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 KESAN PEMBERIAN LEPTIN TERHADAP FUNGSI TESTIS TIKUS 
SPRAGUE DAWLEY DEWASA 

 
ABSTRAK 

 
 

Kajian ini mengkaji kesan pemberian leptin terhadap berat organ reproduktif, 

aras serum gonadotrofin, kiraan dan morfologi sperma, histologi testis, berat 

badan serta pengambilan makanan dan minuman tikus.   

 

Tikus Sprague Dawley, berumur 10 minggu dengan purata berat badan 200 ± 

1.44 g, dirawat dengan suntikan tunggal leptin secara intraperitonial dengan 

dos 5, 10 atau 30 μg/kg berat badan selama sama ada 7, 15 atau 42 hari (n=10 

untuk setiap kumpulan).  Berat badan, pengambilan makanan dan minuman 

diukur setiap dua hari sepanjang tempoh eksperimen.  Pada penghujung setiap 

rawatan tikus dibius dengan eter dan dimatikan dengan serta-merta melalui 

dislokasi servikal.  Laparotomi dijalankan dan epididimis kanan dikeluarkan dan 

di hancurkan di dalam 2 ml saline normal.  Suspensi ditapis dan diwarnakan 

dengan eosin Y 1 %.  Kiraan dan morfologi sperma dijalankan mengikut 

prosedur piawai.  Darah dikumpul daripada vena kava inferior, dibiarkan beku 

dan diempar untuk memperolehi serum.  Aras testosteron, FSH, LH dan leptin 

serum ditentukan dengan menggunakan teknik ELISA.  Berat testis, epididimis, 

prostate dan vesikel semen dicatat dan berat relative organ dikira.  Testis 

diproses melalui rutin benaman paraffin dan diwarnakan dengan pewarnaan H 

& E.  Keratan tisu diperiksa menggunakan penganalisis imej dan garispusat 

(STD) tubul seminiferus dan ketinggian epitelial seminiferus (SEH) diukur.  

 



 xv

Daripada kajian ini didapati bahawa pemberian leptin dengan dos sama ada 5, 

10 atau 30 μg setiap hari secara intraperitonial selama sama ada 7, 15 atau 42 

hari tidak mempengaruhi berat badan, pengambilan makanan dan minuman 

tikus secara signifikan.  Tiada juga perbezaan yang signifikan bagi aras 

testosteron dan leptin serum diantara kumpulan disuntik dengan leptin dengan 

kumpulan kawalan.  Walaubagaimanapun aras FSH dan LH serum bagi 

kumpulan disuntik dengan leptin lebih tinggi secara signifikan berbanding 

kumpulan kawalan.  Garipusat tubul seminiferus, ketinggian epitelial 

seminiferus dan kiraan sperma adalah lebih rendah dengan signifikan bagi 

kumpulan disuntik dengan leptin apabila dibandingkan dengan kumpulan 

kawalan.  Pecahan sperma abnormal juga lebih tinggi dengan signifikan bagi 

kumpulan disuntik dengan leptin berbanding kumpulan kawalan. 

 

Secara kesimpulan didapati bahawa pemberian leptin setiap hari pada dos 5, 

10 atau 30 µg, meningkatkan aras FSH dan LH serum secara signifikan di 

dalam tikus jantan.  Tambahan lagi, pemberian leptin juga mengurangkan 

kiraan sperma dan meningkatkan pecahan sperma abnormal, dimana ia 

berkemungkinan mempunyai kaitan dengan nilai STD dan SEH yang rendah di 

dalam tikus yang dirawat leptin.  Kesan leptin terhadap berat badan, 

pengambilan makanan dan minuman yang tidak seragam menunjukkan kesan 

pemberian leptin terhadap fungsi testis tidak dipengaruhi oleh perubahan berat 

badan. 
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 EFFECT OF EXOGENOUS LEPTIN ADMINISTRATION ON TESTICULAR 
FUNCTION IN ADULT SPRAGUE DAWLEY RATS 

 
ABSTRACT 

 
 

This study examines the effect of exogenous leptin administration on 

reproductive organ weight, serum gonadotrophins, sperm count and 

morphology, testis histology, body weight, food and water intake in the rat. 

 

Sprague Dawley rats, aged 10 weeks, and with a mean body weight of 200 ± 

1.44 g, were treated daily with a single intraperitoneal injection of either 5, 10 or 

30 μg/kg body weight of leptin for either 7, 15 or 42 days (n=10 for each group).  

Body weight, food and water intake were measured every two days over the 

experimental periods.  At the end of each treatment, rats were mildly 

anesthetized with ether and immediately killed by cervical dislocation.  

