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PEMBANGUNAN MODEL RANGKAIAN NEURAL BERBILANG-
MASUKAN BERBILANG-KELUARAN (MIMO) DAN BERBILANG-

MASUKAN SATU-KELUARAN (MISO) UNTUK TURUS PENYULINGAN 
BERTERUSAN 

 

ABSTRAK 

 
Turus penyulingan banyak digunakan dalam proses-proses kimia dan 

mewakili kira-kira 95 peratus sistem pemisahan dalam industri. Turus penyulingan 

merupakan sistem berbilang pembolehubah kompleks dan mempunyai  kelakuan 

dinamik tak linear kerana hubungan keseimbangan wap-cecair tak linear, tatarajah 

proses yang kompleks dan ketulenan keluaran yang tinggi. Untuk mendapatkan 

kualiti keluaran yang lebih baik dan mengurangkan penggunaan tenaga oleh turus 

penyulingan, sistem kawalan berasaskan model tak linear yang berkesan diperlukan 

untuk membenarkan proses dijalankan di atas julat pengendalian yang besar. 

Kebolehsediaan model tak linear yang sesuai adalah penting dalam pembangunan 

kawalan berasaskan model. Dalam kajian ini, model tak linear untuk meramal 

komposisi keluaran atas dan bawah untuk loji pandu turus penyulingan metanol-air 

dibangunkan menggunakan teknik rangkaian neural. 

 

Data masukan-keluaran untuk model rangkaian neural dijana daripada model 

am prinsip pertama yang disahkan. Berdasarkan analisis masukan-keluaran, haba 

masukan pengulang didih, aliran refluks dan suhu-suhu dulang dipilih sebagai 

masukan untuk model rangkaian neural. Tujuh profil haba masukan pengulang didih 

dan kadar aliran refluks yang berbeza-beza direkabentuk untuk menguja model 

prinsip pertama bagi menjana data masukan-keluaran. Set-set data ini dibahagikan 

kepada data latihan, pengesahan dan ujian. 



 
 

 Dua struktur model rangkaian neural telah dibangunkan iaitu model 

berbilang-masukan berbilang-keluaran (MIMO) dan sepasang model berbilang-

masukan satu-keluaran (MISO) dengan masukan 16 dan 24 untuk setiap model. 

Kesan neuron tersembunyi dan data masukan sejarah lalu terhadap model juga 

dinilai. Didapati bahawa model MISO lebih hebat berbanding model MIMO. Di 

samping itu, didapati bahawa 16 masukan ke dalam model rangkaian neural 

mengatasi 24 masukan untuk kedua-dua model MISO dan MIMO. Diperhatikan 

bahawa struktur rangkaian yang optimum tidak semestinya terdiri daripada bilangan 

neuron yang terbanyak dan pemilihan yang berhati-hati terhadap data sejarah lalu 

diperlukan bagi menyediakan masukan yang sesuai ke dalam model rangkaian 

neural. Sepanjang kajian ini, prestasi model-model ditentukan berdasarkan nilai-R 

dan SSE. Model MISO-1 yang terdiri daripada 19 neuron dan 20 neuron dipilih 

sebagai model terbaik berdasarkan prestasinya dengan nilai-R yang lebih tinggi 

daripada 0.996 dan SSE yang lebih rendah daripada 6.86x10-4 semasa proses 

pengesahan dan ujian. 

 

Pengesahan model yang dibangunkan dengan data sebenar adalah penting 

untuk memastikan kebolehan model tersebut untuk mewakili proses sebenar yang 

dipertimbangkan. Maka, kerja ujikaji telah dijalankan untuk memisahkan campuran 

methanol air di dalam loji pandu turus penyulingan berterusan. Keputusan 

menunjukkan bahawa model prinsip pertama dan model rangkaian neural yang 

dibangunkan berada dalam persetujuan yang baik dengan data ujikaji. Keputusan 

yang diperolehi dalam kajian ini membuktikan bahawa model rangkaian neural yang 

dibangunkan boleh digunakan bagi mewakili proses penyulingan.   

