
MANUAL

FUNDED BY

USM FUNDAMENTAL RESEARCH GRANT SCHEME (FRGS)

ABDUL HAMID ADOM

AHMAD NAZRI ALI

MOHD YUSOFF MASHOR

NORASHID AZIZ

o

l' ;; . . ~

FOREWORD

This manual is intended as a guide to researchers wanting to implement a type of

partially recurrent neural networks called Local-Output feedback Locally Recurrent

Globally Feedforward (LOLRGF) for the on-line real-time control of non-linear

dynamical systems. The work is based on an Internal-Model Control (IMC) structure

implementing recurrent neural networks indirectly as the controller. The configuration

of the codes given is for the control of SISO systems. The work featured in this

manual was part of the results from USM Fundamental Research Grant Scheme (USM

FRGS).

Users of this manual will need to go through the procedures to utilise the control

algorithm. This manual also assumes some basic knowledge on the part of the reader

in control theory and artificial neural networks.

NOTE: The work under the USM FRGS was only completed up to the simulation part

only. Other considerations when implementing the control algorithm on real­

processes are discussed in the further work section in Chapter 10.

1

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 OBJECTIVES
3.0 CONTROL SYSTEMS
4.0 NEURAL NETWORKS
5.0 NEURAL NETWORKS IN CONTROL SYSTEMS
6.0 ON-LINE REAL-TIME CONTROL
7.0 ALGORITHM IMPLEMENTATION PROCEDURES

7.1 CONTROL SYSTEM CONSIDERATIONS
7.2 PROCESS INPUT-OUTPUT CONSIDERATIONS

7.2.1 PROCESS INPUT-OUTPUT PAIRS
7.2.2 DATA CONDITIONING

7.3 CONTROL SYSTEM IMPLEMENTATION
7.3.2 NEURAL NETWORK PARAMETERS
7.3.3 ALGORITHM PARAMETERS
7.3.4 PROGRAMME RUNNING MONITORING

7.4 SUMMARY
8.0 SAMPLE APPLICATION

8.1 NETWORK TRAINING DATA GENERATION
8.2 NETWORK PARAMETERS

8.2.1 Network size
8.2.2 Learning parameters

8.2.2.1 Feedback gain, a
8.2.2.2 Filter constant, f
8.2.2.3 Forgetting factor, ff
8.2.2.4 Optimiser output change constant, c
8.2.2.5 Length of training, np
8.2.2.6 Setpoint, sp

8.2.3 Network connection
8.3 RESULTS AND DISCUSSIONS

8.3.1 Network size
8.3.2 Learning parameters

8.3.2.1 Feedback gain, a
8.3.2.2 Filter constant, f
8.3.2.3 Forgetting factor, ff
8.3.2.4 Optimiser output change constant, C

8.3.2.5 Length of training, np
8.3.2.6 Setpoint, sp

8.3.3 Network connection
8.3.4 Overall results

8.4 SUMMARY
9.0 DISCUSSIONS
10.0 FURTHER WORK
11.0 SUMMARY

APPENDIX 1 MATLAB Codes
APPENDIX 2 CSTR parameter values

2

1. INTRODUCTION

In the field of systems control, there have been many attempts to implement

alternative and novel approaches to replace conventional methods. The introduction

of the new methodologies and algorithms are explored in the pursuit for better control

performances in as many applications as possible covering as many types of systems

as possible. One of the areas that are of interest in this research is the control of non­

linear dynamical systems on-line in real-time using artificial neural networks.

This manual presents the procedures, along with the necessary considerations, of

implementing a type of recurrent neural networks for the adaptive control of non­

linear dynamical systems. The control algorithm described in this manual is for on­

line real-time type implementation.

The manual is presented in 10 chapters. Chapter 1 provides the overview of neural

networks and past implementations in control with the objectives of the work

conducted discussed in Chapter 2. A brief discussion in control systems and neural

networks follow in Chapters 3 and 4 respectively. Neural network applications in

control and on-line real time control discussions follow in chapters 5 and 6.

Detailed procedure of how to implement the work conducted in this research follows in

Chapter 7. This chapter discusses all the considerations needed to implement the

control system. In Chapter 8 presents a sample implementation of the algorithm on a

Continuously-Stirred Tank Reactor (CSTR) process. Chapter 9 the manual discusses

the research conducted as well as the implementations of the proposed algorithm.

Chapter 10 poses new challenges as a continuation of the work already conducted.

Finally, the Appendix lists the programmes written in MATLAB for the use in this

research and the parameters for the CSTR process. Softcopy of the codes can be

obtained by contacting the author at abdhamid@kukum.edu.my.

2. OBJECTIVES

The work conducted in this project was actually a continuation of a Ph.D. thesis on the

use of neural networks for the control of non-linear dynamical systems. There were,

however, some limitations with the work conducted and this project was undertaken

to :

3

i) propose an algorithm to enable the use of neural networks in the on-line real-time

control of non-linear dynamical systems.

ii) produce a manual of the implementation of the work conducted

3. CONTROL SYSTEMS

The ultimate aim of a control system is to provide the appropriate inputs to enable a

plant or process responds appropriately with the given reference and to comply to

some given specifications. Simple systems may require simple control systems, and a

control system should not be more complicated than needed. In other words, the

simplest control system that satisfies all the design and performance specifications

should be adopted.

More complex systems may require more complex controllers or control

methodologies. Non-linear dynamical systems may pose some problem to

conventional control approaches. In conventional control methods, say PI or PID, the

control of non-linear systems can be implemented by using linearised models of the

system, and using different controller parameters for different operating points or

ranges. More advanced control methods, for example using neural networkS, may

fare better. This is because, neural networks are able to model the dynamics of a

plant or process, and hence there is no need for several controllers for the system to

operate freely within its operating range. Only one controller is needed for the

process or plant to operate at different operating points.