Laparotomy was performed, and the right epididymis was removed and minced 

in 2 ml normal saline.  The suspension was filtered and stained with 1 % eosin 

Y.  Sperm count and sperm morphology were conducted as per the standard 

procedure.  Blood was collected from the inferior vena cava, clotted and 

centrifuged to obtain the serum.  Serum testosterone, FSH, LH and leptin were 

measured using ELISA technique.  The testis, epididymis, prostate and seminal 

vesicles weights were recorded and the relative organ weights were calculated.  

The testes were processed for routine paraffin embedding and stained with 

H&E staining.  Tissue sections were examined using image analyzer and 

seminiferous tubular diameter (STD) and seminiferous epithelial height (SEH) 

were measured.  
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Daily intraperitoneal administration of either 5, 10 or 30 μg of leptin for either 7, 

15 or 42 days in this study did not significantly affect body weight, food intake 

and water intake of the rats  There was also no significant difference in serum 

testosterone and leptin levels between the leptin-treated groups and their 

matched controls.  Serum FSH and LH levels were however significantly higher 

in leptin-treated group compared to controls.  Seminiferous tubule diameter 

(STD), seminiferous epithelial height (SEH), and sperm count were significantly 

lower in leptin-treated groups when compared to age-matched controls.  The 

fraction of abnormal sperms was also significantly higher in leptin-treated 

groups when compared to controls. 

 

In conclusion, it appears that leptin administration in daily doses of 5, 10 or 30 

µg, increases both serum FSH and LH levels in male rats.  In addition, it also 

decreases sperm count while increasing the fraction of abnormal sperms, which 

might be related to the lower STD and SEH evident in leptin-treated rats.  Its 

effect on body weight, food and water intake was inconsistent, indicating that 

the effects of exogenous leptin on testicular function are independent of 

changes in body weight. 
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CHAPTER ONE 
INTRODUCTION 

 

1.1 The discovery of leptin 

Body weight in wild animals remains remarkably constant over a 

considerable period of time, even when there is an abundance of food.  This led 

many to believe that there normally exists a mechanism that regulates food 

intake, energy expenditure and therefore body weight.  The adipostatic model of 

body weight regulation was proposed to explain this regulation, where the role for 

depot fat in the hypothalamic control of food intake was hypothesised (Kennedy, 

1953).   

 

A few years earlier, however, a strain of recessive mutant mice (ob/ob) 

with hyperphagia, and early onset obesity had been discovered (Ingalls et al., 

1950).  Parabiotic experiments between these mutant mice and normal wild type 

mice caused suppression of food intake and weight loss in the mutant mice, 

indicating the presence of a humoral factor that regulated appetite and body 

weight in the normal mice (Hausberger, 1959, Coleman & Hummel, 1969).  At 

about the same time it was also observed that experimental lesions in the 

ventromedial hypothalamus (VMH) resulted in obesity in rats.  Moreover, 

parabiosis between rats rendered obese by experimental lesions in the VMH and 

normal rats led to death from starvation of the normal rats (Hervey, 1958).  

Collectively, all these observations suggested a possible interaction between the 
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hypothalamus and the hypothesised humoral factor that might have its origins in 

the adipose tissue.  

 

Sometime after the discovery of ob/ob mouse, another group of obese 

mice was discovered where the obesity was once again inherited recessively 

(db/db), but mice in this group were also diabetic (Coleman & Hummel, 1969).  

Parabiosis between these obese mice and normal mice, this time, led to the 

death of normal mice by starvation, suggesting the presence in large 

concentrations of a humoral factor that severely suppressed appetite in normal 

mice (Tartaglia et al., 1995).  The fact that it did not affect the db/db mice 

suggested a possible insensitivity to the hypothesised circulating satiety factor in 

the db/db mice.   

 

 While the mechanism by which the deficiency or insensitivity of this 

circulating satiety factor causes obesity might be more through hyperphagia, 

there is however also evidence to suggest that weight regulation or reduction by 

this proposed factor involves more than just the regulation of food consumption.  

VMH-lesioned mice and ob/ob mice were found to still develop obesity even 

when food intake was matched to that of lean normal controls (Coleman, 1978, 

Bray & York, 1979).  This led some to hypothesise that the satiety factor might 

also influence, among other things, energy expenditure in these animals.  In this 

regard, sympathetic activity to brown adipose tissue has been reported to be 

lower in both the VMH-lesioned and the ob/ob mice (Bray, 1991).  It therefore 
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appears that long-term body weight regulation by the proposed circulating satiety 

factor involves both the regulation of appetite i.e. food intake, and energy 

expenditure. 

 

It was over 40 years after its presence was first suspected that the 

circulating satiety factor was eventually detected and characterized.  Using yeast 

artificial chromosome, Friedman and his colleagues (1991) managed to clone the 

ob gene, and, that the hypothesised circulating satiety factor was the product of 

this gene, was subsequently confirmed through positional cloning (Zhang et al., 

1994).  The product of this gene was called leptin from the Greek root word 

‘Leptos’ meaning thin.  Ob/ob mice fail to produce this protein while db/db mice 

are resistant to its action due to an abnormality in the leptin receptor (Zhang et 

al., 1994). 