 

 



 
 

DEVELOPMENT OF MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) 
AND MULTIPLE-INPUT SINGLE-OUTPUT (MISO) NEURAL NETWORK 

MODEL FOR CONTINUOUS DISTILLATION COLUMN 
 

ABSTRACT 

 
Distillation columns are widely used in chemical processes and account for 

approximately 95 percent of the separation systems in industries. A distillation 

column is a complex multivariable system and exhibits nonlinear dynamic behavior 

due to the nonlinear vapor-liquid equilibrium relationships, the complexity 

processing configurations and high product purities. In order to gain better product 

quality and lower the energy consumption of the distillation column, an effective 

nonlinear model based control system is needed to allow the process to be operated 

over a larger operating range. The availability of a suitable nonlinear model is crucial 

in the development of a nonlinear model based control. In this study, a nonlinear 

model to predict the top and bottom product compositions of a methanol-water pilot 

plant distillation column was developed using the neural network technique.  

 

The input-output data for the neural network model was generated from the 

validated general first principle model. Based on the input-output analyses, reboiler 

heat duty, reflux flowrate and tray temperatures were selected as the inputs for the 

neural network model. Seven different profiles were designated to excite the first 

principle model to generate the input-output data. These sets of data were then 

divided into training, validation and testing data.  

 

Two neural network model structures were developed i.e. a multiple-input 

multiple-output (MIMO) model and a pair of multiple-input single-output (MISO) 
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models with 16 and 24 inputs for each model respectively. The effect of hidden 

neurons and past historical input data on the model performance was also evaluated. 

It was found that the MISO model was superior to the MIMO model. In addition, it 

was found that the 16 inputs to the neural network model outperformed the 24 inputs 

for both the MISO and the MIMO models. It was also observed that the optimum 

network structure did not necessarily consist of the highest number of neurons and 

the careful selection of historical data was required in order to provide suitable input 

to the neural network model. Throughout the study, the performance of the models 

was determined based on their R-values and SSE. The MISO-1 model consisted of 

19 neurons and 20 neurons was selected as the best model based on its performance 

with R-value which was higher than 0.996 and SSE which was lower than 6.86x10-4 

during the validation and testing processes.  

 

The validation of the developed model with real data was important in order 

to ensure the ability of the model to represent the real processes being considered. 

Therefore, experimental works was carried out to separate the methanol water 

mixture in a continuous pilot plant distillation column. The results showed that the 

first principle and the neural network models which were developed were in good 

agreement with the experimental data. The results obtained in this study proved that 

the neural network model which was developed could be used to represent the 

distillation process.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background 

Many chemical processes in industries are inherently nonlinear due to the 

nature of the process itself. In many situations, the dynamic behavior of the process 

system is known to be nonlinear due to the complex thermodynamic relations or 

reaction kinetics of the processes.  

 

In distillation process, the nonlinear dynamics behavior occurs due to the 

nonlinear vapor liquid equilibrium relationships, the complexity of the processing 

configurations (e.g., prefractionators, sidestreams, and multiple feeds) and high 

product purities (Luyben, 1987).  

 

Research by the Industrial Info Resources in 2007 reported that distillation 

columns are key components for hundreds of chemical processing industry (CPI) 

plants. They are often found to be the nucleus of a petrochemical plant on which 

everything in the plant ultimately depends on for feed or output. The distillation 

column is often the most significant and most common separation technique used in 

the processing of chemical feedstock in petrochemical plants (Marketwire, 2007). It 

comprises 95 percent of the separation processes for the refining and chemical 

industries (Riggs, 2006). The increasing demand for highly integrated chemical 

plants, tight product quality specifications and tough environmental regulations 

require an effective control system of the distillation plant (Kumar and Daoutidis, 

2002). It was also reported that an effective control of the distillation column is the 

best way to reduce the operating costs of existing units since the distillation process 
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consumes enormous amounts of energy both in terms of cooling and heating 

requirements. It also contributes to more than 50 percent of the plant operating costs 

(Tham, 2006).  

 

In general, the distillation process presents crucial control problems such as 

delays and for multivariable systems, the interaction among the loops could become 

serious problem. Furthermore, the nonlinear dynamic behavior of the distillation 

process may cause problems in designing a control system. This is because optimal 

control performance cannot be achieved through the conventional PID control 

system. As an alternative, one can use a model based approach to control the system. 