The above is only true if the dynamics of the plant or process stays unchanged over

time. However, system dynamics will, inevitably, deviate with time due to many

reasons; valves get corroded, build-up in pipes, etc. This will change the dynamics of

the plant or process itself, and then even the neural network models will no longer be

valid.

Previous works using neural networks will require the neural model of the process

being re-trained, and usually off-line, so that an update on the weights can be

performed. This is where the problem lies: updating of the network is not automatic

and time-off operation is needed in order to update the neural model.

Due to this reasons, the project aims to propose a new approach to use neural

networks to allow the controller to update itself in response to the changes in the

4

process dynamics on-line in real-time.

4. NEURAL NETWORKS

One of the favourable characteristics of neural networks is its ability to generalise and

represent the dynamics of a process once the model has been trained using the input­

output data of the said process. The approach in which this model is used in the

control system is varied, and may be used directly and indirectly in the control loop.

The method of using neural networks in the control loop in place of the more

conventional P, PI or PID controllers provides a more "universal" controller in that the

controller produced using the latter covers the possible operating range of the

process. For the P, PI or PID controllers, gain scheduling is needed to handle the

different operating points.

This advantage is due to the neural networks' characteristics of generalising data.

However, the model is only as accurate and reliable as the data used to train it.

Another favourable characteristic of neural networks is its ability to optimise cost

functions. This very characteristic form the fundamentals of the work conducted in

this research.

When using neural networks model of the process as the controller, the performance

of the control systems are bounded by the accuracy of the neural network model(s)

used in the control loop. The accuracy of the neural network models are dependent

upon the accuracy of the data used to represent the system. In the case of using the

inverse model of the system as the controller, the error can be significant. This is due

to the fact that the inverse model is obtained from the forward model.

The process of obtaining the forward model will result in some modelling error, albeit a

very small one. However, the inverse modelling of a process is more difficult, and

almost always will result in a much greater error compared to the forward modelling.

This means that in the process of obtaining the inverse model through the forward

model will result in a rather significant error.

In addition to the above arguments, the neural network considered in this work is of

the recurrent type. Basic feedforward neural networks, like the Multi-Layer Perceptron

(MLP), are good for use with static problems, say pattern recognition for example. It

5

can, however, represent non-linear dynamical systems by means of external tapped­

delay lines (TDL). These TDLs will incorporate memory into the network to enable it

to represent the dynamic properties of the process or plant.

Recurrent neural networks on the other hand incorporate internal memory lines within

the structure, and hence the dynamical information about the process or plant is

inherent. This usually results in better modelling accuracy and generalisation. Fully

Recurrent Neural Networks (FRNN) are too complicated, and usually most of the

feedback connections are redundant. Partially recurrent neural networks (PRNN)

offers a better compromise between the favourable characteristics of recurrent

networks and simpler network structure.

In the past, we have implemented a type of recurrent neural networks, namely the

Local-Output feedback Locally Recurrent Globally Feedforward (LOLRGF) neural

networks in the If\1C control strategy. This particular structure was based on the

Frasconi-Gori-Soda architecture (Tsoi and Back, 1994; Campolucci et al., 1999) and

was introduced among other reasons to simplify the learning compared to a Fully

Recurrent Neural Networks (FRNN) (Campolucci et al., 1999).

H

Inputs
Output

Bias-----J

Figure 1. Local Output feedback Locally Recurrent Globally Feedforward

(LOLRGF) neural network hidden layer neuron. The feedback and the input to

the hidden neuron are passed through polynomial functions, which are basically FIR

filters, defined as Hand G respectively. (.) is the non-linear activation function. In

the MATLAB code given, hyperbolic tangent activation function is used.

The LOLRGF neural networks take form of the conventional Multi-Layer Perceptron

(MLP). However, the nodes in the layer are what is called the Local-Output feedback

neurons as shown in Figure 1.

Another advantage of the proposed control algorithm is that it does not use the neural

network as the model or the inverse model of the process. It is used as the optimiser

6

to minimise the cost function generated by the difference between the process output

and the reference. Hence there is no constraint on the accuracy of the neural network

models. This approach also has the additional advantage in that the tedious process

of plant modelling, although not totally eliminated, is simplified.

5. NEURAL NETWORKS IN CONTROL SYSTEMS

There have been many applications as well as attempts to use neural networks as part

of the control strategy. Recurrent neural networks has the apparent advantage over

linear control approaches in that the models used in the control loop represents the

plant or process over its dynamic range. That means, even if the operating range

changes, the model is still valid and should provide satisfactory control actions.

However, if the dynamics of the process itself changes, due to many reasons such as

rusty pipes etc., the model is no longer valid. This means that the model will have to

be re-trained. The re-training is needed to be conducted off-line, and will require as

much data as the training of the previous model. This data is not always available.

Also, the changes in the process dynamics are often too small to excite the learning in

neural networks although it sometimes results in significant change in control action

performance.

The work conducted in this research performs the updating the neural networks

incrementally as the process is running. Theoretically, if there is any change in the

process dynamics, there will also be difference between the process output and the

reference. This will result in the neural network updating itself appropriately.

6.0 ON-LINE REAL-TIME CONTROL

On-line real-time control needs the controller to have the ability to adapt to the

changes in the process being controlled. Real process may experience changes in

dynamics due to wear in components etc. This will result in change in the rate of flow,

speed of rotation and so on. All these factors will contribute to the changes in the

process dynamics.

Neural networks are able to handle changes in process operating range well, but the

changes in the process dynamics will affect the controller performance. The main

7

objective in this research is to find a method to enable the neural networks used in the

control loop to be able to adapt itself fast enough as the process is running so that it is

able to adapt itself on-line in real-time. The proposed system uses the Recurrent

Prediction Error algorithm (Adom, 2001).

One note of caution is the speed of the response of the system. So far the work

conducted has only involved simulated processes. When dealing with real processes,

requirements when dealing with fast systems, as in electric motors, are different to

systems with slow or very slow response as in fermentation. Since the codes were

implemented in MATLAB, there exist some limitations when controlling systems with

very fast time constants.