 

In humans, the ob gene, which is now also sometimes referred to as LEP 

gene, is localized on chromosome 7 (alpha31.3 position).  It spans 18 kilobase 

consisting of 3 exons separated by 2 introns (Isse et al., 1995).  The gene 

encodes a 4.5 kilobase adipose tissue mRNA with 166 amino acid open reading 

frame and 21 amino acid signal sequence (Zhang et al., 1994).  In the mouse it 

maps to chromosome 6, and consists of 3 exons and 2 introns, which encode a 

4.5 kilobase mRNA (Friedman et al., 1991, Zhang et al., 1994).  Human leptin 

nucleotide is a 166 amino acid polypeptide with a putative signal sequence, and 
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it is 84 % and 83 % identical to that of the mouse and rat, respectively (Masuzaki 

et al., 1995, Masuzaki et al., 1995a). 

 

1.2 Secretion of leptin 

Leptin gene is expressed mainly in white adipose tissue (Masuzaki et al., 

1995, Gong et al., 1996) although low leptin mRNA expression has also been 

reported in brown adipose tissue.  However, this may be due to contamination of 

mRNA expression from white adipose tissue (Cinti et al., 1997).  A number of 

non-adipocyte tissues have also been shown to synthesize and secrete leptin, 

albeit in small amounts.  These include the gastric mucosa (Bado et al., 1998, 

Mix et al., 1999, Cinti et al., 2000), mammary epithelial cells (Smith-Kirwin et al., 

1998), and myocytes (Wang et al., 1998).  The placenta has also been found to 

secrete significant quantities of leptin (Senaris et al., 1997, Singh et al., 2005). 

 

It has been suggested that when fat cells increase in number and size, the 

ob gene starts to produce leptin, which is secreted into the circulation.  There is a 

strong positive correlation between leptin mRNA expression and plasma leptin 

concentration, and total body fat (Frederich et al., 1995, Maffei et al., 1995, 

Considine et al., 1996).  Leptin secretion follows a 24-hours cycle with higher 

rates during the evening, peaking in the middle of the night hours, and lower 

rates in the morning, somewhat opposite to those seen in cortisol levels in 

humans (Laughlin & Yen, 1997).  Leptin secretion is mainly constitutive. Leptin is 

synthesized and extruded into the secretory pathway for release by mass action 
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(as opposed to being packaged into specialised vesicles for regulated release in 

response to an acute stimulus).  Higher rates of leptin secretion during the night 

may relate to the time of food intake and hyperinsulinaemia during the day (Sinha 

& Caro, 1998).  Although peak leptin and cortisol levels appear opposite to each 

other, studies both in vivo and in vitro in rodents and man have shown that 

glucocorticoids enhance leptin gene transcription and leptin levels (De Vos et al., 

1995, Slieker et al., 1996, Trayhurn et al., 1998).  Leptin levels are also elevated 

in rats given dexamethasone (De Vos et al., 1995).  The reason for the pattern of 

leptin secretion is therefore unclear, whether it is related to food intake is unclear. 

 

Serum leptin concentrations are higher in females when compared with 

males (Schrauwen et al., 1997).  The reason for this gender based difference is 

not entirely clear but has been observed in vivo from early infancy (Garcia-Mayor 

et al., 1997).  This gender difference persists even after correction for fat mass 

(Hassink et al., 1996).  Interestingly, 17 β-estradiol was found to increase leptin 

secretion into the culture medium of adipose tissue from female rats (Casabiell et 

al., 1998).  The administration of GnRH agonists to women undergoing in vitro 

fertilization treatment increases leptin levels, and serum leptin levels have been 

reported to correlate with estradiol levels (Stock et al., 1999).  Leptin secretion, 

on the other hand, is inhibited by testosterone, as evidence from inhibition of 

leptin secretion following administration of testosterone to orchidectomised rats 

(Kus et al., 2007).  Moreover, serum leptin levels have been found to correlate 

negatively with testosterone in males (Carraro & Ruiz-Torres, 2006).  It is 



 6

therefore possible that the increased response to oestrogens, to an extent, might 

contribute to the gender difference.  Catecholamines also reduce serum leptin 

levels (Trayhurn et al., 1998).  