A model of a system is a tool that needs to be used to answer questions about the 

system without having to perform experiments. Model based control strategies such 

as the internal model control (IMC) and the model predictive control (MPC) have 

shown to be better control systems when compared to the conventional method 

because of their ability to satisfy tight performance whenever required (Qin and 

Badgwell, 1998).  In the absence of a reasonably accurate model, these processes are 

fairly difficult to control. 

 

 Conventional process control systems utilize linear dynamic models. 

However, the linear model fails to provide satisfactory performance especially when 

the process is operated away from the nominal operating region. For highly nonlinear 

systems, control techniques which are directly based on nonlinear models are 

expected to provide significantly improved performance. For the modeling of the 

nonlinear process, three different model structures can be used: white box models, 

also called fundamental models which are derived based on mass, energy and 

momentum balances of the process; empirical models which are derived from the 
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input-output data of processes like neural networks, fuzzy models and block oriented 

models; and hybrid models which combine both the fundamental and the empirical 

model.  

 

Applications which utilize the neural network based strategies are widely 

used in nonlinear chemical processes such as the polymerization process (Fernandes 

and Lona, 2005; Bomberger et al., 2001), the bioprocess (Eiken et al., 2001) and the 

fermentation process (Chen et al. 2004). As approximators, their capacity to learn 

from example offers a cost-effective method of developing useful process models.  

 

The main aim of this research is to develop a nonlinear model by using a 

neural network technique which is able to represent the continuous distillation 

column. This is based on the distinct capability of the model to capture the complex 

dynamic and static interactions of the input-output pattern of the distillation column.  

 

1.2 Problem Statement 

Model based control has significant advantages over structured PID control 

loops and has become the most widely used multivariable control strategy in the 

chemical industry (Brosilow and Joseph, 2002; Abu-Ayyad and Dubay, 2007). 

Process modeling has become the most essential procedure for the implementation of 

a model based control algorithm. However, the difficulty in developing the process 

model is closely related to the system behavior which is not well understood and 

hard to be modeled precisely particularly for a complex nonlinear dynamic system 

such as the distillation column. At present, many industrial controllers use a linear 

process model such as first-order-plus-dead-time or pure-integrator-plus-dead-time 

models (Nikolaou and Misra, 2003). Since many processes are nonlinear, control 

Comment [ZA9]: Model based control 
has significant advantages over structured 
PID control loops and has become the 
most widely used multivariable control 
strategy in the chemical industry.



 4

systems which are based on these linear models perform poorly when the operating 

condition change. In order to deal with this phenomenon, good control of the 

distillation column requires a nonlinear model based controller.  

 

The development of a suitable nonlinear model for the process is critical and 

has become one of the most time-consuming activities in the development of the 

nonlinear model based control. Although a lot of fundamental models have been 

developed, these models tend to involve many equations. In addition, the models 

obtained may be too complex to be used for nonlinear model based control design 

and may increase the computational burden of the controller. At present, a lot of data 

available in the industries has led to the growth of the data driven model or the 

empirical model.  

 

The neural network technique is one of the most useful data driven models 

that can be utilized in developing a nonlinear model based control system. The neural 

network provides powerful analysis properties such as the complex processing of 

large input-output information arrays which represent complicated nonlinear 

associations among the data and the ability to generalize.  

 

Previously, several nonlinear neural network models have been developed to 

represent distillation process for both the binary and multicomponent systems. 

However, the best neural network model has yet to be discovered due to several 

inadequacies such as lack of reliable data processing which cause the effectiveness of 

the model cannot be accurately obtained and the stability of the neural network in 

control scheme is still an open question. The flexibility of the neural network 

architecture opens the scope for further development of the neural network model for 
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continuous distillation column.  In addition, the selection of the input-output of the 

neural network, which has become one of the major successes in developing the 

neural network model, is still indecisive. Furthermore, only a few neural network 

models which are based on past and current input that have been found to be useful 

in light of the dynamic systems have been applied to the continuous distillation 

column. These issues have led to this research which focused on improving the 

development of neural network model for a continuous distillation column. 

