DEVELOPMENT OF RECOMBINANT *Mycobacterium bovis* BACILLE CALMETTE GUERIN (rBCG) EXPRESSING THE 19 kDa C-TERMINUS OF MEROZOITE SURFACE PROTEIN-1 (MSP-1C) AND THE 22 kDa OF SERINE REPEAT ANTIGEN (SE22) OF *Plasmodium falciparum* AS A POTENTIAL BLOOD-STAGE MALARIAL VACCINE

by

NURUL ASMA BINTI ABDULLAH

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

JULY 2008
ACKNOWLEDGEMENTS

I am grateful to many people and admit sincerely that without their help, advice and encouragement this project would not have been possible. I appreciated their moral support, friendship, humour and valuable ideas. The following people deserve mention for their efforts.

First and foremost, I would like to thank my supervisor, Prof. Norazmi Mohd Nor for his excellent support and guidance throughout the study. His enthusiasm, boundless ideas, expertise, experience, criticism, encouragement and challenges were very much appreciated.

I would also like to express my gratitude to my co-supervisor Dr. Rapeah Suppian; and Assoc. Prof. Dr. Nik Soriani Yaacob, Prof. Zainul F. Zainudin and Dr. Shaharum Shamsuddin who have provided advice, guidance and comments throughout the study. I would also like to thank Dr. Anthony Holder at National Institute for Medical Research (NIMR), London for his advice and assistance during my short visit to his laboratory.

I would like to thank my many friends and colleagues with whom I have had the pleasure of working over the years. These include Teo, K. Maryam, Rohimah, Rafeezul, K. Halisa, Dr. Zulkarnain, Rozairi, Dr. Rahimah, Boon Yin, Hisyam, K. Rohayu, K. Rosilawani, Venu, Ezani, Azura, K. Nurul, Dr. Fang and Naji. My deepest gratitude also goes to Mr. Jamaruddin Mat Asan (USM), Dr. Judith Green (NIMR) and Mrs. Munira Grainger (NIMR) for their technical assistance in various aspects throughout the study.
My special thanks are due to my beloved husband, Mohd Roazmin Mohd Nor who has put up with my passionate PhD life style for the last 4 years. He has always been there supporting me and understood the importance of my work, and is also an important part of my life.

Most importantly, I would like to thank my beloved mum, my brothers and sisters for supporting me for the last 26 years. It is through their encouragement, love, support and prayers that I have made it through all the steps to reach this point in life, and I could not have done it without them. My family has always taken care of me and I love them all very much.

I am grateful to the Ministry of Science, Technology and Innovation, Malaysia for awarding me the National Science Fellowship (and providing me with the financial assistance throughout the study).

In summary, I would like to thank everyone for putting up with me for the last several years. I hope that this dissertation has made some contribution to the field of malaria vaccine development and I hope that everyone that reads this dissertation finds it useful in their work.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENTS</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xviii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xxi</td>
</tr>
</tbody>
</table>

## CHAPTER ONE: LITERATURE REVIEW

1.1 Introduction                                     1
1.2 History of malaria                               2
   1.2.1 Ancient history                              2
   1.2.2 Discovery of the malaria parasite            3
   1.2.3 Nomenclature of the human malaria parasite   4
   1.2.4 Discovery of the transmission of human malaria parasite 5
1.3 Malaria distribution                             6
   1.3.1 Malaria in Malaysia                          8
1.4 The mosquito vector                              10
1.5 The parasite                                     13
   1.5.1 Life cycle of human malaria parasite         16
1.6 Pathophysiology                                  20
   1.6.1 Clinical features and pathogenesis of malaria 20
   1.6.2 Immunity to malaria                          21
1.7 Diagnosis of malaria                             24
1.8 Treatment of malaria                             26
1.9 Control and prevention of malaria                28
   1.9.1 Overview of malaria control activities in Malaysia 32
1.10 Development of malaria vaccine                  32
   1.10.1 Pre-erythrocytic vaccine                    39
   1.10.2 Asexual blood stage vaccine                 41
   1.10.3 Transmission-blocking vaccine               42
1.11 Candidate antigens of *P. falciparum* used in this study 44
   1.11.1 The 19kDa of C-terminus of merozoite surface protein-1 (MSP-1C) 44
1.11.2 The 22 KDa N-terminal serine repeat antigen (SE22) 49
1.12 Recombinant BCG as a potential malaria vaccine 52
1.13 Development of multiepitope vaccine as a potential candidate malarial vaccine 54
1.14 Objectives of the current study 56

CHAPTER TWO: MATERIALS AND METHODS

2.1 Materials 59
  2.1.1 Chemicals and reagents 59
  2.1.2 Enzymes 59
  2.1.3 Antibodies 59
  2.1.4 Kits and consumables 59
  2.1.5 Laboratory apparatus and equipment 59
  2.1.6 Computer application programmes and softwares 59
  2.1.7 Bacterial and parasite strains 68
    2.1.7.1 *Escherichia coli* strains 68
    2.1.7.2 Mycobacteria strains 68
    2.1.7.3 *Plasmodium falciparum* strains 68
  2.1.8 Animals 68
    2.1.8.1 Mice 68
  2.1.9 General buffers and stock solutions 70
    2.1.9.1 ³H-Thymidine 70
    2.1.9.2 ABTS substrate 70
    2.1.9.3 Acetone (80%) 70
    2.1.9.4 Ammonium chloride/potassium (ACK) lysis buffer 70
    2.1.9.5 Ammonium persulphate (20%) 70
    2.1.9.6 Assay diluent (10% FCS) 71
    2.1.9.7 Blocking buffer for ELISA 71
    2.1.9.8 CaCl₂ (100 mM) 71
    2.1.9.9 Chromogenic 4-chloro-1-naftol substrate 71
    2.1.9.10 Coating buffer for ELISA 71
    2.1.9.11 Concanavalin A (Con A) solution 72
    2.1.9.12 Coomassie blue solution 72
    2.1.9.13 Cryoprotectant solution 72
    2.1.9.14 Destaining solution 72
    2.1.9.15 Dialysis buffer (for His-fusion protein) 72
    2.1.9.16 DNA marker 73
2.1.9.17  EGTA pH 8.0 (0.5 M)  73
2.1.9.18  Elution buffer (for GST-fusion protein)  73
2.1.9.19  Elution buffer (for His-fusion protein)  73
2.1.9.20  Ethanol (70%)  73
2.1.9.21  Ethidium bromide (EtBr) (10 mg/ml)  74
2.1.9.22  Giemsa stain solution (10%)  74
2.1.9.23  Glycerol (10%)  74
2.1.9.24  Glycerol (80%)  74
2.1.9.25  HEPES (1 mM)  74
2.1.9.26  Hydrochloric acid (HCl) (1M)  74
2.1.9.27  IPTG (1 M)  75
2.1.9.28  Isotonic Percoll solution  75
2.1.9.29  Loading buffer  75
2.1.9.30  Lysis buffer (7 M) (for His-fusion protein)  75
2.1.9.31  Lysis buffer (for GST-fusion protein)  75
2.1.9.32  Lysis buffer (for His-fusion protein)  75
2.1.9.33  MgCl₂ (100 mM)  76
2.1.9.34  PBS-T20 buffer  76
2.1.9.35  PBS-Tween 80 (PBS-T80)  76
2.1.9.36  Phosphate buffered saline (PBS) (10x)  77
2.1.9.37  Primary wash buffer (for GST-fusion protein)  77
2.1.9.38  Resolving buffer  77
2.1.9.39  Running buffer  77
2.1.9.40  Sample buffer  77
2.1.9.41  Secondary wash buffer (for GST-fusion protein)  77
2.1.9.42  Skimmed milk (5%)  77
2.1.9.43  Sodium chloride (NaCl) (5 M)  78
2.1.9.44  Sodium hydroxide (NaOH) (5 M)  78
2.1.9.45  Sorbitol solution (10%)  78
2.1.9.46  Stacking buffer  78
2.1.9.47  Towbin transfer buffer  78
2.1.9.48  Tris-acetate-EDTA (TAE) buffer (50x)  78
2.1.9.49  Tris-EDTA buffer (TE) (10x)  79
2.1.9.50  Tris-HCl (1.5 M)  79
2.1.9.51  Trypan blue (0.4%)  79
2.1.9.52  Washing buffer (for His-fusion protein)  79
2.1.10  Antibiotic stocks

