Proceedings of the Second IASTED International Multi-Conference

SIGNAL AND IMAGE PROCESSING (ACIT-SIP)
June 20-24, 2005, Novosibirsk, Russia

NpABBK 29168

SEGMENTATION USING WAVELET AND GVF SNAKE (1 0%

'Foon Dah Way, *Mandava Rajeswari, *Dhanesh Ramachandram
School of Computer Science
Universiti Sains Malaysia
11800 Minden, Penang

('dwfoon, *mandava, “dhaneshr)@cs.usm.my

ABSTRACT

The Gradient Vector Flow (GVF) snake is a popular
technique to segment object in image processing. Its
advantages are insensitivity to contour initialization and
its ability to deform into highly concave part of the object
compared to other deformable contour models. However.
the performance of a GVF snake to model any arbitrary
shape is heavily dependent upon objects with the highest
intensity changes in the edge map and does not take into
consideration objects with secondary gradient magnitude.
To alleviate this problem, we propose a multi-scale
method to obtain a suitable edge map to aid the GVF
determination problem. The GVF are thus calculated from
the enhanced edge map which focuses on the secondary
structures of interest. This paper presents the approach
and preliminary results which are encouraging.
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1. Introduction

In computer vision, segmentation is a fundamental step
prior to further processing and analysis operations
performed on images. All segmentation approaches,
regardless of the type of images they operate on, aim to
segment an object of interest from the rest of the image
structure. Image segmentation methods may be broadly
divided into three categories: region based segmentation,
contour based segmentation and morphological based
segmentation approach [1]. This work presented in this
paper focuses on the contour based segmentation.

The Gradient Vector Flow (GVF) snake [2] is a
popular technique to segment object in image processing.
Its advantages are insensitivity to contour initialization
and its ability to deform into highly concave part of the
object compared to other deformable contour models.
However, the performance of a GVF snake to model any
arbitrary shape is heavily dependent upon objects with the
highest intensity changes in the edge map and does not
take into consideration objects with secondary gradient
magnitude. To alleviate this problem, we propose a multi-
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scale method to obtain a suitable edge map to aid the
GVF determination problem. The GVF are thus calculated
from the enhanced edge map which focuses on the
secondary structures of interest.

This is the extension work from our previous
work on edge clustering using selected feature vector [3].
In that work, we propose an automated method to extract
desired structures exclusively. The method focuses on
automated scale selection and is based on wavelets. [t
utilizes wavelet edge detection, multi scale edge linking
coupled with a method of classifying relevant edges.
Several parameters from the scale evolution of the multi
scale edges detected by a discrete wavelet decomposition
of an image are used in a clustering algorithm to classify
the edges belonging to background, structure(s) of
interest, other structure(s) and noise. In this work, the
preliminary initial boundary is used as the starting
boundary in the well-established GVF snake [2]. The
overall flow of the algorithm is illustrated in Figure 1:

Image

4

LMuIti scale edge detection using wavelet

-

Inter-scale edge linking

b 4

Feature vector calculation & Clustering

h 4

Morphological processing

4

GVF snake

i
i

Segmented
object(s)

Figure 1: The overall of the flow of the segmentation
algorithm.



1.1 GVF Snake

The popularity of the name deformable models or snakes
is mostly credited to the work “Snakes™ by Kass [4].
* Deformable models are elastic manifolds (curves or
/surfaces) defined within an image domain that can move
under influence of internal forces coming from within the
manifold itself and- external forces computed from the
image data. A traditional deformable contour is a curve

X(s)= [x(s),y(s‘)],s e[0,1]. 1f x(s) are the
parameterized manifolds where § is the parameter of the
manifold. the final contour determined by minimizes the
representation of the energy of the manifold ( £') consist
of internal energy (&

im ) and external energy (&, ) as

follows:

E= Ein T Eunt (1.1)
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u = [y + Al ) (1.2)
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swhere,

~ @ is the weighting parameter control contour’s tension
B is the weighting parameter control contour’s rigidity