 

 In this study, two different neural network structures were developed: the 

multiple-input multiple-output (MIMO) model and a set of multiple-input single-

output (MISO) model to describe the nonlinear behavior of the distillation column. 

The sets of training, testing and validation data for the neural network were 

generated from the simulation of the validated first principle model. The first 

principle model was also used to analyze the relationship between the key variables 

in the distillation column in order to study the dynamics of the distillation process 

and to select the best input-output for the neural network model. Finally, validation 

with actual data from experiments was carried out in order to verify the capability of 

the neural network model in predicting the real process. In this study, the separation 

of water methanol binary system is chosen as the case study since it is inherently 

dynamic and nonlinear in nature (Ramasamy and Aziz, 2003). 

 

1.3 Objectives of the Research  

The objective of this research is to develop a nonlinear neural network model 

for distillation column. The specific objectives of this project are as follows: 
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1. To develop a general code of the first principle model that can be used for 

binary and multicomponent systems. This model will be used to study the 

relationship within the distillation process and to generate the data set for the 

development of the neural network model. 

 

2.  To study the relationships among the key variables in the distillation column 

in order to select the best input-output for the neural network model 

 

3. To develop the MIMO and MISO neural network models for the distillation 

process and to optimize the architecture of the models based on the number of 

hidden neurons.  

 

4. To compare the performance of the models which have been developed based 

on network structures and historical input data and to select the best neural 

network model to predict the top and bottom product composition.  

 

5. To validate the neural network model with experimental results in order to 

observe the accuracy and effectiveness of the neural network model as 

compared to the pilot distillation plant. 

 

1.4 Organization of Thesis 

This thesis is divided into five chapters. 

 

Chapter 1 describes the existence of nonlinear behaviors in chemical processes 

particularly in the distillation process. It also discusses the importance of model 
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development in chemical processes. In addition, this chapter also outlines the 

problem statement and the objectives of the research.  

 

Chapter 2 provides an overview of the distillation column, its behaviors and its 

sensitivity. It also gives details about the need of a nonlinear model in advanced 

control strategies. A review of several approaches which have been applied in the 

development of nonlinear models of distillation column is also given. This is 

followed by a discussion on the development of empirical model utilizing neural 

network approaches. Finally, the advantages of the neural network approach are 

highlighted. 

 

Chapter 3 outlines the methodology of this work. This chapter is divided into two 

main sections: the first section explains the methodology used in the modeling of the 

first principle and the neural network models. The procedure to optimize the neural 

network model is also highlighted. The second section covers the experimental part 

of the work.  It also explains the chemicals and equipment used in the experiment as 

well as the experimental procedures in this work.  

 

Chapter 4 presents the results and discussions obtained from simulation and 

experimental work. It covers the simulation results obtained from the general first 

principle model for the behavior of the distillation column and the sensitivity 

analysis studies. The generation of simulation data for neural network model 

development is also presented. The chapter also discusses the results of the neural 

network model. The performance of the neural network models is evaluated based on 

the number of hidden neurons, the structures and the historical input data. The 
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extrapolation ability of the models is also demonstrated. Finally, the validation of the 

neural network model with the pilot plant data is discussed.  

  

Chapter 5 contains the conclusions of the present work. Some recommendations for 

future research are also proposed in this chapter.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Distillation Column 

Distillation columns play a key role to separate an input stream of chemical 

species into two or more output streams of desired and useful chemical species. This 

process is widely used in the beverage industry, chemical processing, 

petrochemicals, and natural gas processing. It is usually the most economical method 

utilized for separating liquids and consists of a process of multi-stage equilibrium 

separations. 