7.0 ALGORITHM IMPLEMENTATION PROCEDURES

This section discusses the implementation procedures of the control algorithm for

single-input single-output (5150) systems. The procedures are presented step-by­

step for easy implementation by user.

Naturally, to implement any control strategies, there needs to be considerations in

terms of the process or plant configurations, controller parameters etc. Also, when

dealing with neural networks, other parameters, such as network architecture, size,

learning algorithm and its learning parameters are crucial.

Another important aspect is the data conditioning. Performing data conditioning avoid

miscJassification of the data and biased results due to large magnitude input-output

data.

The section first discusses the considerations for the overall control system. Then we

consider the process or plant. Next comes the considerations needed for the neural

networks itself, along with the training algorithm.

7.1 CONTROL SYSTEM CONSIDERATIONS

As with all implementations using neural networks, the most important issue is the

input-output of the system.

8

The choice of the network size/structure will be case dependent. This is because the

number of inputs and outputs of the neural networks will depend on how many inputs

and outputs the system has, and also all other inputs that the system needs in order

to represent the system as well as additional data needed.

7.2 PROCESS INPUT-OUTPUT CONSIDERATIONS

Neural networks can learn the dynamics of a plant or process by means of their input­

output pairs. This means that neural network modelling is a black-box modelling and

it does not need to know the states of the plant or process. Because of this, the

reliability of the input-output data pairs are crucial to ensure the success of the control

scheme. We will look at the factors to be considered one-by.:.one.

7.2.1 PROCESS INPUT-OUTPUT PAIRS

The first consideration is the process input-output pairs themselves. The use of neural

networks will require the determination of the number of inputs and outputs to the

system. This will be used to determine the number of inputs and outputs to the

neural network model. Also, other inputs necessary for the neural model to capture

the system dynamics will also have to be considered.

Once the inputs and outputs to the process have been determined, the data collection

can be conducted. The plant should be given a set of inputs that covers the whole

operating range of the plant and the corresponding set of output responses of the

plant are recorded. These will form the input-output data pairs of the plant.

7.2.2 DATA CONDITIONING

The neural networks used in the control system will only be as good as the data used

to train or update it. Since the structure of the neural networks is basically

connections with certain gains (in this case the weights), utilising certain linear/non­

linear functions, users must be very careful as to not saturate the outputs or even the

hidden node outputs. If this happens, the network will not be able to update itself

using the algorithms. To make sure that this does not happen, the data must be

conditioned first.

9

The data should be scaled so that it has a mean ofzero and variance of 1. This will

not only eliminate the problem of the network outputs saturating, but will also

eliminate the problem of bias due to certain data with large amplitudes.

x-x
x = mean

scaled x
std

where Xscaled = scaled data

x = x vector

Xmean = mean of vector x

Xstd = standard deviation of x

As a start, the user will have to collect certain number of input-output data pairs and

find the scaling needed to bring the data pairs to have a zero mean and variance of 1.

This scaling will then be used throughout the running of the system. This has to be

conducted this way because during the running of a system on-line in real-time, the

data will have to be scaled as it comes in, Le. one at a time. Hence, it is not possible

to find its variance nor mean. So the scaling of the pre-collected data will be used to

scale the incoming data into the system.

7.3 CONTROL SYSTEM IMPLEMENTATION

The nature of using neural networks requires the user to determine the network

parameters before implementation. The determination for the network parameters

will depend on the process or plant. The inappropriate choice of learning parameters

of the initial condition may result in the algorithm not converging, even though a

suitable structure and training algorithms were used. The problem is there are no

rules in determining the optimum learning parameters for the training algorithm.

After a number of runs of the training, these produced results may suggest a smaller.

range of learning parameters that produce the most desirable results. By using these

smaller range of parameter values, the length of the experiment for a particular

structure-algorithm pair was made shorter without having to repeat the procedure

unnecessarily.

7.3.1 PARAMETER SETTINGS

Users will have to determine the suitable parameters for the neural networks as well

as the training algorithm. There are several methods are available to determine the

network size, for example using a pruning algorithm. This algorithm will 'prune' the

10

network of a large size until it reaches the smallest network size without the los of

significant accuracy.

The work conducted in this research uses the more conventional trial and error

method of building the network size by a pre-determined steps and testing each of the

network for its accuracy.

7.3.2 NEURAL NETWORK PARAMETERS

The network parameters mainly concern the network size. But since the number of

network inputs and outputs are case-dependent, and are predetermined and fixed

throughout the procedure, the main parameter that can be chosen is the number of

hidden nodes. The number of hidden nodes are often referred to the size of the

network since the number of inputs and output are fixed.

The size of the neural network used will be problem-dependent. Some testing can be

conducted to test the suitability of the number of hidden nodes, for example, to a

certain application. To do this, the system can be simulated to run using the tested

network. If, after a few iterations, say 100 or so, and the system behaves as

required, then that network size can be used. If not, then different network size may

be tested.

Usually, the test starts with a smaller network, say 4 hidden nodes, and gradually

more nodes are added if the initial setting was not satisfactory. The usual numbers

are 4, 6, 8, 10 and so on.

Another parameter that may be changed is the number of delayed hidden nodes

output are fed back into the hidden nodes (refer to function H in Figure 1). However,

this is usually unnecessary because the structure given in the sample MATLAB code

was found to produce best results (Adom, 2001).

7.3.3 ALGORITHM PARAMETERS

For the implementation of on-line real-time control of systems, batch learning or

updating of the network weights is not applicable. This is because the network will

have to keep track of the difference between the process output and setpoint or

reference at every sample time. Hence the updates of the network weights will have

11

to be performed at every sample. This means that only iterative weight updates can

be implemented.

eO)

r
OPTIMSER PROCESS

+

Figure 2. Control system configuration

Optimiser

Get uti-I)
from u

Input to process
model CSTR

Send U(i-I) to
CSTR

Compare sp(i),
y(t)

Yes NI1"f
update

Figure 3. The flow-chart of the control algorithm implemented

12

7.3.4 PROGRAMME RUNNING MONITORING

Another important factor during the testing of the network in the control loop is the

monitoring of the network and system performance on-line. As for the network, this

can be achieved by monitoring its sum-of-squared-error (SSE).