2.1.10.1 Ampicillin 50 mg/ml
2.1.10.2 Gentamycin 40 mg/ml
2.1.10.3 Isoniazide 10 mg/ml
2.1.10.4 Kanamycin 50 mg/ml
2.1.10.5 Penicillin/streptomycin stock solution

2.1.11  Culture media

2.1.11.1 Luria-Bertani (LB) broth
2.1.11.2 Luria-Bertani (LB) agar
2.1.11.3 Middlebrook 7H9 broth
2.1.11.4 Middlebrook 7H11 agar
2.1.11.5 RPMI media (for cell culture)
2.1.11.6 Complete RPMI media (for cell culture)
2.1.11.7 RPMI media (for parasite culture)
2.1.11.8 Complete RPMI media (for parasite culture)

2.1 Methodology

2.2.1 Preparation of reagents and analysis of PCR and assembly PCR

2.2.1.1 Preparation of oligonucleotides and primers for assembly PCR
2.2.1.2 Gene assembly by first PCR
2.2.1.3 Gene amplification by second PCR
  2.2.1.3.1 Amplification of mutMSP-1C
  2.2.1.3.2 Amplification of natMSP-1C
  2.2.1.3.3 Amplification of TEV-mutMSP-1C
  2.2.1.3.4 Amplification of TEV-SE22
2.2.1.4 Addition of 3' A-overhangs post-PCR amplification
2.2.1.5 DNA agarose gel electrophoresis

2.2.2 DNA analysis

2.2.2.1 Preparation of competent cells by CaCl₂ method
2.2.2.2 Preparation of BCG competent cell
2.2.2.3 DNA Cloning
2.2.2.4 Transformation of DNA into \textit{E. coli}
2.2.2.5 Selection and identification of positive transformants
2.2.2.6 Freezing and storage of recombinant \textit{E. coli} cells
2.2.2.7 Transformation of DNA into BCG
2.2.2.8 BCG and rBCG culture
2.2.2.9 Freezing and storage of BCG and rBCG 95
2.2.2.10 Extraction of plasmid DNA 95
2.2.2.11 Restriction enzyme digestion 96
2.2.2.12 DNA purification from agarose gel 96
2.2.2.13 DNA purification using PCR Purification Kit 97
2.2.2.14 Quantification of DNA 97
2.2.2.15 DNA ligation 98
2.2.2.16 Site-directed mutagenesis 98
  2.2.2.16.1 Mutagenic primer design 98
  2.2.2.16.2 PCR-based site-directed mutagenesis 99

2.2.3 Protein extraction and analysis 100
  2.2.3.1 Expression of fusion protein 100
  2.2.3.2 Preparation of cleared E.coli-017 lysate 100
  2.2.3.3 Large scale expression of His-fusion protein under denaturing condition 100
  2.2.3.4 Affinity purification of His-fusion protein 101
  2.2.3.5 Dialysis of His-fusion protein 102
  2.2.3.6 Large scale expression of GST-fusion protein 102
  2.2.3.7 Recovery of soluble GST-fusion protein 103
  2.2.3.8 Affinity purification of soluble GST-fusion protein 103
  2.2.3.9 Preparation of rBCG for SDS-PAGE 104
  2.2.3.10 SDS-PAGE 105
  2.2.3.11 Western blotting 105

2.2.4 Immunogenicity studies 106
  2.2.4.1 Preparation of rBCG vaccine candidate 106
  2.2.4.2 Mouse immunization 106
  2.2.4.3 Blood collection 107
  2.2.4.4 Splenocyte preparation 107
  2.2.4.5 Cell culture 108
  2.2.4.6 Lymphocyte proliferation assay 109
  2.2.4.7 Analysis of intracellular cytokines by flow cytometry 109
  2.2.4.8 Measurement of total IgG by ELISA and IgG subclass Abs by ELISA 111
  2.2.4.9 Preliminary and long-term in vivo stability analysis of rBCG 111
2.2.5 In vitro protective efficacy study of *P. falciparum*

2.2.5.1 Retrieval of *P. falciparum* from liquid nitrogen (N$_2$) storage

2.2.5.2 *In vitro* culture of *P. falciparum*

2.2.5.3 Giemsa staining of thin blood film from *P. falciparum* culture

2.2.5.4 *P. falciparum* synchronization with Percoll

2.2.5.5 Sorbitol synchronization of *P. falciparum* infected erythrocytes

2.2.5.6 Indirect immunofluorescence assay (IFA)

2.2.5.7 *In vitro* invasion inhibition assay

2.2.5.8 Cryopreservation of *P. falciparum*

CHAPTER THREE: Synthesis of the mutMSP-1C by assembly PCR and construction of rBCG expressing single and combination of two blood-stage antigens of *P. falciparum*, mutMSP-1C and SE22

3.1 Introduction

3.2 Synthesis of mutMSP-1C by assembly PCR

3.3 Cloning of mutMSP-1C into pCR®2.1-TOPO® vector

3.4 Construction of a shuttle plasmid containing the mycobacterium replicon (*Myco ORI*)

3.5 Construction of the shuttle plasmid containing the mutMSP-1C

3.6 Construction of the shuttle plasmid containing the natMSP-1C

3.7 Construction of the shuttle plasmid pNMN028

3.8 Construction of the shuttle plasmid pNMN030

3.9 Cloning of L5 epitope into a shuttle plasmid containing combination of mutMSP-1C and SE22 epitope

3.10 Preparation of purified mutMSP-1C protein

3.11 Expression and purification of GST-MSP-1C

3.12 Transformation of shuttle plasmids into BCG

3.13 Screening for the presence of MSP-1C and SE22 in BCG

3.14 Expression of mutMSP-1C and SE22 in BCG

3.15 Discussion
CHAPTER FOUR: Immunogenicity studies: Humoral and cellular immunity

4.1 Introduction 172
4.2 Determination of total IgG and IgG subclass antibody responses against MSP-1C in mice immunized with rBCG 173
4.3 Determination of total IgG and IgG subclass antibody responses against the combination epitopes of mutMSP-1C and SE22 in mice immunized with rBCG028 and rBCG030 175
4.4 Western blotting analysis using sera from rBCG-immunized mice 179
4.5 Proliferative response 183
4.6 Assessment of intracellular cytokines by flow cytometry 185
4.7 Discussion 192

CHAPTER FIVE: In vitro protective efficacy of anti-MSP-1C- and anti-SE22-antibodies and in vivo stability analysis of rBCG constructs in mice

5.1 Introduction 204
5.2 Reactivity of antibodies from rBCG-immunized mice with the native MSP-1C and SE22 proteins on parasite surface by IFA 205
5.3 In vitro inhibition assay of P. falciparum invasion 208
5.4 Preliminary and long-term in vivo stability analysis of rBCG 210
5.5 Discussion 214

CHAPTER SIX: GENERAL DISCUSSION AND CONCLUSION

6.1 General discussion 218
6.2 Suggestions for future studies 234
6.3 Conclusion 235

BIBLIOGRAPHY 236-278
LIST OF PRESENTATIONS

Presentation 1: Abstract of oral presentation at Vaccine Congress–Celebrating 25 Years of Publication. Amsterdam, The Netherland. 9-11th December 2007. 279

Presentation 2: Abstract of poster presentation at International Parasitology Congress - ICOPA IX, Glasgow, Scotland. 6-11th August 2006. 280

Presentation 3: Abstract of poster presentation at New Approaches to Vaccine Development: From the bench to the field, Berlin, Germany. 8-10th September 2005. 281

# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Priority on malaria control strategies by epidemiological setting.</td>
</tr>
<tr>
<td>1.2</td>
<td>Portfolio of candidate malaria vaccines currently in development</td>
</tr>
<tr>
<td>2.1</td>
<td>List of general chemicals and reagents.</td>
</tr>
<tr>
<td>2.2</td>
<td>List of enzymes</td>
</tr>
<tr>
<td>2.3</td>
<td>List of antibodies used in this study.</td>
</tr>
<tr>
<td>2.4</td>
<td>List of kits and consumables.</td>
</tr>
<tr>
<td>2.5</td>
<td>List of laboratory apparatus and equipment.</td>
</tr>
<tr>
<td>2.6</td>
<td>List of computer application programmes and softwares.</td>
</tr>
<tr>
<td>2.7</td>
<td>List of the <em>E. coli</em> strains used in this study.</td>
</tr>
<tr>
<td>2.8</td>
<td>List of oligonucleotides used for assembly PCR.</td>
</tr>
<tr>
<td>2.9</td>
<td>List of primers used in this study.</td>
</tr>
<tr>
<td>3.1</td>
<td>Summary of the plasmids constructed in this study</td>
</tr>
<tr>
<td>3.2</td>
<td>CFU of rBCG on 7H11 media after 3 weeks of incubation.</td>
</tr>
<tr>
<td>4.1</td>
<td>Classification of responses based on the increase in the percentage of cells expressing selected intracellular cytokines by flow cytometry.</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of the analysis of intracellular cytokines by flow cytometry</td>
</tr>
<tr>
<td>5.1</td>
<td>Invasion-inhibition of erythrocytes by the parasites in the presence of sera from rBCG-immunized mice</td>
</tr>
<tr>
<td>5.2</td>
<td>CFU of BCG and rBCG from the selected organs of immunized-mice 1-month after the last immunization.</td>
</tr>
</tbody>
</table>
# List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Global distribution of malaria transmission risk for 2003.</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Malaria cases in Malaysia from 2000-2003.</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Global distribution of malaria vectors.</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>The life cycle of Anopheles mosquito.</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>Blood stages of Plasmodium.</td>
<td>14-15</td>
</tr>
<tr>
<td>1.6</td>
<td>Life cycle of the malaria parasite.</td>
<td>17</td>
</tr>
<tr>
<td>1.7</td>
<td>A model of RBC invasion by the malaria merozoite.</td>
<td>19</td>
</tr>
<tr>
<td>1.8</td>
<td>The effect of malaria control activities in Malaysia.</td>
<td>33</td>
</tr>
<tr>
<td>1.9</td>
<td>Antigens developed for malaria vaccines.</td>
<td>35</td>
</tr>
<tr>
<td>1.10</td>
<td>Schematic representation of localization of merozoite and illustration of MSP-1C development.</td>
<td>45</td>
</tr>
<tr>
<td>1.11</td>
<td>A schematic illustration of the mechanism of inhibitory and blocking Abs.</td>
<td>48</td>
</tr>
<tr>
<td>1.12</td>
<td>Schematic localization of SERA.</td>
<td>50</td>
</tr>
<tr>
<td>1.13</td>
<td>Flow chart of the study.</td>
<td>58</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic illustration of assembly PCR procedure</td>
<td>119</td>
</tr>
<tr>
<td>3.2</td>
<td>The location of amino acid sequence changes and their effect on the binding of monoclonal antibodies.</td>
<td>121</td>
</tr>
<tr>
<td>3.3</td>
<td>The location of the multiple residues and the modifications made within MSP-1C and their effects on the binding of mAbs</td>
<td>122</td>
</tr>
<tr>
<td>3.4</td>
<td>The amino acid sequence of MSP-1C.</td>
<td>123</td>
</tr>
<tr>
<td>3.5</td>
<td>Generation of the mutMSP-1C using assembly PCR.</td>
<td>125</td>
</tr>
<tr>
<td>3.6</td>
<td>Map of pCR².1-TOPO.</td>
<td>126</td>
</tr>
<tr>
<td>3.7</td>
<td>Multiple alignment of MSP-1C fragment with the mutated sequence and repaired site.</td>
<td>127</td>
</tr>
<tr>
<td>3.8</td>
<td>Schematic illustration of the construction of pNMN014.</td>
<td>128</td>
</tr>
<tr>
<td>3.9</td>
<td>Schematic illustration of the construction of pNMN013.</td>
<td>129</td>
</tr>
<tr>
<td>3.10</td>
<td>Schematic illustration of the construction of pNMN016</td>
<td>131</td>
</tr>
<tr>
<td>3.11</td>
<td>Full nucleotide sequence of the expression cassette of pNMN016</td>
<td>132</td>
</tr>
<tr>
<td>3.12</td>
<td>Analysis of gene amplification of natMSP-1C on 1.5% agarose gel electrophoresis.</td>
<td>133</td>
</tr>
<tr>
<td>3.13</td>
<td>Schematic illustration of the construction of pNMN026.</td>
<td>134</td>
</tr>
<tr>
<td>3.14</td>
<td>Full nucleotide sequence of the expression cassette of pNMN026</td>
<td>135</td>
</tr>
<tr>
<td>3.15</td>
<td>Analysis of gene amplification of TEV-mutMSP1C on a 1.5% agarose gel electrophoresis.</td>
<td>137</td>
</tr>
</tbody>
</table>
3.16 The alignment of original DNA sequence as well as amino acid sequence of SE22 and the amino acid sequence designed in favour of mycobacterium codon usage.

3.17 Schematic illustration of the construction of pNMN028

3.18 Full nucleotide sequence of the expression cassette of pNMN028

3.19 Analysis of gene amplification of TEV-SE22 on a 1.5% agarose gel electrophoresis.

3.20 Schematic illustration of the construction of pNMN030

3.21 Full nucleotide sequence of the expression cassette of pNMN030

3.22 Schematic illustration of the construction of pNMN035.

3.23 Full nucleotide sequence of the expression cassette of pNMN035

3.24 Map of PROEX™HTc (Invitrogen, USA).

3.25 Schematic illustration of the construction of pNMN017.

3.26 SDS-PAGE and Western blot analysis of mutMSP-1C in pROEX™HTc (designated pNMN017) detected with anti-His mAb.

3.27 SDS-PAGE and Western blot analysis of mutMSP-1C after purification with Ni-NTA column affinity.

3.28 Western blot analysis of *E. coli*-pGEX-MSP-1C as detected with anti-GST mAb.

3.29 Screening for the presence of MSP-1C fragment in rBCG016, rBCG026, rBCG028 and rBCG030 by PCR.

3.30 Screening for the presence of SE22 fragment in rBCG016, rBCG026, rBCG028 and rBCG030 by PCR.

3.31 Western blot analysis of rBCG016 using 2 different antibodies, 12.10 and 1E1 mAbs against mutMSP-1C.

3.32 Western blot analysis of rBCG using L5 mAb

4.1 The mean optical densities (OD_{415nm}) of total IgG from immunized mice against MSP-1C at different stages of vaccination.

4.2 Profile of antigen-specific IgG subclass response to MSP-1C in vaccinated mice sera.

4.3 The mean OD_{415nm} of total IgG response of immunized mice response to MSP-1C at different stages of vaccination.

4.4 The mean OD_{415nm} of total IgG response of immunized mice to SE22 at different stages of vaccination.

4.5 Profile of antigen-specific IgG subclass response to MSP-1C in vaccinated mice sera.
4.6 Profile of antigen-specific IgG subclass response to SE22 in vaccinated mice sera.  
4.7 Western blotting of MSP-1C antigen probed with sera from rBCG-immunized mice.  
4.8 Western blotting of SE22 antigen probed with sera from rBCG-immunized mice.  
4.9 The stimulation index (SI) of splenocytes from mice immunized with PBS-T80, BCG, rBCG016, rBCG026, rBCG028 and rBCG030.  
4.10 Example of flow cytometric profiles of intracellular cytokine expression in splenocytes of rBCG-immunized mice stimulated in vitro with MSP-1C.  
4.11 Expression of selected intracellular cytokines by (A) CD4+ T cells and (B) CD8+ T cells when stimulated in vitro with MSP-1C.  
4.12 Expression of selected intracellular cytokines by (A) CD4+ T cells and (B) CD8+ T cells when stimulated in vitro with SE22.  
5.1 Schizont purification  
5.2 Indirect immunofluorescence assay (IFA)  
5.3 Screening for the presence of MSP-1C (A) and SE22 (B) fragments from the spleens of rBCG-immunized mice using respective primers against MSP-1C and SE22 as evaluated by PCR.  
5.4 CFU of BCG and rBCG from the spleens of immunized-mice 9-month after the last immunization.  
6.1 Aligned amino acid sequences of the six MSP-1C variants
LIST OF ABBREVIATIONS