 

Leptin expression and circulating levels increase in parallel with the 

amount of adipose tissue during the fed state (Lonnqvist et al., 1995) and the 

relationship between leptin levels and fat mass is curvilinear, rather than linear, 

with a wide range of individual leptin values at a specific level of body fat 

(Considine et al., 1996).  There is a higher positive correlation between serum 

leptin levels and total mass of adipose tissue rather than body mass index (BMI) 

(Maffei et al., 1995).  In addition to total tissue fat mass and the size of 

adipocytes, the pattern of adipose tissue distribution may also influence leptin 

levels (Tritos & Mantzoros, 1997).  Leptin mRNA expression is higher in 

subcutaneous than in visceral fat depots (Hube et al., 1996).  Omental 

adipocytes express more β-1, 2 and 3 adrenergic receptors than subcutaneous 

adipocytes (Lonnqvist et al., 1995).  The different receptor profile makes the 

former more responsive to the lypolytic actions of catecholamines and less 

responsive to the antilipolytic actions of insulin (Lonnqvist et al., 1997).  

 

Serum leptin levels are also affected by nutritional status, and fasting 

reduces leptin levels by approximately 30 %, while excessive food consumption 

leads to an increase in the secretion of leptin by 50 %.  Leptin levels increase 

more when food rich in fat is taken (Houseknecht & Portocarrero, 1998).  Leptin 
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secretion however, declines during aging.  This reduction is higher in women 

than in men, and is independent of BMI and other age-related endocrine changes 

(Isidori et al., 2000).  

 

For the ensuing, it is evident that a number of factors influence leptin 

secretion.  Although serum leptin levels in the main correlate well to fat mass, 

there nevertheless also appears that leptin is not only a static index of fat mass 

but it also acts as a sensor of energy balance. 

 

1.3 Leptin in circulation 

Once secreted into the circulation, leptin circulates in the plasma either in 

the free form or bound to the soluble leptin receptor (sOB-R or LEPRe) 

(Houseknecht et al., 1996, Lammert et al., 2001).  In humans and animals, 

increased leptin levels with adiposity are due to augmented ob gene expression 

and increased leptin production (Considine et al., 1995, Hamilton et al., 1995, 

Maffei et al., 1995, Ogawa et al., 1995).  The possible mechanism for the 

increase in leptin levels possibly involves an enlargement of adipocytes.  A study 

in vitro had shown that leptin secretion is closely related to fat cell size in genetic 

and diet-induced obese mice (Houseknecht et al., 1996).  In humans, small 

adipocytes express less ob mRNA than larger ones from the same individual 

(Hamilton et al., 1995).  As the leptin level varies in proportion to fat mass, it 

could conceivably serve as an afferent signal that provides sensory input about 

the degree of adiposity to the central nervous system.  In response, adjustment 
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of food intake and energy expenditure would be made to ensure long term body 

weight stability. 

 

Leptin levels appear to differ considerably in humans with similar fat mass 

and there is significant heterogeneity among subjects with similar BMI (Maffei et 

al., 1995).  Women have higher leptin levels than men at any percent of body fat 

or fat mass.  The ob gene expression in obese women was reportedly found to 

be 75 % higher than in obese men (Lonnqvist et al., 1995).  Serum leptin levels 

in normal healthy adults range from 0.5 to 37.7 ng/ml for male and 2.0 to 45.2 

ng/ml for female (Lida et al., 1996).  Leptin concentration in cerebrospinal fluid in 

women is also higher than in men after controlling for age, BMI and plasma leptin 

level (Schwartz et al., 1996).  A sex difference has also been described in mice.  

Female mice had higher plasma leptin levels and adipose tissue ob mRNA than 

male (Frederich et al., 1995).  Therefore, it appears that female fat cells produce 

more leptin than male fat cells with similar body composition.  As mentioned 

earlier, this may be related to the stimulatory effect of oestrogen in the female or 

the inhibitory effect of testosterone in the male, although leptin in postmenstrual 

women remains significantly higher than that in men of similar age and is not 

different from that in younger women after adjusting for body fat (Saad et al., 

1997).  The difference in fat distribution may also play a role in this difference in 

leptin levels between the two sexes, as subcutaneous fat expresses more leptin 

mRNA than intra-abdominal fat (Masuzaki et al., 1995).  Central android adipose 

tissue may produce less leptin than peripheral gynecoid fat, accounting for the 



 9

differences between men and women.  However, levels of leptin do not appear to 

be related to the waist/hip ratio (WHR).  

 

Serum leptin levels increase with age during childhood and adolescence 

as levels of the sOB-R decline in both sexes.  These developmental changes, 

which compositely represent an increase in circulating leptin bioavailability, 

precede the pubertal rise in serum testosterone in boys and estradiol in girls.  

Leptin might potentially serve as a metabolic signal to inform the central nervous 

system that energy reserves are adequate to support pubertal development.  

 

1.4  Leptin receptor  

Leptin acts directly through the leptin receptor (OBR or LR or LEPR).  The 

LEPR gene is located on chromosome 1 (1p31) in humans and is constituted of 

18 exons and 17 introns, and encodes a protein consisting of 1162 amino acids.  