In conventional approach of using neural networks where they are pre-trained off-line

before being integrated in the control loop, the SSE of the network validation is used

and not the SSE of the network during training. This is because, during the network

training, the algorithm pushes the network output to follow the reference, and usually

do not show the true picture of the state of the network training (Adom, 2001). The

SSE during network validation provides a true picture since during the validation

process, the network weights are kept fixed. Think of it as the results of students

tested during an examination. What he or she answers during the examination is

what he or she knows and have learnt.

Another parameter that can be used to monitor the performance of the network is the

hidden node output(s). The hidden node output should not saturate during the

network training, or in this case, during the running of the control process. If this

happens, no updates of the weight can be achieved.

7.4 SUMMARY

The implementation of the algorithm will require the considerations of the process

input-output pairs (data conditioning), control system and neural network parameters

(which include the algorithm parameters) as well as programme running monitoring.

The system parameters, as in the number of plant inputs and outputs, are pre­

determined and fixed throughout. Other parameters, such as the delayed plant inputs

and outputs, the difference between the plant output and reference, can be used as

part of the controller input.

The parameters of the system, as in the determination of the input and output are

predetermined. This will determine the number of inputs to the neural networks.

13

8.0 SAMPLE APPLICATION

This section presents a sample implementation of the proposed algorithm. The test­

bed used is a Continuously-Stirred Tank Reactor (CSTR) process.

Caj, q, Tr

Ca,q,

V

W

T

Figure 4. Schematic diagram of a Continuous-Stirred Tank Reactor (CSTR

process). The input and output of the tank are qc and Ca respectively.

The process in a single-input single-output (S1SO) system of highly non-linear

relationship between the input and output. This process was chosen because it

provides a good challenge for the neural network models both in modelling and control

due to its non-linearity. It has highly non-linear dynamical properties, which are

described by two non-linear differential equations;

dT ==(-i)(Tj _T)+(-&lkoCaJexp(-E) +(pc:p:Jqc[l-exp(-hA JJ(Tc-T)dt V pCp RT pC pr qcPcCpc
(2)

where the process inputs and outputs are the coolant flow rate, qc, and the effluent

concentration of species A, Ca, respectively. Refer to Appendix 2 for the descriptions

. of the other system parameters.

The initial conditions of the CSTR process are assumed to be a nominal steady-state

where the concentration and tank temperature have the following values :

Ca = 8.235xl0-2 mol/I, T = 441.81K

14

8.2.2.2 Filter constant, f

A range of setpoint values was given as the input to the IMC scheme. Referring to

figure 1, the filter constant was varied to study its effects on the control of the IMC

scheme. The filter constant (f) can be selected to reduce the gain of the feedback

system moving from the perfect controller. The choice of filter is an important in

implementing the IMC scheme to ensure proper control action is achieved. This choice

will give an affect on the transient response of the process. The filter will keep the

input signal to the controller bounded. The filter used in this experiment is a discreet­

time first exponential filter.

The correct choice of filter constant will help dump the response of the process to

produce a smooth transition to follow the change in the setpoint. This done by tuning

the filter constant using trial and error method.

8.2.2.3 Forgetting factor, ff

The forgetting factor used in the training algorithm (RPE) for this experiment was kept

constant at unity. By doing this its allow the algorithm to fully converge and observed

to give satisfactory performance. The value range used in this experiment is 0.1 to 1.

8.2.2.4 Optimiser output change constant, c
This approach substitutes the inverse model with an optimiser as the controller in the

control loop. The optimiser will find a suitable output i.e. input to the process such

that its gain is the exact inverse of that of the forward model.

As an optimiser was used as a controller in this IMC scheme, the optimiser output

change constant will put into consideration if using the extended cost function. In this

experiment extended cost function was used.

8.2.2.5 Length of training, np

The training length will give an effect on the learning process, which the input data will

be repeated.

8.2.2.6 Setpoint, sp

17

There are two sets of input data (setpoint) Le. randomly generated and repeatition

data. In this experiment repetition setpoint was used to detect the network learning

during the training process.

8.2.3 Network connections

There are three networks connection used in this experiment Le. setpoint, process

output and optimiser output. All these three will be used as an input to the controller

(optimiser) .

The IMC scheme was tested separately before being integrated into the control loop.

This was to ensure that each sub-system representing each block produced the

appropriate response to corresponding input signals. In this way, troubleshooting the

IMC schemes are made easier and any faults results in the sub-systems can be

properly identified. The overall implementation of the control schemes was done in

MATLAB. On the other hand, the simulated CSTR process was implemented in

SIMULINK. To communicate between the process and the IMC scheme .m file was

implemented and MATLAB integration function rk45 (Runge-Kutta order 5) was used.

After the completion of the network and training parameter selection was completed,

the testing of the performance of the selected controller was conducted. The results

were then compared to Hybrid Multilayer Perceptron (HMlP) conducted using the

same procedures. The extra work was conducted to validate the superior perfromnace

of the LOLRGF neural networks.

8.3 Results and Discussions

8.3.1 Network size

Table 1: Result for Network size according to time for 500 samples

Network Size Time (5)

8 380.4840

12 392.7060

16 405.9220

20 428.7660

In this experiment there are 4 network sizes used i.e. 8, 12, 16 and 20. Table 1 at the

above shows the result for network size according to time for 500 samples. The results

18

of the investigation into the effect of increasing the LOLRGF network size on the

resultant model accuracy were as expected. It was observed that an increase in

network size will gives an increase in model accuracy. However, the higher the model

order, the larger the number of weights in the mode, hence the training time increases

significantly. Differences in the number of weights in the network affects the training

time significantly, especially with larger network size.