ACTs  Artemisinin-based combination therapies
AMA-1  Apical membrane antigen 1
An. Gambiae  Anopheles gambiae
AO  Acridine Orange
BC  Before century
BCG  Bacille Calmette-Guerin
bp  Base pair
BSA  Bovine serum albumin
Con A  Concanaavalin A
CDC  Centre for Disease Control
CFU  Colony forming unit
CSP  Circumsporozoite protein
CTL  Cytotoxic T lymphocyte
DDT  Dichlorodiphenyltrichloroethane
DNA  Deoxyribonucleic acid
E. coli  Escherichia coli
EBA-175  Erythrocyte binding antigen-175
EDTA  Ethylene diamine tetra acetic acid
EGF  Epidermal growth factor
ELISA  Enzyme-linked immunosorbent assay
FITC  Fluorescence isothiocynate
GPI  Glycosyl phosphatidyl inositol
GSK  GlaxoSmithKline Biologicals
HIV  Human immunodeficiency virus
IFA  Indirect immunofluorescence assay
IFN-γ  Interferon-γ
Ig  Immunoglobulin
IgG  Immunoglobulin G
IL-1  Interleukin-1
IPT  Intermittent preventive treatment
IRS  Indoor residual spraying
ITN  Insecticide treated net
kDa  kilo Dalton
KO  Knockout mouse
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAb</td>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MSP-1</td>
<td>Merozoite surface protein 1</td>
</tr>
<tr>
<td>MSP-1C</td>
<td>C-terminus of merozoite surface protein 1</td>
</tr>
<tr>
<td>MSP-1$_{42}$</td>
<td>42 kDa of merozoite surface protein 1</td>
</tr>
<tr>
<td>mutMSP-1C</td>
<td>Mutated MSP-1C</td>
</tr>
<tr>
<td>natMSP-1C</td>
<td>Native MSP-1C</td>
</tr>
<tr>
<td>NIMR</td>
<td>National Institute for Medical Research, London</td>
</tr>
<tr>
<td>NK</td>
<td>Natural killer</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PerCP</td>
<td>Peridinin chlorophyll protein</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfony fluoride</td>
</tr>
<tr>
<td>QBC</td>
<td>Quantitative buffy coat</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cell</td>
</tr>
<tr>
<td>SERA</td>
<td>Serine repeat antigen</td>
</tr>
<tr>
<td>SE22</td>
<td>22 kDa of serine repeat antigen</td>
</tr>
<tr>
<td>SI</td>
<td>Stimulation index</td>
</tr>
<tr>
<td>SSR</td>
<td>Short sequence repeat</td>
</tr>
<tr>
<td>Taq DNA polymerase</td>
<td>Thermus aquaticus DNA polymerase</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>Th</td>
<td>T-helper</td>
</tr>
<tr>
<td>TNF$\alpha$</td>
<td>Tumour necrosis factor $\alpha$</td>
</tr>
<tr>
<td>TRAP</td>
<td>Thrombospodin-related adhesive protein</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WRAIR</td>
<td>Walter Reed Army Institute of Research</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

F  Fahrad
μ  micro
γ  gamma
β  beta
δ  delta
α  alpha
®  registered
°C  degree Celcius
Ci  Curie
Tm  melting temperature
™  trademark
Ω  Ohm
V  voltage
PEMBANGUNAN *Mycobacterium bovis* BACILLE CALMETTE GUERIN REKOMBINAN (rBCG) YANG MENGEKSPRES TERMINUS C PROTEIN PERMUKAAN MEROZOIT-1 19kDA (MSP-1C) DAN PROTEIN 22 kDa DARIPADA DOMAIN TERMINUS N ANTIGEN SERINA BERULANG 47kDa (SE22) DARI *Plasmodium falciparum* SEBAGAI CALON VAKSIN MALARIA YANG BERPOTENSI PADA PERINGKAT ASEKSUAL

**ABSTRAK**

*Mycobacterium bovis* bacille Calmette–Guerin rekombinan (rBCG) yang mengekspres terminus C protein permukaan merozoit-1 19kDa (MSP-1C) dan protein 22 kDa daripada domain terminus N antigen serina berulang 47kDa (SE22) dari parasit *P. falciparum* merupakan calon vaksin malaria terhadap peringkat kitar hidup aseksual. Di dalam kajian ini, MSP-1C dan SE22 telah dihasilkan secara sintetik bersandarkan kepada kodon yang digunakan oleh mikobakteria menggunakan teknik yang dikenali sebagai PCR himpunan. Selain itu, MSP-1C juga telah dimutasikan di beberapa asid amino tertentu untuk menggalakkan penghasilan antibodi “inhibitory” dan bukannya antibodi “blocking” sepertimana yang telah dilaporkan sebelum ini. Fragmen-fragmen MSP-1C dan SE22 telah diklonkan ke dalam plasmid “shuttle” untuk membantu pengekspresiannya oleh BCG. Pengekspresian epitop kitar-aseksual ini telah dipacu oleh promoter renjatan haba 65 (hsp65) daripada *M. tuberculosis* dan peptida isyarat daripada antigen MPT63 *M. tuberculosis*. Pengekspresian klon-klon recombinan telah berjaya dikesan oleh antibodi monoklon (mAb) spesifik menggunakan teknik pemblotan Western; mAb spesifik SE47 terhadap SE22 dan mAb spesifik 12.10 dan 1E1 terhadap MSP-1C. SE22 telah bertindakbalas terhadap SE47 mAb sementara protein “inhibitory” MSP-1C telah bertindakbalas dengan mAb “inhibitory” 12.10, tetapi tidak bertindakbalas terhadap mAb “blocking” 1E1. Seterusnya, imunisasi mencit BALB/c dengan rBCG telah menghasilkan tindak balas humoral yang spesifik terhadap kedua-dua epitop kitar aseksual dengan kehadiran
profil Th1/Th2. Sera daripada mencit yang telah diimunisasi dengan rBCG mengandungi IgG2a spesifik yang tinggi terhadap kedua-dua epitop menunjukkan tindakbalas dengan merozoit *P. falciparum* sebagaimana yang telah ditunjukkan di dalam analisis asai immunofluoresen tidak langsung (IFA). Titer antibodi spesifik terhadap epitop MSP-1C dan SE22 juga jelas menunjukkan hubung kait dengan tahap penyekatan kemasukan merozoit ke dalam sel darah merah yang telah diuji secara *in vitro*. Selain itu, tindakbalas proliferasi limfosit daripada mencit yang telah diimunisasi dengan rBCG terhadap MSP-1C dan SE22 juga menunjukkan tahap proliferasi yang lebih tinggi berbanding kumpulan mencit kontrol. Pengekspresian sitokin intraselular (IL-2, IL-4 and IFNγ) bagi sel-sel CD4⁺ dan CD8⁺ juga berjaya dikesan selepas stimulasi *in vitro* dengan antigen dari kedua-dua epitop. Selanjutnya, ujian kestabilan awal dan ujian kestabilan jangkama panjang bagi keadaan *in vivo* juga telah menunjukkan rBCG adalah stabil walaupun bukan merupakan plasmid “integrative”. Kesimpulannya, kajian ini menunjukkan bahawa pembangunan rBCG yang mengekspres kombinasi 2 epitop *P. falciparum* dari kitar aseksual telah berjaya menghasilkan kedua-dua imuniti humoral dan selular terhadap parasit malaria; serta merupakan calon vaksin malaria yang berpotensi bagi peringkat kitar aseksual.
DEVELOPMENT OF RECOMBINANT *Mycobacterium bovis* BACILLE CALMETTE
GUERIN (rBCG) EXPRESSING THE 19 kDa C-TERMINUS OF MEROZOITE
SURFACE PROTEIN-1 (MSP-1C) AND THE 22 kDa OF SERINE REPEAT ANTIGEN
(SE22) OF *Plasmodium falciparum* AS A POTENTIAL BLOOD-STAGE MALARIAL
VACCINE

