxide group, the t5 for ENR 50 is 

shorter than that of SMR L (Poh & Tan, 1991). The negative deviation of scorch time 

from the interpolated value is attributed to the induction effect of ENR 50 and SMR L 

on CR molecules that causes an overall increase in the rate of crosslinking of the blend. 

The induction effect of ENR 50 is higher than SMR L. Probably more activated 

precursors to crosslink are formed as a result of the activation of the double bond by the 

epoxide group (Coran, 1964).   

 

Lower viscosity of SMR L and ENR 50 compared to CR causes reduced cure 

index with increasing composition of SMR L and ENR 50. In blends, the lower 

viscosity components tend to form a continuous phase (Miles & Zurek, 1998; Lee et 

al., 1991), which more or less governs the curing process. However, at similar blend 

ratio ENR/CR blend exhibits lower curing index than SMR L/CR blend. 

 

For both SMR L/CR and ENR 50/CR blends, a positive deviation of tensile 

modulus and hardness from the ideal is observed, suggesting that synergism has 

occurred and the maximum value of tensile modulus and hardness is obtained at 25% of 

SMR L or ENR 50. All CR, SMR L and ENR 50 undergo strain-induced 
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crystallization; the rubbers reinforced each other when subjected to tensile stress, as 

reflected by a higher tensile modulus obtained in the blend. However, for tensile 

strength of the blends, the positive deviation occurred at 75% of SMR L or ENR 50 

suggesting that the best blend ratio is 75/25 (wt/wt) of ENR 50/CR or SMR L/CR to 

obtain good tensile strength of the blend (Ismail & Leong, 2001). 

 

2.1.3 Studies on the cure and mechanical properties of blends of natural rubber  

with dichlorocarbene modified styrene-butadiene (DCSBR) and 

chloroprene rubber 

 

 Elastomer blends are frequently used in the rubber industry to obtain best 

compromise in compound physical properties, processability and cost. A blend can 

offer a set of properties that can give it the potential of entering application area not 

possible with either of the polymer comprising the blend. It has been already reported 

that the blending of natural rubber with other elastomers can improve its properties to 

great extent. For example, blends of NR with Styrene butadiene rubber (SBR) are noted 

for a combination of properties such as good abrasion resistance (Joseph et al., 1988), 

while those with nitrile rubber (NBR) are noted for its excellent oil resistance (Choi, 

2002), those with chloroprene rubber (CR) are noted for good weather resistance (El-

.Sabbagh, 2003). Several studies in the area of NR/EPDM are available in the literature 

with special reference to different blend ratio of NR:EPDM, which can improve 

excellent ozone resistance (Schulz et al., 1982). 
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 NR suffers from poor flame, weather, ozone, oil and thermal properties. Due to 

the strain induced crystallization behavior of NR, which can increase the modulus, 

resistance to deformation and stabilize the system by preventing the propagation of the 

defects without the use of highly reinforcing fillers and expensive coupling agents. 

DCSBR can also provide strain induced crystallization behavior with lower 

compression set, flame and oil resistance (Ramesan & Alex, 2000). CR is a 

homopolymer with trans 1,4 configuration and it is able to crystallize on stretching so 

the gum vulcanizate have good tensile strength (Gent, 1965). The present paper reports 

the comparison of cure characteristics and mechanical properties of 70/30, 50/50, 30/70 

compositions of NR/DCSBR and NR/CR blends. The effect of temperature on the cure 

characteristics of the blends is also evaluated. Oil swelling behavior of the vulcanizate 

is analyzed giving emphasis to the influence of temperature. The recipe used is shown 

in Table 2.6 (Ramesan et al., 2004). 
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Table 2.6: Basic formulation used for NR/DCSBR and NR/CR blends (Ramesan et.al,  

                 2004) 

Ingredients phr 

Rubber blends a 100 

Stearic acid 
 

2.0 

Zinc oxide 
 

5.0 

Antioxidant TDQ b 
 

1.0 

Magnesium oxide 2.0 

CBS c 
 

1.0 

TMTD d 0.5 

ETU e 

 
0.5 

Sulphur 
 

2.2 

a  NR/DCSBR and NR/CR were used with blend ratio of 100/0, 70/30, 50/50, 30/70, 

    0/100. 

b  2,2,4-Trimethyl-1,2-dihydroquinoline. 

c  N-Cyclohexyl-2-benzothiazyl sulphenamide. 

d  Tetramethylthiuram disulphide. 

e   Ethylene thiourea 

 
 
2.1.3 (a)     Cure characteristics 

 

 In NR/DCSBR blend, there is a decrease in cure index with increasing the 

composition of NR might be due to the lower viscosity of NR compared to DCSBR and 

CR. The lower viscosity components lead to form a continuous phase in blends 
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