8.3.2 Learning parameters

The highest accuracy was found using a trial and error method. This process was

lengthy, as the training has to be repeated each time using different learning

parameters. The increase in model accuracy will cause the expense of increased

network model training times, which increases significantly. The training period

increased with a higher ratio than the increase in the network accuracy.

8.3.2.1 Feedback gain (a)

:rl~ W:[[lIIJ :lliiWii:LJ
-u 50 %0 '151} 200 250 30u 3~O -too 400 ~uo 1):30 1Cuj 150 ZOJj 250 300 35D ~Ij(l .450 5(1(1

~ ~

'''~11-1

(112

11

Oti~
u.OB

Ii 5:0 100 151,) 2UO 250 300 350 ·.WO .HO 500
Setpoint and PmcBss Output

(a)

19

U1-1

11uS'----::':-----'.,.--~_::_'_--'-----"-,-J..._-'----'-.....Jo w w ~ ~ ~ _ ~ _ a M
8etpnint ami Pror..:ess Olltf-tlt:

(b)

I

lJ
\1\ ~ \1\ ~ l v.

-- -- -- -- -- -- -- --1
(I ol,,l 11J1I bu 2lJLJ 2~O 3uu 3:)t.! ..f.Ov 4::>L' DI~IlJ

SE

(I
If, ;\/\ \/\ \1\ \1\

(I :,)0 'lOO 10u 2,Ju 200 3lJO 300 400 ...50 500
'3E

(c) (d)

Figure 7: (a) network size 8 (b) Network size 12 (e) Network size 16

(d) Network size 20

Figure 7 at the above shows the best output for error, process output and setpoint

corresponds to the filter constant value. Its shows that all of the network size gave

best result when filter constant value is 0.9 other than that gave the result which

shows the network cannot reduce the gain of the feedback system moving from the

perfect controller. As the result this filter constant value for each network size was use

as a set value for next learning parameters processes.

The filter constant is very important in determining the process response. A small

value results in a slow but smooth process response! and a high value results in fast

process response but at the expense of an oscillatory controller output.

8.3.2.3 Forgetting factor (ff)

... 11\ ~\ 1/\ lA 1\..-
-IJ 50 l[1Q 1~i] 2QO 250 3(N 350 JOO 450 500

8E

i 11\ ~ \1\. \\ t'\ ~ \A ~ \1\
.- -- -- e - -- -- - -'- IJ ::o\J 1IlU ' 1~u .eIJu 201] 3uu 3.:'u .4IJIJ 400 coa

:3E

014

a16.----r--,-----,--"T"""---,--r--r----r---r---,

014

o013 '----:':--~~_:__-:-'c:----:-'--_,J_-;_L__--'--'----'o :;0 100 150 200 250 300 350 400 J50 500
:3etpoint and Process Oulvut

(I OJ) lO!---'5~0.......,l~OI],-~15'-:-i --:-':20""'0~2~-:-0-';-3('-:-10----3~'-:-ll)-J-'-:1]1)-4~51J-1 -1500
Setpoint ami Process OLltl:,rt

(a) (d)

21

"

I~ (1\ \/\ IA ~

0(1 WO EO 20li 2~ti 301] 3~O .00 ~5i} ~OO

SE

100 150 200 201) 30'3 3\ilJ -tOO 450 500
Betl;cint an;:1 Precess Outp.ut

,-, \1\ !\ 1/1 VI \1\ \1\ 'A
'0 50 100 160 20'j 250 3Or) 35Q ~OQ ~60 5(IIJ

SE

014

Q 0!3 ~-!::---:-7:-__:':c:--~-::-:-,--~--:c'-:--:-'-:-c':-:---::
o 6u 1UO 101) 2Qfj 200 300 300 -tOO 450 ;';OU

Self-oint 8n,1 Process OlllPlil

(~ W)
Figure 8: (a) network size 8 (b) network size 12 (c) network size 16

(d) network size 20

Figure 8 at the above shows the best output for error, process output and setpoint

corresponds to the forgetting factor. It's shows that all of the network size gave best

result when the forgetting factor value is 1. Due to that this value was used for each

network size for next learning parameters processes.

8.3.2.4 Optimiser output change constant (c)

c=1

-I

z

o. I}\ ~ \/\ ~ !II \/\ 11\
u 51) 11j1J 150 :wo 25.0 .3l1U 30Q ,;V)I] ~:)I] ;(11)

8E

C' 16 ,---.....-.,---.,..-..,----,.-...,----,--r--,....c...-,

il14

(I ,j" .~-!::-~~__:':c:--::7::-_=t-:--7'::-~::--~---:-'-:-~
!J 50 10lJ 150 200 250 -300 3&0 -ill!} 459 500

-.59tpoint and Precess Outvut

(a)

Q.(H3~.--::':-~,--~-::":.,...-~~'-:--::-':-:---:-'-:--'-:,.--~
U W ~ ~ ~ ~ D • ~ a ~

Setpcint and PfO~ess OutFut

(b)

22

c=1

!~

ltI In \~

250 31)(1 360 400 450 50')
SE

Ij 1~

o0', L--'------!-c-':-:---'-~:_'_:__::_'_:,......__:_':_:__J.:_____c:_:___~
\) GO 100 151) 20el 20(; 30(1 350 -JUO 400 H!1j

8stpoint ~nj P,'OI:9SS OutpJt

0=1

j

\1\ ~ 11\ In. ,~

1S0 200 250 300 351) ~OO ~50 51)0
BE

oI}$ L---,i----'~~____:c'_c--~____:!_:c____::e:_:__:_'_:___,_':_:___:_'o 50 100 1~O 200 2~ 300 ~O 400 450 500
:3et~Dint and Process Outl::ut

(c) (d)

Figure 9: (a) network size 8 (b) network size 12 (e) network size 16

(d) network size 20

The effect of the past optimiser output on the current output can be controlled by

varying the optimiser output change constant, c.