**ABSTRACT**

Recombinant *Mycobacterium bovis* bacille Calmette–Guerin (rBCG) expressing
the 19 kDa C-terminus of merozoite surface protein-1 (MSP-1C) and a 22 kDa protein
(SE22) from the 47 kDa N-terminal domain of serine repeat antigen (SERA) of *P.
falciparum* is a potential blood-stage malarial vaccine candidate. In the present study,
the MSP-1C and SE22 were synthetically generated in favour of mycobacterium codon
usage by assembly PCR. More importantly, the synthetic MSP-1C was mutated at
various sites to induce the production of inhibitory but not blocking antibodies as
previously reported. The MSP-1C and SE22 fragments were cloned into a shuttle
plasmid to facilitate expression by BCG. The expression of the blood-stage epitopes
were driven by the heat shock protein 65 (hsp65) promoter from *M. tuberculosis*
and the signal peptide from the MPT63 *M. tuberculosis* antigen. Expression of the
recombinant clones were detected by specific monoclonal antibodies using Western
blotting; SE47 mAb against the SE22 and 12.10 and 1E1 mAbs against the MSP-1C.
The SE22 successfully reacted with SE47 mAb while the MSP-1C protein reacted with
the inhibitory mAb 12.10, but not the blocking mAb 1E1. The immunization of BALB/c
mice with the rBCG elicited specific humoral responses against both blood-stage
epitopes with a mixed Th1/Th2 profile. Immunized sera containing high levels of
specific IgG2a against both epitopes (as determined by ELISA) were reactive with
fixed *P. falciparum* merozoites as demonstrated by the indirect immunofluorescence
assay (IFA). In addition, the antibody titres against the MSP-1C and SE22 epitopes
appeared to correlate with the levels of inhibition of merozoite invasion of erythrocytes
in vitro. Furthermore, the lymphocyte proliferative response to MSP-1C and SE22 from rBCG-immunized mice was significantly higher than the control groups. The expression of intracellular cytokines (IL-2, IL-4 and IFN-γ) in CD4+ and CD8+ cells were also detectable following in vitro stimulation with both epitopes. Preliminary and long-term in vivo stability analyses showed that the rBCG were stable in spite of being a non-integrative plasmid. In conclusion, this study demonstrated that a single construct expressing a combination of two blood-stage epitopes of *P. falciparum* induced appropriate humoral and cellular responses against the parasites; paving the way for the construction of a potential blood-stage malarial vaccine.
CHAPTER ONE

INTRODUCTION

1.1 Introduction
Malaria is one of the commonest infectious diseases in the tropics. As reported in the World Malaria Report 2005 (WHO, 2005), at the end of 2004, 107 countries and territories had areas at risk of malaria transmission. Therefore, some 3.2 billion people live in malarious area and are highly exposed to infection. Malaria remains the greatest burden in Africa especially in the sub Saharan region, and also well distributed throughout the Eastern Mediterranean, Central Asia and South-East Asia; South and Central America regions (WHO, 2005). In Africa, 18% of deaths in children under 5 years of age are due to malaria infection, and *P. falciparum* causes the vast majority of infections in this region. Malaria is also a major cause of morbidity and mortality in pregnant women in endemic area (WHO, 2005). Patterns of malaria transmission and disease vary markedly between regions and even within individual countries. This diversity results from variations between malaria parasites and mosquito vectors, ecological conditions that affect malaria transmission and socioeconomic factors, such as poverty and access to effective health care and prevention services (WHO, 2005). Attack of this disease can be very severe and can lead to death if they remain undetected and untreated. Moreover, as a result of the spread of drug-resistant parasites and insecticide-resistant mosquitoes, there are now effectively fewer tools to control malaria than what existed 20 years ago (Phillips, 2001). Therefore the development of a vaccine against malaria has been a major agenda for controlling the disease.
1.2 History of malaria

1.2.1 Ancient History

The ancestors of the malaria parasites have probably existed at least half a billion years ago. The discovery of 30 million year old fossilized mosquitoes which probably originated from Africa proved that the presence of the vector for malaria disease has existed since ancient times. Mentions of malaria can be found in the ancient Roman, Chinese, Indian, Greek, Egyptian and European manuscripts and also later in numerous Shakespearean plays (reviewed by Carter and Mendis, 2002; Cox, 2002). From the Italian word “mal’aria” which means "bad or evil air", malaria has probably influenced to a great extent human population and human history (Sherman, 1998).

The symptoms of malaria were described in ancient Chinese medical writings. In 2700 BC, several symptoms that characterized malaria symptoms were described in the Nei Ching, The Canon of Medicine. This Chinese medical manuscript apparently described symptoms that refer to repeated paroxysmal fevers associated with enlarged spleens and a tendency to epidemic occurrence, suggesting *P. vivax* and *P. malariae* infections (reviewed by Sherman, 1998; Carter and Mendis, 2002). During ancient India, the Vedic (3,500 to 2,800 years ago) and Brahmanic (2,800 to 1,900 years ago) scriptures of Northern India also contain many references to fevers which characterized malaria which they referred as the King of Disease. Charaka Samhita, one of the ancient Indian texts on Ayurvedic medicine which was written in approximately 300 BC, and the Susrutha Samhita, written about 100 BC, refer to diseases where fever is the main symptom and associated with the bites of the insects which also characterized malaria disease (reviewed by Sherman, 1998; Carter and Mendis, 2002).

Malaria also appeared in the writings of the Greeks from around 500 BC. Hippocrates, "The Father of Medicine" and probably the first malariologist described the various malaria fevers which infected humans by 400 BC. The Hippocratic corpus was also the
first document which mention about splenic change in malaria and he also claimed that malaria was also transmitted due to ingestion of stagnant water (reviewed by Vinetz et al., 1998). Malaria was also mentioned in the ancient Sumerian and Egyptian texts (reviewed by Sherman, 1998). The texts dating from 3,500 to 4,000 years ago also refer to fevers and splenomegaly, which were suggestive of malaria. The Sumerian records apparently made frequent reference to deadly epidemic fevers, probably due to P. falciparum.

1.2.2 Discovery of the malaria parasite

By early seventeenth century, the Italian physician Giovanni Maria Lancisi made some astounding observations on malaria. He was the first to describe the characteristic black pigmentation of the brain and spleen in the victims of malaria in 1716 (reviewed by Roncalli Amici et al., 2001). A year later in 1717, in his monograph entitled Noxious Emanations of Swamps and Their Cure, he echoed the old theories of Varro and Celsus by speculating that malaria was due to "bugs" or "worms" which entered the blood and revived the old idea that mosquitoes might play a role. In 1847, a German physician, Heinrich Meckel, identified round, ovoid, or spindle-shaped structures containing black pigment granules in protoplasmic masses in the blood of a patient with fever (reviewed by Cox, 2002). Thus Meckel probably saw the malaria parasites for the first time, but unfortunately he could not recognize the true importance of his finding. In 1848, Schutz specifically associated these pigments with malaria when he observed it in the internal organs of patients who had died of malaria. Later in 1849, Virchow demonstrated pigmented bodies in the blood of a patient who had died from chronic malaria. In 1850, Hischl had also confirmed the presence of pigment with intermittent fevers. Even with all these evidence, the black granular bodies were somehow never suspected to be the cause of malaria until 1879, when Afanasiev proposed that these bodies might be the agents of the disease (reviewed by Shuman 1998; Cox, 2002).
Finally, it was Charles Louis Alphonse Laveran, a French army surgeon who was the first to notice parasites in the blood of a patient suffering from malaria. This occurred on the 6th of November 1880. He believed that the tertian, quartan, and quotidian malaria occurred during different stages in the parasite's development. In 1885, Camillo Golgi an Italian neurophysiologist, established that there were at least two forms of the disease, one with tertian periodicity (fever every other day) and one with quartan periodicity (fever every third day) (reviewed by Sherman, 1998; CDC, 2004). He also demonstrated that the fever coincided with the rupture and release of merozoites into the blood stream and that the severity of symptoms correlated with the number of parasites in the blood. Camillo Golgi was also the first to photograph the pigmented quartan malaria parasite in 1890 (reviewed by Roncalli Amici, 2001).