 

2.1.1 Operation  

Distillation is used to separate miscible liquid mixtures. The basic concept of 

the distillation column is to separate a mixture of two or more liquids with different 

boiling points by heating the mixture to a temperature between their respective 

boiling points (Rousseau, 1987; Felder and Garrett, 2003; Goodwin et al., 2006). The 

basic principle is the preferential vaporization of low boiling point components away 

from high boiling point components when heat energy is applied to the mixture. The 

low boiling point component will boils and transforms into vapor while the high 

boiling point component will remain as a liquid. This phenomenon is usually 

quantified by the relative volatility of the components. 
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Figure 2.1: A schematic diagram of a distillation column 
 

Figure 2.1 shows a schematic diagram of a distillation column. In the 

distillation column, the feed containing the mixture of components enters the column 

at one or more points. The liquid flows over the plates and vapor bubbles up through 

the liquid via holes in the plates. As the liquid travels down the column, vapor comes 

in contact with it. The liquid and vapor are kept in contact with each other for a 

sufficient period to ensure the chemical components are transferred between phases 

until equilibrium is reached. The liquid and vapor phases are brought into contact 

because as one molecule of high boiling point component converts from vapor to the 

liquid phase by energy release, another molecule of the low boiling point component 

utilizes the free energy to convert from the liquid to vapor phase. At equilibrium, all 

compositions of all phases stop changing i.e thermal, pressure and chemical potential 

are in equilibrium. As the system moves toward equilibrium, each species establishes 

Vapor flow  

Steam  

Bottom (liquid)  

Reboiler Heat 
Exchanger  

Boilup (vapor)  

Feed  

Liquid flow  

Cooling water  

Condenser Heat 
Exchanger 

Distillate (liquid)   

Reflux (liquid)  



 11

a different concentration in each zone and the new liquid and vapor phases are 

separated.  

 

The base of the distillation column contains a large volume of liquid which is 

mostly the liquid with the high boiling point component. Some of this liquid is 

heated in the reboiler and returned to the column and this is called the boilup. The 

remaining liquid is removed as a bottom product. The vapor follows its way to the 

top of the column and enters a reflux drum. In the drum, the vapor is cooled until it 

becomes a liquid. Part of the product is returned to the column as reflux and the 

remainder of the product leaves the column as distillate.  

 

2.1.2 Nonlinear Dynamic Behavior 

Many chemical processes in industries are inherently nonlinear. The 

nonlinear behavior of the process can be characterized as mildly nonlinear, strongly 

nonlinear or intermediate nonlinear (Pearson, 2003). The dynamics of the distillation 

column that is variations in time constants resulting from the size and direction of an 

input changes made are caused by a mixture of very fast vapor flowrate changes, 

moderately fast liquid flowrate changes, slow temperature changes and very slow 

composition changes (Luyben, 2002).  

 

According to Pearson (2003), the observation of one of the following 

phenomena in the distillation process shows the existence of the nonlinear dynamic 

behavior: 

a) Asymmetric responses to symmetric input changes i.e. violation of the odd 

symmetry of linear systems (ASYM)  
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b) Generation of harmonics in response to a sinusoidal input i.e. change of shape 

without changing the periodicity (HARM) 

c) Observation of input multiplicity (IM) 

d) Observation of output multiplicity (OM) 

e) Generation of subharmonics in response to any periodic input i.e. lengthening 

of the fundamental period (SUB) 

f) Highly irregular responses to simple inputs i.e. impulses, steps, or sinusoids 

(CHAOS) 

g) Input-dependent stability (IDS). 

These phenomena are divided into three subsets: 

a) Mildly nonlinear behavior which consists of ASYM, HARM and IM and 

corresponds to behavior that can be expected from almost any nonlinear 

dynamic model. 

b) Strongly nonlinear behavior which consists of OM, SUB and CHAOS and it 

requires models exhibiting nonlinear feedback.  

c) Intermediate nonlinearity which consists of IDS.  

 

2.1.3 Sensitivity 

The sensitivity of the process shows the influence of various variables on the 

system behavior in the distillation process. The variables are feed rate, vapor rate, 

heat input, pressure, temperature and reflux (Felder and Garrett, 2003). Descriptions 

on how these variables impactedaffected the distillation column behaviors are given 

below.  

 

i. Feed rate  
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The feed is introduced to the column at the point that closely matches its 

concentration at the feed stage. If the feed composition changes and deviates from 

the feed stage concentration, the composition of the overhead and bottom products 

will be affected as the vapor liquid equilibrium established within the column are 

perturbed. 