Figure 9 at the above shows the best output for error, process output and setpoint

corresponds to the optimiser output change constant (e). It's shows that all of the

network size gave best result when the e value is 1. Due to that this value was used

for each network size for next learning parameters processes.

8.3.2.5 Length of training (np)

Table 2: Length of training for network size 8

Length of training Time (s)

5 371.4220

10 380.4840

20 384.4370

50 412.9690

In the learning parameter it will give an effect on the learning process, which the input

data will be repeated according to the length of the training. By increasing the length

of training it will reduce the error however higher value used will give an affect on the

learning process which will take longer to complete. Table 2 at the above shows the

times which take for every length of training used. In this experiment the length of

training used is 10 seems it will take approximately as O.Olm/s in the realtime.

23

8.3.2.6 Setpoint (sp)

In this experiment repeatation setpoint data was used to detect the network learning

during the training process. It seems with suitable learning parameters used in the

experiment, gave better result and reduce the error. For this experiment number of

input data (setpoint) used is 500 data. By increasing the number of data it will show

better result and could trace how long it take to reduce the error to minumum

condition.

8.3.3 Network connection

There are three networks connection which used in this experiment i.e. setpoint,

process output and optimiser output.

""~ou .
Q 12

0.1 . 1

Ij 03OQ€~
o ~Ij 1l);j 150 200 25(1 301) 350 ;t.l,}u 45lj ·500

Sstpclnt a!}~l Pro<:ess Out~Ht

:::~on

:":~at!J3o SO 100 15~ ~ lli 200 3~ ~QO ~O ~

(a)

Figure 10: (a) NN inputs sp(t), y(t-1), u(t).

1), u(t).

(b)

(b) NN inputs sp(t), Sp(t-1), y(t-

BE

""~01.1

(; 12

01 I

I]OO~
(i 013

0- 50 100 150 201] 250 30G 350 4011 ol511 601]
Satpoint and Process Olltl;ut

(a)

...~ou
012

i)1

I] 1]3O1]6~
o ~O 100 150 ,~O ~O 300 350 400 ~60 ~O

Betj.::oint an:! Prcces"9 Output

(b)

24

Figure 11: (a) NN inputs sp(t), y(t-1), u(t). (b) NN inputs sp(t), y(t-1), u(t),

u(t-1).

:Cll utLl. LD 11 ~ J, Lj~.d
(t 5\1 10(1 1~u 200 25D 300 3:)\1 ..!dO -lbQ ~(;tj (1::;1) 11]1) 151) 200 250 31)1} 350 ..WO 4~lj 50u

~ ~

>J."~OU

012

(11 .:

1J 1]8

(I 0130 00 100 Hrj 200 2~1 .SUU 350 400 .JGu - 300
.':etrCiOl ;.n;:! FYoc~ss OutPlif

IJl15

OU ..

Q 12
, r--1

01 I::~
I) ~ 100 1~ 200 250 300 §Q 400 ~ ~

Bs1pc.int and Pro:;es8 Otll~tJt

(a)

Figure 12: (a) NN inputs sp(t), y(t-1), u(t).

1), u(t).

(b)

(b) NN inputs sp(t), y(t-l), y(t-

Figures 10 - 12 above show the output for setpoint, optimiser output and process

output at t. For Optimiser output and setpoint was started at t=O, while for process

output delayed at t= 1. Using this setting the output result will show less errors

compared if start at t=l or more.

From the results, the inputs to the network that provides the most suitable control

actions is sp(t), y(t-1) and u(t).

8.3.4 Overall Results

The above results represent the progression of the experiments to obtain the final

neural network controller. This section presents the results if the selected controller

using the LOLRGF compared to another using HMLP neural networks.

Figure 13 shows the process setpoint-tracking test when recurrent neural network,

LOLRGF, was used in the controller. Figure 14 shows the same test when feedforward

neural network, HMLP, was used in the controller. Both of the networks were

initialised to a random set of weights without off-line pre-training.

25

50 100 150 200 250 300 350 400
SE

I
I

If\. ~ ~ \1\ I ~
00 50 100 150 200 250 300 350 400 450 500

BE

4

2

6

I

III \/\ 11\ Ih \1\

2

6

0.16,------.---r--.,---,----r--..,-----,,----,

0.14

0.16 r----r--r----r--,----r--r---r--,---r--,

0.14

0.060 50 100 150 200 250 300 350 400
Setpoint and Process Output

(a) (b)

Figure 13. Setpoint-tracking test using LOLRGF neural networks in the

controller.

2

0.1

i

" ~I

\~ 11\

0.060 50 100 150 200 250 300 350 400 450 500 0.060 50 100 150 200 250 300 350 400 450 500
Setpoint and PrOtess Output Setpoint and Protess Output

4

6 6

0.16 r---r----,,.....---r----,,.....---,----,--,.-----,-.....,---,

0.14

00 50 100 150 200 250 300 350 400 450 500 °o~~':'-'-"~~:=--=:':='===::~~----:::':::-~----::::==:=
SE

(a) (b)

Figure 14. Setpoint-tracking test using HMLP neural networks in the

controller.

Referring to Figures 13 and 14, it can be seen that the feedforward neural networks

used, HMLP, is unable to cope with the non-linearity of the process dynamics.

Although trained using the same RPE algorithm, the network is unable to produce

satisfactory control actions. In Figure 14(b), the setpoint-tracking error seems to be

greater with time as opposed to the one seen in Figure 13(b).

As can be seen in Figure 13(a), the error slowly decreases as the controller is

presented with the same setpoint values. The squared error (SE) plot show the peaks

26

gets smaller with time. Further tests are being conducted to try to eliminate the offset

still visible as seen in Figure 13(b).

Tests are being done to control a real process, in this case a DC motor, directly from

MATLAB. This is achieved via BASIC Stamp module being developed. The test on a

real process will have to be performed to verify the feasibility of implementing the

proposed controller approach in real life.