X' is the first derivative of X(S) with respect to u

X" is the second derivative of X(S) with respect to

£y =B, (X(s))ds (1.3)
E,, is the external energy

It has been shown that the curve X(Y) that

minimizes £ must satisfy the following Euler equation

aX"(s)-pX™(s)-VE,, =0 (1.4)
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For a closed contour, we use a periodic boundary
condition X(O) = X(l) We can view Equation (2.4)

as a force balance equation:

F.+F_ =0 (1.5)
Where Em _—'aX"(S>"ﬁX""(S)
=-VE

ext ext
To find a solution for Equation (2.4), the

defOrmable contour associates X with time ¢ as in
Equation 1.6:

X, (s,t)=aX (5.6}~ BX"(5,{)—VE

ot

(1.6)

In this method, the external force (F

oxt

defined by a static force field call gradient vector flow
(GVF) field F,,, =v(x,y). yielding:

) 1S

X, (5,6) = aX "(5,0)= BX ™(s5,1) +v (17)

Details for numerical solution to Equation (1.7)
by discretizing the equation and solving the discrete
system iteratively are found in [2]. The edge map is image
feature that appears throughout the image spatial domain.
The edge appears at places with high intensity contrast
such as object boundaries. For the sake of completeness,

we use edge map f(.\‘, »\’)

f(xy)=-E, (x.v) (1.8)

The gradient vector flow is the vector field
v(x,y) =[u(x,v),v(x,v)] that minimizes the energy

functional:
&= '[ ,u(u_‘.: Fu e 42 )+|V_/'I: |v— V/"z dxdy (1.9)

The details of the numerical implementation of
the GVF generation are found in [2]. The following
section presents the methodology. Experiment s
presented in Scction 3. Discussion of the experimental
results are reported in Section 4 and Section 5 is devoted
to conclusion

2. Methodology

The wavelet coefficients of the image are obtained using a
convolution wavelet transform algorithm in different
scales, from fine to coarse [5] [6]. Edge detection is
performed using wavelet transform modulus maxima to
obtain multiple scale edges. Noisy edges are eliminated
by maxima suppression with produces a collection of
local maximum points. This process results in an edge
map with edges representing highest intensity changes in
the image. The next step is intra-scale linking with
pruning to discard short edges. The estimation of the
feature vector requires the chain of the maxima points
traverse through different scales. An inter-scale edge
linking method described in [3] is adopted. The feature
vector used are edge strength (K), propagation number
(N) and mean (M). The edge strength is chosen base on
assumption that object boundary may have similar edge
magnitude. Propagation number is chosen because it
offers information on how far an edge may last from fine



to coarse detail. Mean is chosen as the third parameter

“because it measures the uniformity of the edge magnitude
in multiple scales. These three parameters are used to
cluster edges using a K-means clustering algorithm. The
classification of the maxima chains based on edge
strength, propagation number and mean may lead to
classification of structures in the image. Then, two
morphological  processing  steps are  implemented
consisting of dilation and thinning. Dilation aims to close
the gap of the broken edges found in the desires edge map
to form a continuous contour. Thinning is the process to
make the contour shrink to 1 pixel in width, discarding
the noise generated in the dilation process. These two
processes are important to produces a closed contour as
the output. Then, the desired edge maps are magnified by
two times the edge strength in regions covered by the
initial contour, whereas the edges in the other regions
reduced by a factor of 0.5. This edge map is modified to
give emphasis on the region of interest, which in this case,
is the secondary structure object.

3. Experiment

The success of the proposed method in deforming the
contour to the secondary structure in the image is verified
through the experiment. The experiment results are shown
in Figure 2 where (b) and (c) being the final contour
overlaps on the image and final contour extracted using
the original edge map. Figure 2(d) and (e) are the final
contour overlaps on the image and final contour extracted
using the enhanced and modified edge map which focuses
on the small structure. The contour in 2(b) are deform
toward the strongest edge magnitude, which is not the
desire region, whereas contour in 2(d) deforms well to the
desire region. The respective GVF field is shown in
Figure 3(a) and (b).
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Figure 2: A CT image of a human abdomen region with
initial contour display in grey colour. (b) The final

contour overlaps with the image after 100 iterations using
original edge map. (c) The extracted final contour using
the original edge map. (d) The final contour overlaps with
the image after 100 iterations using modified edge map.
(e) The extracted final contour using the modified edge
map.