The leptin receptor was first isolated from the mouse choroid plexus using 

expression cloning (Tartaglia et al., 1995) and has been found to belong to the 

class 1 cytokine receptor family (IL-6 receptor family).  The LEPR gene is known 

to encode at least five alternatively spliced forms or isoforms of the leptin 

receptor (Figure 1.1). Included in these variants are the soluble or secreted 

isoform (LEPRe), the long (LEPR1 or LRb) and short isoforms (LEPRa or LRa).  

The extracellular and transmembrane domains are identical between LEPRa and 

LEPR1 and differences are due to changes in the length of the cytoplasmic 

domain.  The cytoplasmic domain of the LEPR1 has 302 amino acids compared 
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with that of LEPRa, which is 32 to 40 amino acids in length.  The secreted or 

soluble form (LEPRe) only contains the extracellular domain of the receptor and 

not the intracellular motifs or the transmembrane residues (Kieffer et al., 1996, 

Houseknecht & Portocarrero, 1998).  The long form of the receptor is believed to 

be responsible for the actions of leptin and the short form is more to aid its 

transport across cell membrane, and the soluble form, for its transportation in the 

circulation. 

 

Isoforms of the leptin receptor have been identified primarily in the 

hypothalamus (Houseknecht & Portocarrero, 1998), in the endocrine part of the 

pancreas, in the ovaries and testes (Kieffer et al., 1996), in the cells of the 

granular layer of the cumulus oophorus (Cioffi et al., 1997), in the uterus (Cioffi et 

al., 1997), as well as in other peripheral tissues like kidneys (Sharma & 

Considine, 1998), heart (Bernardis & Bellinger, 1998), lungs (Sharma & 

Considine, 1998), liver (Bernardis & Bellinger, 1998) and skeletal muscles 

(Bernardis & Bellinger, 1998).  The long form receptor is expressed mainly in the 

two hypothalamic nuclei, i.e. the arcuate and the paraventricular nuclei (Woods & 

Stock, 1996).  Three isoforms of leptin receptor are expressed in the human 

hypothalamus, including the full length receptor (Eikelis et al., 2007).  Ob-Rb is 

expressed highly in neurons of the hypothalamic nuclei, including the arcuate, 

dorsomedial hypothalamic and ventromedial hypothalamic nuclei (Elmquist et al., 

1998, Baskin et al., 1999).  Within these basomedial hypothalamic nuclei, Ob-Rb 

mRNA is expressed with the highest level in the arcuate nuclei (Elmquist et al., 
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1999, Schwartz et al., 2000).  In addition to the hypothalamus, leptin receptors 

have also been located in other parts of the brain (Elmquist et al., 1999, Grill & 

Kaplan, 2002).  High expression levels of Ob-Ra and Ob-Rc are found in the 

choroid plexus, meninges and brain micro vessels, which may play a role in the 

transport of leptin across the blood-brain barrier (Tartaglia et al., 1995, Bjorbaek 

et al., 1998).  The wide distribution of leptin receptors in extra-hypothalamic sites 

in the thalamus and cerebellum suggests that leptin might act on sensory and 

motor systems too, in addition to its role in neuroendocrine function.  Repeated 

immobilization stress e.g. has been reported to induce an increase in leptin 

expression in the hypothalamus of female mice, and a decrease in the thalamus 

of both male and female mice, associated with enhanced expression of leptin 

receptors in the hypothalamus and thalamus, both in male and female mice 

(Manni et al., 2007).  

 

 The short leptin receptor isoforms have been found in the choroid plexus 

(Lynn et al., 1996) and the brain capillary endothelium (Golden et al., 1997).  In 

the choroid plexus, leptin receptors are believed to aid the transport of circulating 

leptin into the cerebrospinal fluid (CSF), and leptin receptors in the brain capillary 

endothelium may also provide a direct transport of leptin from blood to the brain 

interstitium (Caro et al., 1996).  Short forms of leptin receptors are also found in 

the lungs and kidneys, where they might be involved in leptin clearance (Cumin 

et al., 1996). 
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 LEPRe, also known as the soluble leptin receptor is the major leptin 

binding protein in blood (Lammert et al., 2001) and is derived from ectodomain 

shedding of membrane-bound receptors (Ge et al., 2002).  It forms one of the 

circulating leptin binding proteins that confer some degree of metabolic stability 

and affect the leptin transport in blood and its tissue availability (Houseknecht et 

al., 1996a, Kieffer et al., 1996). 

