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The second harmonic generation (SHG) of a uniaxial antiferromagnetic film based on l/ f?d/ /// [~ /
antiferromagnetic response is calculated and analyzed by using conventional nonlmear £ 44// 4
optics approach. Within this approach, the theoretical modeling assumed weak nonlmearlty ‘ 7// J/<,”"//»J

and no depletion of incident waves. In the studies, in order to observe second harmonic (S

i\\ -
3\ 17\ ¢
transmission and reflection through the film, the antiferromagnetic film is configured with T b ‘-\ -

reference to the non-vanishing linear and second harmonic susceptibility tensor elements of
the antiferromagnetic system. With these, some of the second harmonic transmissions and
reflections versus frequency and thickness are calculated numerically and shown

graphically.
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I. INTRODUCTION

The simplest nonlinear response in a physical
system subjected to incident electromagnetic radiation is
second harmonic generation (SHG) [1]. In the study of
nonlinear effects in dielectrics, weak nonlinear approach
is usually used [1,2]. This approach has been extended to
the magnetic systems and it obviously open up a simpler
way to study various ‘nonlinear effects in magnetic
systems [3-5]. By using the weak nonlinear assumption,
the dynamic magnetization m can be expanded in power
series of the incident dynamic magnetic fields 4:

m; = Xihy + X h by + Xy + .. (1)

With this, the complete linear and nonlinear
susceptibility tensors up to third order effects for a
uniaxial antiferromagnet have been calculated and
analyzed subjected to single frequency incident
electromagnetic waves [5].

Il. FORMALISM

The non-vanishing linear and second harmonic
susceptibility tensor elements of an antiferromagnet are
used to determine the suitable model for the observation
of second harmonic effects. From our previous
calculations, the independent non-vanishing linear and
nonlinear elements up to second harmonic effects in
Cartesian system, (xyz), are tu, Xo» Xpo Xy Xoxo Koo
Xz Xyyw Xoxe @0d 1. The full mathematical expressions
of the elements are given in our previous paper [5].
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Based on these non-vanishing elements, the
practical model is the antiferromagnetic film in the
configuration of Voigt geometry as shown in Fig.1.
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FIG. 1. Antiferromagnetic film in Voigt georﬁetry.

Here we set y as the direction of incident waves, I, and
the rf H fields in I are x-polarized. All these
configurations will determine which elements should be
taken into account due to the transverse nature of
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electromagnetic waves. These are: yu. Yo, Xw X Xzw
and -

Based on these assumptions, the wave equations
derived from the Maxwell’s equations and the
appropriate constitutive relations are

~2 .
Eal) 2, () =0 @

e
for linear waves and

2
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for second harmonic waves. Here H. (y) is the induced
second harmonic rf H fields due to the existence of
nonzero -, and y-,. The other terms
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represent the magnitude of linear and SH propagation
vector, and

2
rz"l‘ggoﬂogzl’.n- Ieh Ay (5)
2 g 1+ pxx

is a function of linear and SH susceptibility elements and
is corresponding to the generation of SH waves. Eq. (2)
is a homogeneous linear second order differential
equation for Hy (y) and Eq. (3) is an inhomogeneous
linear second order differential equation for Hy (y) with
a source in terms of Hy (v). The results in Eqs. (2) and
(3) are obtained by weak nonlinearity approach and
without slowly varying envelope approximation
(SVEA), and we also assume that there is no depletion of
the input waves. Based on Eq. (2), the general solutions
for the linear waves H, (y, f) and E; (y, f) are

H,(y,0)= % [ aexp(ik, )+
beXP(~ik\,y)]exp(—ia)t) +cc.  (6)
and
k,
EgEW

— bexp(—ik,y)|exp(- iwt) + cc. (7)

E,(y,1) =12 [aexp(ik,y)
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From Eq. (3), the general solutions for the second
harmonic waves H.(y, {) and E; (y, f) are

H.(y,0) =t [orexp(ik.y) + B exp(=ik.y)
4y Xp(i€ Y)+ o exp(-ig )+ 3]

xexp(-iQt) + cc.” (8)
and
ol 1 3 ;
En=37 o [ak: explik.y)
+18 k: eXp(—ik:y) _flé exp(’é: y)
+ fo& exp(—i& y)|x exp(=iQr) + c.c.(9)
where
I rb? 2abT
he——— rs———FJ1=— (10)
Ik T R e
for phase mismatch (k. # 2k, # &), and
H.(y,0)= % [+ yd,)expli¢ y)
+(B+ ydy) exp(=i& y) +ds]
xexp(—iQdt) + c.c. an

1

1
B Dnt)=5 gl +id - )explic y)
H(BE +idy +& ydy ) exp(=i& y)]
xexp(—iQt) + c.c. (12)
where
Ta’ Lb* 2abl’
dl_izg’d2~~i2§’ I (13)

for phase matching (kz =2k, = §).