1.2.3 Nomenclature of the human malaria parasite

The nomenclature of malaria parasites has been a matter of intense debate since the 17th century. In 1880, Laveran had seen different forms of the malaria parasite and firmly believed that all of the parasites belonged to one species. He named them Oscillaria malariae (reviewed by Garnham, 1996). However, In 1884 Marchiafava and Celli called the same forms of the parasite as Plasmodium (reviewed by Roncalli Amici, 2001). In 1890, the Italian investigators Giovanni Batista Grassi and Raimondo Filetti were the first to differentiate and introduced the names Haemamoeba vivax and H. malariae for two of the malaria parasites (reviewed by Roncalli Amici, 2001). In 1892, Grassi and Feletti, proposed the genus name Laverania which was zoologically correct, as an honor to Laveran (reviewed by Roncalli Amici, 2001). In 1897, an American, William H. Welch, proposed the name Haematozoon falciparum for the parasite with the crescent-shaped gametocytes and causes malignant tertian malaria (reviewed by Garnham, 1996). Confusion continued well into the 20th century over whether all of the parasites belonged to one species or to several. Finally, the genus name for the malaria parasite, Plasmodium of Marchiafava and Celli was used for all
species (reviewed by Roncalli Amici, 2001). The species name of the parasite suggested by Laveran known as malariae (Laveran, 1967), by Grassi and Feletti known as vivax (reviewed by Roncalli Amici, 2001) and by Welch known as falciparum (reviewed by Garnham, 1996). The fourth human parasite, *P. ovale* was finally identified by John William Watson Stephens in 1922 (reviewed by CDC, 2004).

1.2.4 Discovery of the transmission of malaria parasite

The connection between malaria and mosquitoes was suspected from ancient times. One of the oldest scripts, written several thousand years ago in cuneiform script on clay tablets, described the Babylonian god of destruction and pestilence, pictured as a double-winged, mosquito-like insect. The ancient Hindus were also conscious of the mosquito's harmful potential. In 800 B.C. the Indian sage Dhanvantari wrote about the diseases caused by bites of the mosquitoes and Susrutha Samhita also mentions about a possible link between fevers and insects like mosquitoes (reviewed by Sherman, 1998).

In 1882, Albert Freeman Africanus King (1841-1915), a US Physician, proposed a method to eradicate malaria from Washington, DC. He suggested to encircle the city with a wire screen as high as the Washington Monument (reviewed by Phillips, 2001). His hypothesis to link mosquitoes with the malaria transmission was proven by Major Sir Ronald Ross. In August 20th, 1897, Ross, a British officer in the Indian Medical Service, was the first to demonstrate that the malaria parasites could be transmitted from infected patients to mosquitoes (reviewed by Mary, 1998). With his brilliant research, he has not only identified the habits and habitats of these mosquitoes but also proposed detailed plan of action to contain their breeding. His further work with bird malaria showed that mosquitoes could transmit malaria parasites from bird to bird. This necessitated a sporogonic cycle (the time interval during which the parasite developed in the mosquito). Thus, the problem of malaria transmission was solved.
1.3 Malaria distribution

Malaria remains a major global health problem, after HIV and tuberculosis (WHO, 2005). Malaria causes an estimated 350–500 million clinical malaria episodes annually, resulting in over 1 million deaths (WHO, 2005). Previously extremely widespread, the malaria is now confined to Africa, Asia and Latin America (Figure 1.1). Of these, south Saharan Africa remains the region that has the greatest burden of malaria cases. P. falciparum causes most of the severe disease, and is the most prevalent in parts of Africa, South-East Asia and the Western Pacific (see also Figure 1.1). As reported by WHO (2005), from 60% of the worldwide malaria cases, approximately 75% of global falciparum malaria cases and more than 80% of malaria deaths occur in south Saharan Africa. The less dangerous malaria species, P. vivax occurs with the widest geographical range in temperate and tropical zones and is found in most of Asia, and in parts of the Americas, Europe and North Africa. P. malariae also has a similar range of distribution as P. falciparum which is more common in Africa and also South-East Asia and P. ovale which is predominantly found in Africa, is however a rare species found in South-East Asia.

Malaria incidence is determined by a variety of factors, particularly the abundance of anopheline mosquito species, human behavior, and the presence of malaria parasites. Global variations in the parasite–vector–human transmission dynamics influence the risk of the disease and death from malaria. Malaria is more common in rural areas than in cities; this is in contrast to dengue fever where urban areas present the greater risk. For example, the cities of the Philippines, Thailand and Sri Lanka are essentially malaria-free, but the disease is present in many rural regions. The variation in the malaria burden also depends on climatic variation.
Figure 1.1  Global distribution of malaria transmission risk for 2003 (Adapted from World Malaria Report 2005)
Anthropogenic climate change may directly affect the behavior and geographical
distribution of the malaria mosquitoes and the life cycle of the parasite, and thus
change the incidence of the disease (Willem et al., 1995). The increase of malaria
incidence in the tropics is due to the best combination of adequate rainfall,
temperature and humidity, which play crucial roles in malaria epidemiology because it
allows breeding and survival of the mosquitoes. Different levels of socioeconomic
development are also an important factor that determines variation in malaria
distribution. General poverty, quality of housing and access to health care and health
education, as well as the existence of active malaria control programmes, all strongly
influence the geographic location of the disease. The poorest nations generally have
the least resources for adequate control efforts. For example, malaria in West Africa,
Ghana and Nigeria is present throughout the entire country due to a poor sanitary and
housing development and also lack of education and resources for control and
elimination efforts (WHO, 2005).

1.3.1 Malaria in Malaysia
Malaria infection in Malaysia is mainly caused by *P. vivax* infection followed by *P.
falciparum* or mixed infection as reported for the year of 2003 (Figure 1.2 (A)) (WHO,
2005). The malaria cases reported in Malaysia as divided by age and gender for the
year 2000 to 2003 is indicated in Figure 1.2 (B). The incidence of malaria by selected
sub-national area from 2000-2003 is also shown in Figure 1.2 (C). Non-peninsular
region (Sabah and Sarawak) mainly contributed to the major malaria cases in Malaysia
followed by Pahang, Perak and Johor. Most of the cases implicated are primarily in the
aboriginal Orang Asli population which is mainly distributed at the centre of Peninsular
Malaysia.
Figure 1.2  Malaria cases in Malaysia from 2000-2003 (Adapted from WHO Malaria Report 2005).

(A) Malaria infection in Malaysia as classified by type and quality for 2003; (B) Malaria cases in Malaysia divided by age and gender and (C) reported malaria cases by selected sub-national area for 2000 to 2003 as reported by Ministry of Health Malaysia.
1.4 The mosquito vector

Human malaria is transmitted by female mosquitoes of the genus Anopheles. Of approximately 430 Anopheles species, about 50 transmit malaria in nature, depending on the region and the environment (Subbarao and Sharma, 1997; Riehle et al., 2006) (see Figure 1.3). Anophelines that can transmit malaria are not only found in malaria-endemic areas, but also in areas where malaria has been eliminated. Thus, the latter areas are constantly at risk of re-introduction of the disease. Apart from malaria, anopheles mosquitoes are also known to transmit *W. bancrofti* (filarial worm); the Timorese filaria, *Brugia timori*; several arboviruses including eastern and western equine encephalitis, Venezuelan equine encephalitis etc.

The anopheline mosquito has four distinct stages in its life cycle; egg, larva, pupa, and adult (Figure 1.4). The adult is an active flying insect, while the other stages occur in water. The female Anopheles is infected by the malaria parasite during its blood meal of infected patients. Once ingested, malaria parasites must undergo development within the Anopheline mosquito before they become infectious to humans. The time required for development in the mosquito which is called the extrinsic incubation period ranges from 10-21 days, depending on the parasite species and the temperature. If a mosquito does not survive longer than the extrinsic incubation period, then it will not be able to transmit any malaria parasites. The length of the life cycle completes within a week depending on the temperature and species characteristics. However, it is not possible to measure directly the life span of mosquitoes in nature. Charlwood et al., (1997) reported that indirect estimates of daily survivorship of *An. gambiae* in Tanzania ranged from 0.77 to 0.84 meaning that at the end of one day between 77% and 84% will survive.
Figure 1.3 Global distribution of malaria vectors (adapted from World Malaria Report, 2005).
Figure 1.4  The life cycle of Anopheles mosquito (adapted and modified from CDC, 2004)
Phillips (2001) reported that there are three very efficient malaria vectors in the world An. gambiae, An. arabiensis and An. funestus. However, An. gambiae is the most common vector of falciparum malaria in Africa (Mbogo et al., 1995, Mendis et al., 2000), and is also one of the most difficult to control. An. gambiae is anthropophilic and usually transmits P. falciparum parasite (Amorosa et al., 2005). However, there are several other principal malaria vectors in the Asian region such as An. culicifacies, An. minimus, An. annularis, An. dirus, An. fluviatilis, An. maculipennis, An. sacharovi, An. superpictus, An. farauti (WHO, 2005) and An. maculatus which is the main vector for malaria transmission in Peninsular Malaysia (Singh and Tham, 1988; Rahman et al., 2002).