9.0 DISCUSSIONS

One of the training algorithm parameter investigated during this period of the project

is the length of training sample. At every sample, if the process output differs from

that of the setpoint, the neural network is trained, i.e. the weights of the network are

updated. The longer this training period, the better the network is supposed to be at

predicting the process response. However, the longer training means that the

controller will take a longer time to provide the next control signal. Hence, a

compromise between the length of network training and accuracy of the control

actions has to be considered. In the case of this project, the training length of the

neural network was set to 10 samples. Due to the nature of implementation in

MATLABjSimulink which has a limitation on the speed of the response, the designed

controller will have to be coded in C for the control of high speed applications. For

process controls, the codes programmed in MATLAB will be adequate.

10.0 FURTHER WORK

The work discussed was tested on simulated process. The implementation using real

processes will require other consideration and are discussed below.

When dealing with a real process, the time constant will be one of the determining

factors whether the proposed control algorithm is feasible. The codes for the

controller were implemented in MATLAB. This is fine for systems with slow time

constant, i.e. greater than lsecond.

For systems with very small time constants, like an electric motor, different approach

to the implementation of the algorithm is needed. The user may choose to convert

the codes into C. In this case, the user will also have to convert the built-in MATLAB

27

function, fmin. This is the function used to minimise the error between the controller

and the reference.

Another consideration is if the MATLAB software is not available. This will also be the

case when the whole controller system is an independent or embedded control

system. Then the codes to the algorithm will have to be converted to the appropriate

software language.

11.0 SUMMARY

The manual presents the findings of the fundamental research under the usm frgs

grant for recurrent neural network application For On-line real-time control Of Non­

linear dynamic systems

The description takes the user from the start to finish including the considerations of

each case.

28

REFERENCES

Adom, A. H., "Modelling and Control of Non-linear Dynamic Processes using

Partially Recurrent Neural Networks", Ph.D. thesis, Liverpool John Moores University,

2001.

Campolucci P., Uncini A., Piazza F. and Rao B. D., "On-Line Learning Algorithms for

Locally Recurrent Neural Networks", IEEE Transactions on Neural Networks, vol. 10,

no. 2, pp. 253-271, March 1999.

Tsoi A. c., and Back A. D., "Locally Recurrent Globally Feedforward Networks: A

Critical Review of .Architectures", IEEE Transactions on Neural Networks, vol. 5, no. 2,

pp. 229-239, 1994.

Tetsuro Yabuta and Takayuki Yamada, "Neural Network Controller Characteristics with

Regard to Adaptive Control", IEEE Transactions on Systems, Man and Cybernetics, Vol

22,No. 1 January/February 1992, pp 170-177

Karl Johan Astrom, "Adaptive Feedback Control", Proceedings of the IEEE, Vol 75, No.

2 February 1987. pp 185 - 217

Allon Guez, James L. Eilbert and Moshe Kam, " Neural Network Architecture for

Control", IEEE Control Systems Magazine April 1988 , pp 22 - 25

K.Khorasani, " A Robust Adaptive Control Design for a Class of Dynamical Systems

Using Corrected Models", IEEE Transactions on Automatic

Control, Vol 39, No.8 August 1994, pp 1726 - 1732

Kumpati S. Narendra and Jeyendran Balakrishnan, "Adaptive Control Using Multiple

Models", IEEE Transactions on Automatic Control, Vol 42, No.2, February 1997, pp

171 - 187

Gang Feng, " A Robust Approach to Adaptive Control Algorithms", IEEE Transactions

on Automatic Control,Vol 39, No.8 August 1994, pp 1738 - 1742

Jin Young Choi and Jay A. Farrell, " Nonlinear Adaptive Control Using Networks of

Piecewise Linear Approximators", IEEE Transactions on Neural Networks, Vol 11, No 2,

March 2000, pp 390 - 401

29

Kun Yuan Huang, Hong Chan Chin and Yann Chang Huang, " A Model Reference

Adaptive Control Strategy for Interruptible Load Management", IEEE Transactions on

Power Systems, Vol 19, No.1, February 2004, pp 683 - 689

Xiang Jie Liu, Felipe Lara-Rosano and C.W.Chan, "Model Reference Adaptive Control

Based on Neurofuzzy Networks", IEEE Transactions on System, Man and Cybernetics ­

Part C: Application and Reviews, Vol 34, No 3, June 2004, pp 302 - 309

Mitsuru Kanamori and Masayoshi Tomizuka, " Model Reference Adaptive Control of

Linear Systems with Input Saturation", Proceedings of the 2004 IEEE International

Conference on Control Applications, Taipei, Taiwan, September 2-4, 2004. pp 1318 ­

1323

S.S.Ge, Fan Hong and Tong Heng Lee, "Robust Adaptive Control of Nonlinear Systems

with Unknown Time Delays", Proceedings of the 2004 IEEE International Symposium

on Intelligent Control, Taipei, Taiwan,September 2-4, 2004. pp 1- 6

Wen Shyong Yu, "Model Reference Fuzzy Adaptive Control for Uncertain Dynamical

Systems with Time Delays", IEEE International Conference on Systems, Man and

Cybernetics, pp 5246 - 5251

Tomohisa Hayakawa, Wassim M. Haddad, Naira Hovakimyan and VijaySekhar

Chelaboina, " Neural Network Adaptive Control for Nonlinear Nonnegative Dynamical

Systems", IEEE Transactions on Neural Networks, Vol 16, No.2 March 2005, pp 399 ­

413

Baris Fidan, Youping Zhang and Petros A. Ioannou, "Adaptive Control of a Class of

Slowly Time Varying Systems with Modeling Uncertainties", IEEE Transactions on

Automatic Control, Vol 50, No.6 June 2005, pp 915 - 920

N.C.Quang, MJ.Tordon and J.Katupitiya, " A New Approach to Switching Robust

Adaptive Control", 43rd IEEE Conference on Decision and Control, December 14-17

2004, Bahamas, pp 3247 - 3252

Kemal Ciliz and Ahmet Cezayirli, " Combined Direct and Indirect Adaptive Control of

Robot Manipulators Using Multiple Models", Proceedings of the 2004 IEEE Conference

on Robotics, Automation and Mechatronics, Singapore, 1-3 December 2004, pp 525 ­

529

30

APPENDIX 1

MATLAB CODE

Note: The MATLAB code attached uses the built-in function fmin to optimise the cost

function. This function can be substituted with any other optimising functions.

clc;

clf;

clear all;

%---
% IMC implementation using LOLRGF neural network model and a predictor as the

controller.