In the equations, @ and Q are the incident and
second harmonic frequency. a, b and o, f are the
superposition coefficients for the homogeneous solutions
of Egs. (2) and (3). The linear amplitude coefficients g,
b, r, t, and the second harmonic amplitude coefficients
a, B, p, t© are determined by applying the
antiferromagnetic film boundary conditions to the
tangential H and E fields of the waves propagation as
shown in the schematic diagram in Fig. 1, namely the
conservation of these rf fields across the film boundaries.
With the resulting linear coefficients » and ¢, and second
harmonic coefficients p and 7, the calculations of
Poynting’s vector in each medium show that the
transmission and reflection coefficients through the
antiferromagnetic film are
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— —-and R =-——— for linear waves, (14)
&5 it e
3 el 7]
and
i A
T
gl —and N = ﬁT for second harmonic waves,
£ |p| Pl

(15)

where &, and & are the dielectric constants for medium 1
and medium 3 that sandwich the antiferromagnetic film.
p is the coefficient for the amplitude of input waves, and

| pl2 is directly proportional to the input power I,
ky
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where /, = L
2

lll. RESULTS AND DISCUSSION

The transmission and reflection coefficients in
Section 2, Egs. (14) to (15) are shown graphically by
using the parameters of FeF,. For temperature equals to
15 K, these parameters are ¢ =5.5 for dielectric constant,
Yo = 1.05 cm™' Tesla™ for gyromagnetic ratio, uoHz =
53.3 Tesla for exchange field, uoHy = 19.7 Tesla for
anisotropy field, poM, = 0.056 Tesla for sublattice
magnetization [6] and uoH, for applied static field. In the
calculations, the chosen damping parameter is # = 5 x
107 [5]. The linear and second harmonic transmission
and reflection coefficients are plot- versus frequency
sweep with fixed thickness and applied static fields.
These are shown in Figs. 2 and 3 for yoH, = 4 Tesla. In
Figs. 4 and 5, we show the linear and SH transmission
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FIG. 2. Linear transmission T ( ) and reflection R (----)
versus input frequency (cm™') for a 1 mm antiferromagnetic

film in 4 Tesla magnetic field.
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and reflection coefficients versus thickness for uoHy = 3
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Tesla and input frequency @ = 55 cm™. The input
intensity to produce the results in Figs. 2 to 5is [, = 1.6
x 10" Wm™ . If the FIR is focused to a 0.5 mm?* beam,
the strength of H field is approximately 18 Gauss, and is
achievable currently [3].
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FIG.3. Second harmonic transmission J ( ) and

reflection 7 ( ) versus input frequency (cm™) for a 1
mm antiferromagnetic film in 4 Tesla magnetic field.

From Fig. 2, the linear transmission and reflection
show clearly that there are two antiferromagnetic
resonances for x-polarized input waves in the present of
static applied magnetic field poH, as implied in the linear
antiferromagnetic  susceptibility. These resonances
occurred at frequency @, = wr — a, and @, = ap + @,
in which @y is the resonance frequency for
antiferromagnet and ay = yH, is the frequency shifts due
to the applied static field uoHo. For FeF,, wg = 52.4 cm™,
and for 3 Tesla applied static field, the gap between the
p-resonance and n-resonance, w, = 2w,, will be 6.3 cem™.
These are shown clearly in Figs. 2 and 3. The dips at the
resonances for both transmission and reflection curves
are due to the strong linear antiferromagnetic absorption
at the resonance frequencies, whereas the peaks and
troughs away from resonance are due to the dimensional
resonance depending on the wave vector, k,, and the
thickness of the film, L.

The SH transmission and reflection, J and # are
significant only in the vicinities of antiferromagnetic
resonances. From the curves shown in Figs. 3 to 5, and
the model shown schematically in Fig. 1, it is obvious
that the peaks and troughs of Jand # curves are due not
only to the antiferromagnetic and dimensional
resonance, but also affected by the input resonance
(standing waves in the films that generating T) and
output resonance (standing waves in the films that
generating R) of the linear waves. With all these
resonance enhancement, the signals shown in 3 and %
would not be regular peaks and troughs as the linear
transmission and reflection but somehow irregular
especially in the vicinities of the antiferromagnetic
resoannces. These are shown clearly in Figs. 3 and 5
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when compare the existence of J and %7 peaks to the

peaks of linear transmission.
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FIG. 4. Lincar transmission T ( ) and reflection R (----- )

versus film thickness (meter) for an antiferromagnetic film in 3
Tesla magnetic ficld and input frequency @ = 55 em™.

31000
+8100°0
9810004
831000
610070
46100°0-
9610001
$61000.] |
00200°0

c
~061000-

FIG.5. Sccond harmonic transmission J ( ___ ) and
reflection N ( ) versus film thickness (meter) for an
antiferromagnetic film in 3 Tesla magnetic field and
input frequency w=55 cm™

In conventional nonlinear optics, the second
harmonic generation signal are significant when phase-
matching occurred. However, from the approaches of
this paper, it is obvious that with the complex linear and
second harmonic susceptibilities, there is no chance to
achieve phase-matching for the antiferromagnetic films.
The peaks and troughs show in J and # can be
described as the pseudo-phase-matching when one or
more of the resonance enhancements described above
occurred. The other important feature of the second
harmonic transmission and reflection is that Jand # has
no phase difference if compared to the linear
transmission and reflection with 772 phase difference.
The reason is the second harmonic output, J and % has
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no input from the medium in the left of the

antiferromagnetic film as for the linear case. The only
difference of Jand %7 is in terms of magnitudes in which
T is greater than % because of the input resonance that -
affected J directly is stronger than the output resonance, '

"

IV. CONCLUSION

The main result of this paper is the calculation and :
formulation for the generation of SH waves through an
antiferromagnetic film based entirely on the magnetic
response of an antiferromagnet rather than the magneto-
optical effects based on electrical response that affected
by the existence of the magnetization [7]. The
calculation here make use of the conventional approach,
where for weak nonlinearity, less than 1 % of the input ~
intensity are converted to SH waves, therefore t
assumption of no depletion of the input waves is used to
simplify the calculation. However, the approach we used
here is slightly varying from the usual formulation in
nonlinear optics in which we are neglecting the SVEA .-
[8]. ,

The approach we used here may open another -
possible way, ie., conventional nonlinear optics
approach, to study and characterized the nonlinear -
effects and their applications in magnetic systems. And'it :
may be extend to more sophisticated cases such as thé :
generation of SH waves with depletion of input waves m j
magnetic superlattices.
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