1.5 The parasite

Malaria is caused by a one-celled parasite from the genus Plasmodium. Plasmodium species are apicomplexa and exhibit a heteroxenous life cycle involving a vertebrate host and an arthropod vector. More than 100 different species of Plasmodium exist, and they produce malaria in many types of animals and birds, as well as in humans. However, there are 4 common species that infect humans; P. falciparum, P. malariae, P. vivax and P. ovale. Recently P. knowlesi has also been suggested to infect humans (Singh et al., 2004). Each species has a distinctive microscopic appearance, differs in their life cycles and each one produces a different set of clinical manifestation (Figure 1.5). Two or more species can live in the same area and can infect a single individual at the same time. Of these, P. falciparum is the most widespread and is the main cause of malarial morbidity and mortality (WHO, 2002). The infection can develop suddenly and produce several life-threatening complications. P. vivax, P. malariae and P. ovale can also cause febrile illness but are rarely fatal. P. malariae infections not only produce typical malaria symptoms but they also can persist in the blood for very long periods, possibly decades, without ever producing symptoms (Vinetz et al., 1998). A person with asymptomatic P. malariae infection however, can infect others,
Figure 1.5  Blood stages of Plasmodium (A) *P. falciparum* and (B) *P. vivax* (adapted from Davis, 2003).
Figure 1.5  Blood stages of Plasmodium (C) *P. malariae*, (D) *P. ovale* (adapted from Davis, 2003) and *P. knowlesi* (adapted from Singh et al., 2004).
either through blood donation (Hang et al., 1995) or mosquito bites. *P. ovale* is rare; however it can cause relapses. Besides the four human species of *Plasmodium* that commonly cause malaria in humans, the simian malaria parasite *P. knowlesi* can also cause malaria in humans (Garnham, 1996). As reported by Singh et al. (2004), human *P. knowlesi* infections that previously misdiagnosed by microscopy mainly as *P. malariae* have recently triggered a large number of cases in Kapit, Sarawak. The *P. knowlesi* infection in human has caused various clinical manifestations, varying from moderate to severe; but it is treatable with anti-malarial treatment (Singh et al., 2004).

1.5.1 Life cycle of human malaria parasite

The life cycle of human malaria parasite is complex because it requires both human as well as the mosquito host (Phillips, 1983) (Figure 1.6). In general, *Plasmodium* spp. reproduces sexually in *Anopheles* mosquitoes. However in humans, the parasite reproduces asexually in liver cells prior to being reproduced repeatedly in RBCs. The sporozoite (approximately 100) in the saliva of an infected female *Anopheles* mosquito is transmitted into the human blood stream during its blood meal (Rosenberg et al., 1990). Within 30 to 45 minutes, the thread-like sporozoites invade hepatocytes though the actual mechanism of invasion remains unclear (Phillips, 2001). Growth and division of the human parasites in the liver take approximately 6 to 15 days depending on the *Plasmodium* species; approximately 6, 10 and 15 days for *P. falciparum*, *P. vivax* and *P. ovale* and *P. malariae*, respectively (Phillips, 2001; Moore et al., 2002; Hisaeda et al., 2005). Alternatively, some *P. vivax* and *P. ovale* sporozoites turn into hypnozoites, a form that can remain dormant in the liver for months or years until they are reactivated to complete the pre-erythrocytic cycle with the release of merozoites into the bloodstream to precipitate a relapse infection (Phillips, 2001; Hisaeda et al., 2004). At the end of the cycle, thousands of merozoites are released into the bloodstream flowing through the sinusoids, and within 15 to 20 seconds, the merozoites attach to
Figure 1.6  Life cycle of the malaria parasite. The life cycle commences with the inoculation of sporozoites that travel to the liver (1). After a period in the liver, once parasites multiply intracellularly, merozoites rupture from infected hepatocytes and invade RBCs (2). The merozoites invade RBC, continue it life cycle within RBC (3) or develop into nonmultiplying sexual forms (4). Sexual forms (gametocytes) are taken up by the mosquito (5). These emerge in the gut of the mosquito as gametes, which fuse to form a zygote, then and oocyst, and sporozoite develop, which travel to the salivary galand (6). (adapted from Nature Reviews Immunology, 2001).
and invade RBCs where they fuel their activities by consuming haemoglobin (Phillips, 2001; Moore et al., 2002). The schematic depiction of stages in RBC invasion by the malaria merozoite is shown in Figure 1.7.

In the RBCs, most merozoites go through another cycle of asexual reproduction, again forming schizonts filled with yet more merozoites. When the schizont matures, the RBC ruptures and merozoites burst out. Normally for human malaria parasites, one complete asexual cycle takes approximately 48 or 72 hours, depending on the species (Phillips, 2001 and Moore et al. 2002). The newly released merozoites invade other RBCs, and the parasite continues its cycle until it is controlled by the immune response or anti-malarial drug or chemotherapy. All symptoms commence when the parasites undergo this asexual stage (Hajime et al., 2005). At this stage, it will reach a sufficient level to generate the host’s pathogenic process. Fever, a hallmark of malaria, is due to parasite-derived molecules, which are released from ruptured host cells by activating the inflammatory cells such as macrophages (Hajime et al., 2005). These secreted pro-inflammatory cytokines include powerful endogenous pyrogens, such as interleukin (IL)-1 and tumor necrosis factor (TNF-α). Typically, P. vivax takes 48 hours (tertian malaria) and P. malariae takes 72 hours (quartan malaria) to undergo a complete cycle in RBCs. The Plasmodium parasite is able to complete its life cycle in the mosquito because some of the merozoites that penetrate RBCs do not develop asexually into schizonts. Eventually, some merozoites differentiate into sexual forms known as gametocytes (Phillips, 2001 and Moore et al. 2002). The gametocytes circulate in the host’s bloodstream, awaiting a blood meal of a female Anopheles. Once in the mosquito’s gut, the gametocytes develop into mature male and female gametes. Fertilization produces an oocyst filled with infectious sporozoites. When the oocyst matures, it ruptures and the sporozoites migrate, by the thousands, to the mosquito’s salivary glands. And the cycle starts all over again when it bites her next victim.
Figure 1.7 A model of RBC invasion by the malaria merozoite (adapted from www.nimr.mrc.ac.uk/parasitol/blackman/rhomboid)

A schematic depiction of stages in RBC invasion by the malaria merozoite. The parasite binds (A), reorientates until its apical end contacts the host cell surface (B), then enters into a parasitophorous vacuole (C). As it enters, proteins are released from apical organelles (D) and parasite surface proteins are shed by proteases (E). The entire process is complete within about 30 seconds.
1.6 Pathophysiology

1.6.1 Clinical features and pathogenesis of malaria

Much of the pathology of malaria commence when the parasites undergo the asexual blood cycle (Phillips, 2001). Fever due to *P. falciparum*, a hallmark of malaria, occurs initially at 48 h intervals and lasts for a few hours. Fever, normally accompanied by nausea, headache and chills is due to parasite-derived molecules which are released from ruptured host cells activating inflammatory cells such as macrophages and fibroblasts. These also secrete pro-inflammatory cytokines including the powerful endogenous pyrogens, such as IL-1 and TNFα (Angulo and Fresno, 2002). As reported by Kwiatkowski *et al.* (1993), Gambian children infected with *P. falciparum* showed reduced fever in a presence of anti-TNFα. Clinical complications of *P. falciparum* malaria occur particularly in non-immune adults and children who remain untreated for several days after the onset of fever. However, the most serious, and frequently fatal, complication is cerebral malaria. In severe cases this is associated with deep coma and generalised convulsions. Obstruction of cerebral venules and capillaries with trophozoites and schizonts is a characteristic of histopathological findings in cerebral malaria. However, untreated cases of acute falciparum malaria will cause several other common clinical complications such as severe liver failure, circulatory collapse, acidosis, hypoglycaemia, anaemia, hyperpyrexia, acute pulmonary oedema and renal failure. Despite all the complication, falciparum malaria is also a major cause of maternal death, abortion, stillbirth, premature delivery and low birth-weight in endemic areas. A study related to malaria cases in pregnant women showed that the placenta is identified as a preferred site for sequestration of infected RBCs and a sub-population of the mature forms of *P. falciparum* that adhere to chondroitin sulphate A which can be found in infected placenta (Aikawa *et al*., 1990, Bulmer *et al*., 1993, Fried and Duffy, 1996). Adherence of *P. falciparum*-infected erythrocytes to the endothelium of post-capillary venules assists the parasite in
avoiding splenic clearance and promotes sequestration in the placenta as well as the
brain, thus promoting severe malaria infection.