 

On the other hand, changes in the feed rate causes the vapor and liquid rates 

within the column to change in order to maintain the material balance. A feed rate 

that is too high or too low can lead to inefficient vapor-liquid contact on the trays 

which affect the separation performance. The change in feed rates also has an effect 

on the column temperatures and pressures at different points due to the change in the 

component concentration.  

 

ii. Vapor rate 

In the distillation column, the vapor velocity must be sufficient in order to 

overcome the pressure drop across each tray which must not be too high leading to 

liquid entrainment to the next tray. At high feed rates, the reflux can be reduced to 

stabilized vapor velocity but more likely at the expense of the increased high boiling 

point component in the top product stream. If reflux is reduced too much, the 

separation of the high boiling component will become unsatisfactory.  

 

iii. Heat input  

In a reboiler located at the base of the column, a portion of the liquid is 

converted to vapor, which serves as the major heat input into the column. The latent 

heat energy added in the reboiler creates the vapor flow moving upwards from tray to 

tray right to the top of the column. The amount of heat added to the reboiler 
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determines the amount of the liquid vaporized which corresponds to the vapor flow 

rate rising up the column. 

iv. Pressure 

Pressure has two effects on the column operation: 

a) An increase in pressure increases the boiling point of the liquids, therefore 

the overall operating temperature of the column is increased. A decrease in 

pressure lowers the boiling point, thus, giving an opposite effect to the overall 

operating temperature in the column. 

b) Pressure increases or decreases vapor density, which has an effect on vapor-

liquid contact. 

 

The columns are designed to operate at a fixed head pressure in order to 

maintain constant base and head temperature, which are the boiling point of the top 

and bottom streams. The column differential pressure (pressure drop) is also 

important as a measure of the vapor flow from the bottom to the top of the column. A 

higher or lower differential column pressure than the normal one may indicate 

possible column interior problems. 

 

v. Temperature 

The top temperature is the lowest temperature in the column and is the 

boiling point temperature of the vapor leaving the column and fed to the condenser. 

It is essentially the boiling point of the top stream column and defines the low boiling 

point component content of the top stream. The top temperature is used to monitor 

the composition of the top stream.  
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A profile of the temperature is measured across the column between the top 

and bottom. This temperature profile can also be used as indication on the separation 

performance within the various segments inside the column. The temperature profile 

could also be used to determine the concentrations of the components inside the 

column on each tray. An increase in temperature at constant pressure represents an 

increase in the high boiling point component concentration and a decrease in 

temperature at constant pressure represents an increase in the low boiling point 

concentration. 

 

Base temperature is measured at or very near to the bottom of the column. 

This is the highest temperature point in the column and reflects the high boiling point 

concentration in the bottom product stream. The base temperature is important as it 

changes with a change in the column pressure drop and the composition profile. A 

high base temperature could indicate excessive pressure drop inside the column and 

it could affect the thermal stability of the bottom product stream. 

 

An increase in the heat added to the reboiler increases the vapor rate and 

increases the temperature on the trays. As the temperature of the tray liquid 

increases, the liquid contains more of the high boiling point component. On the other 

hand, if the amount of reflux is increased, the amount of liquid which enters the tray 

through the downcomer increases. Therefore, increasing the reflux rate lowers the 

temperature of the liquid on the tray. As the temperature of the tray liquid decreases, 

the liquid contains more of the low boiling point components. 

 

vi. Reflux 
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The vapor velocity up the column can be stabilized at different feed rates by 

recycling a portion of the overhead condensate. The total feed to a column can also 

be stabilized by the reflux flowrate. Reflux serves a second purpose of increasing the 

low boiling component concentration overhead by sending the high boiling 

component back down the column. 

 

When the product from a distillation contains higher boiling point component 

than is desired, an increase in the flow of reflux can be used to wash this material out 

of the vapor in the top of the column. The top column temperature is a very good 

indication of high boiling point component content in the condensate. 

 

Reflux is also the means of controlling the temperature profile in the column. 

Increasing the amount of reflux flow lowers the temperature in the column whereas 

decreasing the reflux flow raises the column temperatures. Changing the temperature 

by the reflux rate is the result of changing the concentration of high and low boiling 

point components. 