  

 Resting energy expenditure and muscle sympathetic activity are more 

positively correlated to bound than free leptin concentration (Brabant et al., 2000, 

Tank et al., 2003), and examination of LEPRe concentration is important to 

separate the key role of total, free and bound leptin (Venner et al., 2006).  Unlike 

the mutation in the leptin ob gene that leads to impairment of leptin secretion 

(Farooqi et al., 2001), mutation in leptin receptor gene had not been found to 

lead to any differences in soluble leptin receptor concentrations in lean versus 

obese subjects (Lahlou et al., 2002).  Higher LEPRe concentrations are found in 

lean compared to obese individuals (van Dielen et al., 2002).  Thus it may be 

important when investigating the effect of leptin on body weight or correlating its 

concentration in serum to body weight, one might need to measure both free and 

bound components, and possibly also the soluble receptor concentration as well.  

When leptin binds to LEPRe, there may be a delay in leptin clearance and 

degradation from the circulation, and this sometimes increases the concentration 

of available circulating leptin (Huang et al., 2001, Zastrow et al., 2003).  Only free 

leptin can act on target sites to elicit biological responses.  
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Figure 1.1: Domain structures of alternatively sliced leptin receptor isoforms. The 
long form, LEPRb, has a long cytoplasmic region containing several motifs 
required for signal transduction. The four short forms, LEPRa, LEPRc, LEPRd 
and LEPRf, have a shorter intracellular tail. LEPRe is known as the soluble leptin 
receptor and the major binding protein in blood circulation (Adapted from Ahima 
& Osei, 2004).   
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1.5 Leptin JAK-STAT signal transduction 

The mechanism of leptin action involves the Janus-family kinase signal 

transducer and activator of transcription system (JAK-STAT).  Leptin receptors, 

particularly LEPR1, form homodimers which are capable of activating JAK-STAT 

system (Lee et al., 1996, Myers, 2004).  LEPR1 has three intracellular conserved 

tyrosine residues (Y985, Y1077 and Y1138).  Y985 and Y1138 are 

phosphorylated upon leptin binding, while Y1077 is not phosphorylated and does 

not contribute to leptin signaling.  Its role remains to be identified.  

Phosphorylation of Y985 activates the SHP2 signaling pathway, whose exact 

action is still unclear.  Phosphorylation of Y1138 recruits STAT 3 to the 

LEPR1/JAK2 complex, resulting in the tyrosine phosphorylation and subsequent 

nuclear translocation of STAT 3 to mediate transcriptional regulation.  Tyrosyl-

phosphorylated STAT 3 undergoes homodimerization and nuclear translocation, 

and regulates the expression of gene that encodes neuropeptides and other 

target genes.  Replacement of serine in Y1138 (Y1138S) disrupts STAT 3 

activation and causes hyperphagia, impairment of thermoregulation and obesity 

but does not affect sexual maturation and growth (Bates et al., 2003).  Moreover, 

Y1138S mice are less hyperglycemic with normal expression of neuropeptide Y 

(NPY). 

 

Leptin binding to LEPR1 also activates insulin receptor substrate 1 (IRS-1) 

and insulin receptor substrate 2 (IRS-2), mitogen-activated protein kinase, 

extracellular-regulated kinase and phosphatidylinositol 3-kinase (PI3-kinase) 
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(Niswender et al., 2004).  Leptin enhances IRS2-mediated activation of PI3-

kinase in the hypothalamus.  On the other hand, blockade of PI3-kinase activity 

prevents the anorectic action of leptin (Niswender et al., 2004).  Leptin terminates 

its signal through the induction of suppressor of cytokine signaling-3 (SOCS3), 

which belongs to a family of proteins that inhibit JAK-STAT signaling (Howard et 

al., 2004).  SOCS3 deficiency increases leptin sensitivity and prevents obesity 

(Howard et al., 2004). 

 

In addition to the activation of STAT 3, leptin also induces the activation of 

STAT 5 and systemic administration of leptin has recently been found to increase 

the number of nuclear STAT 5 signal in the hypothalamus (Mutze et al., 2007).  

In the hypothalamus, nuclear STAT 5 activation has also been reported in 

response to prolactin (Lerant et al., 2001), and tumor necrosis factor-alpha 

(TNFα) (Rizk et al., 2001).  However, the functional relevance of the leptin-

induced nuclear STAT 5 activation in the hypothalamic cells is still unknown.  

 

1.6 Functions of leptin 

1.6.1  Regulation of appetite and body weight  

The fundamental role of leptin as a ‘lipostat’ in the regulation of body 

weight has been a focus of much research.  Daily injection of recombinant leptin 

has been shown to cause significant weight loss and reduced food intake in 

ob/ob and lean wild-type mice, whereas no changes were observed in db/db 

mice (Campfield et al., 1995).  This reduction in food intake by leptin is now 
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known to be mediated primarily through the hypothalamus.  It has been shown to 