(b)

Figure 3: (a) The original GVF field which only attracts
toward bigger object. (b) The modified GVF field attracts
toward smaller object.

4. Discussion

The other segmentation results are shown in Appendix.
The flexibility of the proposed method is elaborated in
three main parts, that is: various cluster of edges, various
object within a cluster, various object in different clusters.
The number of cluster is determined by the content of
the image itself. For image in Figure 4, the number of
cluster is equal to 3, whereas for image in Figure 5, the
number of cluster is equal to 4. The number of clusters
may be user-defined so that the best object
outline/boundary is obtained. Figure 4(b), (c) and (d) are
the edges of cluster 1, 2 and 3 respectively, while Figure
5(b), (c), (d) and (e) are the edges of cluster 1, 2, 3 and 4
respectively. The edges of interest are chosen manually or
it can be obtained by image feature in an automatically
manner. The chosen edge map is then processed with
morphological operation which consists of dilation and
thinning. Dilation is important to close gaps between
broken edges to produce a continuous contour, and
thinning is important to make the contour | pixel wide,
discarding the artefact generated in the dilation process.
In the aspect of various objects within a cluster, this
is shown in Figure 5(h) — (0), where the image in Figure




5(h), (1), (), and (k) with white contour is the starting
contour, and the image in Figure 5(1), (m). (n), and (0)
with white contour is the fine contour after GVF snake
deformation. In this example, there are 4 objects exist in
the same cluster of edges. and the proposed method
successfully retrieves all objects.

For some objects, they are clustered into different
cluster of edges because of their difference of edge
strength and ability to survive against different scale. For
this type of image, the proposed method shows good
performance in detecting the objects. For Figure 6(b) and
(c) arc the starting contour for 2 different objects exists in
2 different clusters of edges. and the Figure 6(f) and (g)
shows their final contour after GVF snake each.

The rest of Figure 6 is some of the other results
obtained for different image. For a special case of Figure
6(a) and (c). this particular object are obtained by using
the second highest center of cluster value in the feature
space, to detect the round shape object in the center.
instead of the high intensity stripe. This shows the method
can be adjusted and adapted to detecet small structure in an
image in our previous work [2].

5. Conclusion

We have introduces a new conceplt in image seementation
where the aim is to extract objects closed contour from
the image. Firstly, the obtained closed contours are useful
to modify the edge map where the sccondary structures
are the place to focus on. We have shown that
computation of the GVF field using the modified edge
map that allows for contour initialization into the
secondary structure and enables convergence to its
boundary. Secondly, the proposed method also showed
capability to detect multiple objects in an image. This is
particular of interest in object detection and recognition.
Thirdly, with the concept of ciustering of edges is

equivalent to classify objects in the image, the proposed
method are capable to label different class of objects
detected. This concept is important to semantically
labelling of the image for analysis and retrieval purposcs.
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Appendix
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d}?lggre 4: (a) The original image. (b) (c) (d) The edge map of cluster 1, 2 and 3 respectively. (e) The edge cluster 3 after
tlation and thinning. (f) The edge cluster 3 after short edge reduction. (g) (h) The overlap starting contour to the original
image and the final contour overlap to the original image respectively.
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Figure 5: (a) The original image. (b) (c) (d) (¢) The edge map of cluster 1, 2, 3 and 4 respectively. (f) The edge cluster | after
dilation and thinning. (g) The edge cluster 1 after short edge reduction. (h) (i) (j) (k) The overlap starting contour to the
original image for different objects. (1) (m) (n) (o) The final contour overlap to the original image respectively for different
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Figure 6: (a) (b) (¢) (d) The overlap starting contour to the original image of different objects. (e) (f) (g) (h) Their respective
final contour overlaps to the original image for different objects.