% Uses MATLAB function fmin to find the best fit (optimiser output) so that the

% output of the model is closest to the filter output.

% All values used in the structure is scaled using the DCSALE function.
%

% This system is with filter with scaling

%---
% Loading Data

load setpoint2;

load w20;

sp=sp(1:500);

np=Jength(sp);

0/0***

% Initialising variables

% Initialising filter variables

nh=20;

f=0.9;

fout=O;

% Hidden nodes

% Filter constant

% Present output of filter

32

fout1=O;

fouCs=O;

fout_s1=0;

fout_s2=0;

% Previous value of the filter output

% Previous value of the filter output

% Previous (t-1) scaled value of the filter output

% Previous (t-2) scaled value of the filter output

% End initialising filter variables

% Initialising process variables

x=[0.08235441.81];

errl =zeros(l,np);

ynn=zeros(l,np);

xfwd 1=rand(nh,l);

xfwd2 =rand(nh,l);

xfwd3=rand(nh,1) ;

% Initial condition of process

% Initial condition of errors

% previous hidden layer output (xh(t-l))

% previous hidden layer output (xh(t-2»

% previous hidden layer output (xh(t-3))

% End initialising process variables

opt_out1=0; % initial optimiser output

inl=O; % inport input (initial)

rt=zeros(l,np); % the control signal (scaled)

var2=0.08235; % initial cstr output condition.

modeLvar= [xfwd1;xfwd2;xfwd3]; % model variables

% End initialising variables

**

% Start of control loop

to = clock;

for i=l:np

% Compute the setpoint at time t

varl=sp(i); % varl = setpoints

33

% Sending the setpoint values to the filter

% Filter output. First order discrete-time type filter.

fout= (f*varl)+ ((l-f)*foutl);

Cout(i) =fout;

% Scale the filter output value to dscale of u (training data)

fout_s=(fout-0.08235)jO.0164;

rt(i) =fout_s;

target=fout_s;

mn=min(rt);

mx=max(rt) ;

% set the scaled filter output as the target for optimiser

% scaled

0/0***

% Sending the setpoint values to the optimiser

% Optimiser

% Finding the optimiser output using the function fmin

opt_out=fmin('optimisr' /mn/mx/ []/varl/var2/opt_outl/w/modeLvar,target);

uhat(i)=opt_out; % Scaled optimiser output put in a vector

0/0***

% Sending the optimiser output to the process

**

% in=(uhat(i)*5.6768)+99.2526; % de-scale input to process (uhat) to real value

in=(uhat(i)*4.48)+100.26; % de-scale input to process (uhat) to real value

% Process/cstr

[t,x,y]=rk45('CSTR3',[0 0.1],x,[le-3 0.0005 0.01],[0.0 in1;0.0 in;O.l in]);

n=length(y);

x=x(n/:);

cstcop(i)=y(n);

inl=in;

var2=(y(n)-0.08235)/0.0164;

34

0/0***

% Computing the difference between setpoint and process output

err(i) = sp(l,i) - cstr_op(i);

%Defining the network variables for NN updating

% nn_var=[w;varl;modeLvar];

nn_var=[w;modeLvar];

% If error occurs, update the NN weights

if err rv= 0;

% Updating the NN if there exist error between sp(t) and yet)

[ynn,w,varl,var2,modeLvar] =nn_update(w,nn_var,varl ,va r2,opt_outl);

end

0/0***

% Observing the rate of change of the optimiser to reduce oscillations

% Computing the change in optimiser output

o_change(i)=(opt_out-opt_outl)*(opt_out-opt_outl);

foutl=fout; % Updating the filter output signal

fout_s2=fout_sl; % updating the output scaled filter signal

fout_s1 =fout_s; % updating the output scaled filter signal

opLoutl=opt_out; % Updating the optimiser output

% Applicable only when extended cost function is used

eerl =err.*err;

ssel(l,i)=sum(err*err');

35

ssc(l,i)=sum(o_change);

% Plotting of results

**
figure(1) ;subplot(212);plot(sp,' k: ');hold

on;plot(Cout,'b') ;plot(cstr_op,'k');xlabel('Setpoint and Process Output');

% figure(1);subplot(222);plot(rt);hold on;plot(ynn,'r');xlabel('Controller Input and

Model Output');

% figure(1);subplot(211) ;plot(uhat);xlabel('Optimiser Output');

figure(l) ;subplot(211);plot(eerl) ;xlabel('SE');

% figure(1);subplot(224);plot(errl);xlabel('Error between Process and Model');

drawnow;

end

masa=etime(c1ock,tO)

% End of control loop

36

..

APPENDIX 2

The simulated CSTR process parameters are given below:

Tank volume, V 100ml

Specific heats, Cp, Cpc leal g-l K-1

Feed flowrate, q 100 I min-1

Pre-exponential factor, ko 7.2xl010 min-1

Feed concentration, Cat 1 mol-1

Exponential factor, E/R 9.98xl03 K

Feed temperature, Tt 350K

Heat of reaction, -.1H 2.0xl0s cal mor1

Coolant flow rate, qc 100 I min 1

Sampling period, .1t 0.1 min

Coolant temperature, Tc 350 K

Densities, P, Pc 1000g r 1

Heat transfer characteristics, hA 7xl0s min-1 K-1

37