 

2.1.4 Methanol-Water System: A Case Study 

 In this study, a distillation column for methanol-water separation is taken as a 

case study in this research since this system is a nonlinear dynamic process.  

 

 Ramasamy and Aziz (2003) studied a simple binary distillation column and 

verified that the nonlinear dynamic behavior is present even in a simple binary 

distillation column. They found that this process is mildly nonlinear based on the 

existence of several criteria as proposed by Pearson (2003). Ramesh et al. (2006) in 

their study proved that the methanol water system sufficiently represented the 
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nonlinear dynamic system. From the simulation of methanol water separation, they 

obtained the asymmetric responses in top product for the symmetric input changes of 

manipulated variables. This is an indication of the violation of the add symmetry of 

the linear system. They also found the non-elliptical form of the response. The result 

obtained from the study is evidence of the existence of a dynamic nonlinear behavior 

in methanol-water system. 

 

2.2 Control 

Distillation columns have several inputs and outputs therefore, they present 

multivariable control problems. The effective control of distillation columns can 

improve product yield, reduce energy consumption, increase capacity, improve 

product quality and consistency, reduce product giveaway, increase responsiveness 

and improve process safety. Therefore, an effective control system for the column is 

required but their nonlinear behavior and ill-conditioned nature and factors such as 

hydraulic, separation, heat transfer, pressure and temperature constraints cause 

difficulties in the control design of the distillation column.  

 

Model based control strategies can be used to overcome some of the 

limitations of traditional control systems. The performance of model-based controller 

is mostly determined by its model. If the model is accurate and if its inverse exists 

then process dynamics can be cancelled by the inverse model. As a result, the output 

of the process is always equal to the desired output. This means that the model based 

control design has the potential to provide perfect control (Willis and Tham, 2007). 

In a model-based controller, a model of the process is used in one of three ways:- (i) 

explicit model in control algorithm; (ii) adaptive change to control algorithm based 
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on the model; (iii) a combination of sensor data with models to provide improved 

estimates of the process performance used by the control algorithm (MACC, 2007). 

 

 

2.3 Modeling  

One of the major challenges in developing a model based control strategy is 

to construct a model that can be utilized to describe the process and this issue has 

been noted by several researchers (Qin and Badgewell, 1998; Pearson, 2003).  

 

At present, many industrial controllers use a linear process model such as the 

first-order-plus-dead-time model or the pure-integrator-plus-dead-time model. The 

linear model is applied to the estimation of the linearity and the dynamic range of the 

process. However, in general, the satisfactory performance of this linear model is 

achieved over a narrow operating range. This is because it is only able to 

approximate the system close to a given operating point but when a wide range of 

process operations with tight specifications on product composition is required, the 

nonlinearities become more critical and control performance is sacrificed (Mahfouf 

et al., 2002).   

 

Since many of the processes are nonlinear, the process industries require 

operating systems which are closer to the boundary of the admissible operating 

region. In these cases, linear models are inherently incapable of describing an 

enormous range of important dynamic phenomena (Findeisen and Allgower, 2002; 

Pearson, 2003).  
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The difficulty in developing the nonlinear model arises from several sources 

and the following two are fundamental: the fact that model utility can be measured in 

general, in a conflicting way and the class of nonlinear models does not exhibit unity. 

There are four important measures of model utility (Pearson, 2003): 

 

i. approximation accuracy 

ii. physical interpretation 

iii. suitability for control 

iv. ease of development 

 

2.4 Type of Model 

Several models can be used for the distillation column and these models can 

be categorized into three major groups: fundamental models, empirical models and 

hybrid models.  

 

2.4.1 Fundamental Model 

Fundamental models are derived based on mass, energy and momentum 

balances of the process. Heat and mass transfer occurring in a real column distillation 

process is translated into a quantitative mathematical model. These knowledge-based 

models, which are also referred as the first principle models, tend to involve the 

order of 102–103 nonlinear differential equations and a comparable number of 

algebraic relations (Michelsen and Foss, 1996). Due to the very large number of 

equations needed for the rigorous description, calculations are made with the help of 

a personal computer by using an integration method. Examples of fundamental 

models are the differential algebraic model, the low order model or the reduced order 

model and the rate based model or the nonequilibrium model.  
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The fundamental model is the most accurate method to represent the 

nonlinear dynamic behavior of the distillation column. However, fundamental 

models are highly constrained with respect to their structures and parameters. The 

model parameters can be estimated from laboratory experiments and routine 

operating data. As long as the underlying assumptions remain valid, fundamental 

models can be expected to extrapolate at operating regions which are not represented 

in the data set used for the model development (Henson, 1998).  