regulate appetite through changes in the release of NPY, agouti-related peptide 

(AgRP) and α-melanocyte-stimulating hormone (α-MSH) from the hypothalamic 

nuclei, in particular the arcuate nucleus (ARC).  LEPR1 (LRb) mRNA is highly 

expressed in the two distinct populations of ARC neurons.  One population 

synthesizes NPY and agouti-related peptide, and the other synthesizes pro-

opiomelanocortin (POMC), which is processed to produce α-MSH (Elmquist et 

al., 1999, Schwartz et al., 2000).  Leptin down-regulates NPY and AgRP, and 

causes a reduction in food intake, increases sympathetic nervous system 

outflow, thus increasing energy expenditure (Figure 1.2).  Leptin also stimulates 

the activity of POMC neurons resulting in increased release of POMC and its 

conversion to α-MSH that decreases appetite by activating the melanocortin-4 

receptor (MC4R).  AgRP is an antagonist of α-MSH/MC4R signaling as well as 

an inhibitor of endogenous MC4R activity (Schwartz et al., 2000, Cowley et al., 

2001). 
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Figure 1.2: Pathways through which leptin effects lipid metabolism, energy 
expenditure and caloric intake (Adapted from Reidy & Weber, 2000). 
 
Note: (CAT) Catecholamine, (FFA) Free fatty acid, (TAG) Triacylglyceride, (T3) Triiodothyronine, 
(+) Stimulatory effect, (-) Inhibitory effect 
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Leptin also modulates appetite signaling pathways that are independent 

from NPY.  NPY deficient mice, which have normal food intake and body weight, 

show a decrease in food intake, body mass and fat mass when treated with leptin 

(Erickson et al., 1996).  It is possible that a number of other appetite affecting 

factors like cocaine-and-amphetamine-regulated transcript (CART) (Friedman & 

Halaas, 1998, Elmquist et al., 1999), orexin/hypocretin, corticotrophin releasing 

hormone (CRH) (Flier & Maratos-Flier, 1998), galanin (Beck et al., 1993), 

cholecystokinin, melanin-concentrating hormone, and neurotensin might also be 

involved in the leptin induced reduction in appetite.  

 

There is also evidence to suggest that the loss in weight associated with 

leptin is not entirely due to a reduction in food intake or suppression of appetite.  

The high rates of adipose tissue loss observed in leptin-treated animals can be 

also partly attributed to increases in metabolic rate, secondary to increased 

sympathetic activity (Chen et al., 1996, Levin et al., 1996, Ormseth et al., 1996), 

and stimulation of substrate cycles (Clark et al., 1973).  It has been shown that 

the triacylglyceride/free fatty acid (TAG/FFA) substrate cycling rate of human 

adipocytes is negatively correlated with obesity (Bottcher & Furst, 1997).  In vitro, 

leptin treatment of adipocytes increases the TAG/FFA cells (Wang et al., 1999), 

suggesting that the TAG/FFA cycling rate may be increased by leptin.  This may 

be a possible mechanism by which leptin increases the resting metabolic rates 

above the basal levels.  In addition, leptin also has an important impact on the 

relative contribution of the different oxidative fuels available.  In ob/ob mice e.g., 
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leptin treatment decreased the respiratory quotient in a dose-dependent manner 

(Hwa et al., 1997). 

 

Leptin has also been found to exert its influence on energy expenditure 

through its effect on the hypothalamic-pituitary-thyroid axis.  The thyroid 

hormone, triiodothyronine (T3), is one of the key regulators of metabolic rate, and 

leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone 

mRNA in neurons of the hypothalamic paraventricular nucleus (Legradi et al., 

1997).  In addition to its effects through the hypothalamic-pituitary-thyroid axis, 

leptin is also thought to be able to change the proton leakiness of membranes, 

and hence energy expenditure, by varying the mRNA expression and membrane 

concentration of uncoupling protein (UCP).  Different uncoupling proteins are 

expressed in specific tissues and affected by leptin through different pathways.  

UCP1 is only expressed in brown adipose tissue (Himms-Hagen, 1989).  Leptin 

administration causes an increase in UCP1 mRNA levels in brown adipose tissue 

and enhances energy expenditure (Scarpace et al., 1997).  This effect is possibly 

mediated through increased sympathetic activity. 

 

It therefore seems that the role of leptin in the normal regulation of body 

weight involves both a reduction in food intake and an increase in energy 

expenditure.  The latter might be achieved through a number of mechanisms, 

which include an increase in sympathetic activity, activation of the hypothalamic-
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pituitary-thyroid axis, direct effect on substrate utilization, and perhaps to some 

extent uncoupling of oxidative phosphorylation.   