Some individuals have genetic resistance to malaria. In individuals who are
heterozygous for sickle-cell hemoglobin, the internal environment of the RBCs does
not allow for the development of the merozoites (Wakelin, 1996). Therefore RBCs do
not rupture, thus limiting transmission because more merozoites are not created in the
RBCs. This person, although infected with malaria, does not suffer from its symptoms
nor can the disease be spread from this person. The Duffy antigen, which is
expressed on the surface of the RBC, is necessary for \textit{P. vivax} to enter the RBC and
therefore people without this antigen are protected from vivax malaria.

The fact that many people in endemic areas are infected with the parasite but do not
have the disease gives evidence to the existence of acquired immunity (Wakelin,
1996; Eisenhut, 2007). Much research is being conducted currently into the
mechanisms of this acquired immunity to malaria in order to create a malaria vaccine.
It is this acquired immunity to malaria that limits the correlation between rates of
morbidity and mortality, and malaria transmission rates (Brewster, 1999).

1.6.2 Immunity to malaria

Considerable evidence has revealed that antibodies and T cells play crucial roles in
the protective immunity against malaria parasites (Good, 1998; Kaslow and Miller,
1998). Since the malarial parasite infects different targets and undergoes various
stages in its life cycle, immunity against the infection is also stage specific. Some
studies have revealed that monocytes, macrophages, NK cells and neutrophils appear
to play a role in innate immunity in the early stages of malarial infection (as reported by
CDC, 2004). At the initial phase of malaria infection, Th1 immunity will play an
important role in clearing the parasite (Langhorne \textit{et al.}, 1998; Angulo and Fresno,
However later in the infection, after the initial reduction in parasitemia, there is a switch to a Th2-like response which is associated with the production of IL-4 and IL-10 and the provision of help to B cells for antibody responses (Jason et al., 2001; Taylor et al., 2001). At this stage, B cells are necessary for the control and clearance of residual parasites (Langhorne et al., 1998; Holder, 1999), suggesting a requirement for antibody in the resolution of infection. Antibodies can mediate their protective effect by multiple mechanisms during the malaria infection - antibodies can neutralize the parasites, retard parasite development, prevent them from entering target cells and assist macrophages to efficiently engulf the parasites and infected cells (CDC, 2004).

Previous studies have reported that antibodies, CD4+ and CD8+ αβ T cells, and γδ T cells have all been shown to contribute to the elimination of pre-erythrocytic parasites in irradiated-sporozoite-immunized mice following a sporozoite challenge (Good and Doolan, 1999; McKenna et al., 2000; Plebanski and Hill, 2000) and it is normally CD8+ αβ T cells that are required for protective immunity during this stage (Rzepczyk et al., 1997). In addition, Kupffer cells, resident macrophages of the liver phagocytose sporozoites and may present parasite antigens via MHC class-I (Aidoo and Udhayakumar, 2000). The infected hepatocytes or Kupffer cells expressing processed pre-erythrocytic antigens recognized by malaria-specific CD8+ T cells; resulting in either inhibition of the intracellular parasite or lysis of the target cell. CD8+ T cells eliminate intracellular pathogens by a perforin mediated pathway in which the infected cell is lysed via a FAS-mediated pathway and the target cells are induced to self-destruct (Esser et al., 1996; Aidoo and Udhayakumar, 2000) or by a cytokine (mainly IFN-γ)-dependent pathway in which the infected cell is stimulated to kill intracellular pathogens (Lalvani et al., 1997; Lenkers et al., 1997; Good and Doolan, 1999). Previous studies have shown that immunization with radiation-attenuated sporozoites induces sterile protection in animal models which is mediated predominantly by CD8+ T
cells and IFN-γ and directed against the intrahepatocytic stage of the parasite (Benmohamed et al., 1997; Winkler et al., 1998; Meraldi et al., 2005). IFN-γ-mediated liver stage protection is also mediated by CD4+ T cells (Charoenvit et al., 1999; Good, 1999; Tsuji and Zavala, 2003), NK cells (Gonzalez-Aseguinolaza et al., 2000; Gonzalez-Aseguinolaza et al., 2002) and γδ T cells (Rzepczyk et al., 1997; McKenna et al., 2000). Previous studies showed that the human RTS,S vaccine induced high levels of IFN-γ-secreting CS-specific CD4+ T cells and is protective in naïve volunteers (Stoute et al., 1997 and Lalvani et al., 1999). The presence of NK cells will also activate the production of IFN-γ and activates macrophages initiating them to eliminate infected RBCs by phagocytosis. Besides cell-mediated immunity, antibody responses are also elicited against sporozoites inhibiting their invasion of hepatocytes. If the release of merozoites from the liver into the bloodstream is prevented, the infection could be terminated before disease onset.

Antibodies to diverse parasite antigens expressed on the surface of infected red cells, or on free merozoites play an important role in immunity against the asexual erythrocytic stage of malaria infection (Nwuba et al., 2002; Garraud et al., 2003; Okech et al., 2004). The antibodies can inhibit parasite growth by blocking red cell invasion by causing complement-mediated lysis of infected red cells and by enhancing uptake through Fc receptors and/or complement receptors on phagocytes (Good et al., 1998; Miller et al., 1998; Rotman et al., 1998; Saul et al., 1999). Although blood-stage protection is substantially mediated by antibodies, other protective mechanisms are also involved, including innate immunity, IFN-γ production and T-cells (Plebanski et al., 2000). Furthermore, IFN-γ could also promote activation of macrophages to enhance clearance of infected RBCs. As reported by Luty et al. (1999), IFN-γ produced by CD4+ T cells to specific blood-stage antigens has been shown to be associated with protection against re-infection in African children. In murine malaria, IFN-γ-secreting T
cell clones can protect by a nitrate-dependent mechanism possibly mediated by macrophages and neutrophils (Jacobs et al., 1995; Stevenson et al., 1995; Matsumoto et al., 2001). CD4⁺ T-cell secretion of IFN-γ might also help induced cytophilic IgG blood-stage-specific antibodies and assists clearance of infected RBCs (Bouharoun et al., 1995; Matsumoto et al., 2001). Therefore, immune responses to blood-stage parasites contribute to reduction in disease severity by eradicating the parasites and by preventing pathogenesis.

1.7 Diagnosis of malaria

Simple light microscopic examination of Giemsa stained blood films is the most widely practiced and useful method for definitive malaria diagnosis and still remains the ‘gold standard’ for the detection and species identification of malarial parasites (WHO, 2000). Two types of blood films are traditionally used for microscopic examination; thin films and thick films. Thin films are similar to usual blood films and allow the microscopist to speciate malaria. Meanwhile, thick films allow the microscopist to screen a larger volume of blood, so as to pick up low levels of infection. Advantages using this technique include differentiation between species, characterization of circulating stage, quantification of the parasite density, and ability to distinguish clinically important asexual parasite stages from gametocytes which may persist without causing symptoms. These advantages can be critical for proper case-management and evaluating parasitological response to treatment. It is comparatively inexpensive. Specific disadvantages are that slide collection, staining, and reading can be time-consuming and technically challenging – thus microscopists need to be trained and supervised to ensure consistent reliability (Moody et al., 2002; Suh et al., 2004).

A second method is a modification of light microscopy called the quantitative buffy coat (QBC) method. This technique was originally developed to screen large numbers of specimens for complete blood cell counts. The technique uses microhaematocrit tubes