 

1.6.2 Leptin and the control of sexual maturation 

It is known that the onset of puberty in adolescents, particularly in girls, is 

linked with attainment of adequate body fat mass.  Sexual maturation is delayed 

when metabolic conditions are not adequate, as in food restriction and low body 

fat (Kiess et al., 1998).  Once when adequate fat stores have been attained there 

is a signal to the brain that the body is sufficiently developed to afford the 

pubertal changes or onset of reproductive life (Frisch, 1980).  Circulating leptin 

levels might represent putative signal to the hypothalamus, indicating that 

nutritional status is compatible with the onset of sexual function (Figure 1.3).  In 

normal children leptin levels increase before puberty and reach their peak at the 

onset of puberty (Garcia-Mayor et al., 1997), after which they begin to decline in 

boys but continue to increase in girls, with levels depending on fat mass.  There 

is also an inverse correlation between leptin levels and the age at menarche in 

women (Matkovic et al., 1997).  Increase of leptin levels results in the earlier 

onset of menstrual cycle in women.  The increasing leptin level is believed to 

permissively activate the hypothalamic–pituitary-gonadal axis and the beginning 

of puberty (Mantzoros et al., 1997, Kiess et al., 1999, Clayton & Trueman, 2000, 

Dearth et al., 2000).  Nocturnal urinary leptin concentration has been found to 

show a positive correlation with LH and FSH as children progress into puberty 

(Maqsood et al., 2007).  These observations suggest that leptin is an important 
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facilitator of the early phases of human puberty.  Interestingly, mutations of ob 

and db genes result in hypothalamic hypogonadism in humans (Strobel et al., 

1998).  Similarly, ob/ob mice are also infertile (Ingalls et al., 1950), a condition 

believed to be due to reduced circulating gonadal steroids secondary to 

insufficient hypothalamic-pituitary drive (Swerdloff et al., 1978).  Injection of 

recombinant leptin evidently restores fertility status in these mice (Chehab et al., 

1996, Mounzih et al., 1997).  
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Figure 1.3: Interaction of leptin with the hypothalamic-pituitary-gonadal axis and 
endometrium (Adapted from Moschos et al., 2002). 
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The precise mechanism by which leptin helps trigger the onset of puberty 

is unclear.  As leptin receptors are expressed in specific hypothalamic nuclei, 

leptin might be able to modulate the expression of several hypothalamic 

neuropeptides (Ahima et al., 2000).  In this regard, leptin at very low 

concentrations was found to stimulate LHRH release from hypothalamic explants, 

and FSH and LH release from anterior pituitaries of adult male rats, in vitro.  It 

was also found to stimulate the release of LH, but not FSH in the same species in 

vivo (Yu et al., 1997).  Systemic administration of leptin to ob/ob mice increased 

the secretion of FSH and LH in both male and female mice (Barash et al., 1996).  

Leptin-treated females had significantly elevated serum levels of LH, increased 

ovarian and uterine weights, and stimulated aspects of ovarian and uterine 

histology compared to controls (Barash et al., 1996).  Leptin-treated males had 

significantly elevated serum levels of FSH, increased testicular and seminal 

vesicle weights, greater seminal vesicle epithelial cell height, and elevated sperm 

counts compared to controls (Barash et al., 1996).  These results demonstrate 

that leptin stimulates the reproductive endocrine system in both sexes of ob/ob 

mice and suggest that leptin may serve as a permissive signal to the 

reproductive system of normal animals. 

 

Precisely how leptin stimulates the hypothalamus is unclear.  Central 

infusion of NPY in rats was found to delay sexual maturation (Gruaz et al., 1993), 

and it may be proposed that the increasing leptin levels around puberty 

transiently suppress the release of NPY from the hypothalamus, thus releasing 
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the hypothalamic brake on the onset of puberty (Ahima et al., 1997).  Clearly 

more studies are needed to elucidate the exact mechanism of action of leptin in 

the initiation of puberty.  

 

The presence of leptin receptors in rat testis (Zamorano et al., 1997) and 

in the germ cells in mice (El-Hefnawy et al., 2000) suggests there might be a 

direct action of leptin on the testis too, in addition to its effects on the 

hypothalamic-pituitary-gonadal axis.  Analysis of the cellular location of LEPR 

mRNA shows a scattered pattern of expression in adult testis tissue and specific 

signals being detected in Leydig and Sertoli cells (Hoggard et al., 1997).  

Interestingly, mRNA for all the LEPR isoforms have been reported in the testes 

and LEPR gene in rat testis is expressed throughout postnatal development 

(Tena-Sempere et al., 2001a).  The precise role of leptin and the receptors in the 

testes is unclear and remains a focus of study.  The presence of LEPR in both 

the Sertoli and Leydig cells suggests that it might have a role in the endocrine 

function of the testes and in spermatogenesis.  There is therefore a need to 

examine the precise role for leptin in the normal regulation of reproductive 

function in the male. 

 

1.6.3 Leptin and fertility 

The evident positive correlation between gonadotrophins and leptin, 

particularly during puberty in both the sexes, suggests that leptin has a significant 

role in reproduction and might exert its influence on reproductive activity via the 
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