 

The main advantage is that a model obtained on the basis of fundamental 

principles would be globally valid and are usually more accurate and would give a 

more complete process understanding. However, the fundamental model is too 

complex for controller design and the process characteristics for fundamental model 

development are based on assumptions which may be wrong (Pearson, 1995). Such 

models are often not suitable for direct application in model based control strategies. 

Table 2.1 shows a summary of several fundamental models that have been developed 

for the continuous distillation column.  

 

Table 2.1: Fundamental models applied in distillation column 
No Model Distillation system Reference 
1 Dynamic model Methanol/water Can et al., 2002 
2 Differential algebraic 

equation model 
Benzene /toluene   Bansal et al., 2000 

3 Differential algebraic first 
principle model 

Methanol/n-propanol Diehl et al., 2003 

4 Dynamic model Methanol/water/ 
impurities 

Olsen et al., 1997 

5 Low order modeling  N/A Balasubramhanya 
and Doyle III, 1995 

6 Reduced order model Methanol/water Yang and Lee, 1997 
7 Reduced-order models N/A Kumar and Daotidis, 

1999 
8 Reduction model N/A Hahn and Edgar, 

Comment [ZA35]: Benzane /toulene



 21

2002 
9 Low order dynamic model Methanol/ethanol/1-

propanol 
Kienle, 2000 

10 Nonlinear wave model Benzane/toulene Bian and Henson, 
2006 

11 Overall rate based stage 
model 

Acetone/methanol/2-
propanol /water 

Muller and Segura, 
2000 

12 Nonequilibrium model Ethanol/ 
water/cyclohexane 

Higler et al., 2004 

As can be seen in Table 2.1, the dynamic model and the differential algebraic 

equation model can be classified as rigorous dynamic models. These models were 

developed using the equilibrium model which consisted of mass, component and 

energy balances for each tray, reboiler, condenser and reflux drum. The low order 

model, the reduced order model, the reduction model, the low order dynamic model 

and the nonlinear wave model can all be classified as reduced order models and they 

are the most preferable approach used to develop the fundamental model. Several 

techniques have been utilized to reduce the order of the rigorous model such as 

orthogonal collocation and cubic spline method, singular perturbation analysis, 

balancing of empirical gramians and nonlinear wave propagation. The rate-based or 

the non-equilibrium model is more complicated to develop as compared to the 

equilibrium model, thus, only a few researchers have developed this model to 

represent the continuous distillation column. A detailed discussion of this can be 

found in Abdullah et al. (2007).  

 

2.4.2 Empirical Model  

The empirical models, also known as black-box models can be obtained in 

the absence of a priori physical knowledge. The most valuable information comes 

from the input-output data collected during the operation (i.e. the measurements). 

These models describe the functional relationships between system inputs and 

system outputs. A detailed process understanding is not required, therefore, model 
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complexity can be avoided and the computational burden on the controller can be 

alleviated. According to Eikens et al. (2001), the empirical model can accurately 

represent a nonlinear relationship in the domain reflected by the data even if 

unmeasured disturbances are present.  

 

The results of the models depend not only on the accuracy of the 

measurements but also on the similarities between the situation to be analyzed and 

the situation where the measurements are carried out. Some examples of empirical 

models are the Hammerstein model, the Volterra model, the nonlinear autoregressive 

moving average with exogenous inputs (NARMAX) model, the artificial neural 

network model and the partial least squares (PLS) model. Several empirical models 

that have been developed for the continuous distillation column, excluding the neural 

network model, are summarized in Table 2.2. 

 

Table 2.2: Empirical models applied in distillation column 
No Model Distillation system Reference 
1 Wiener model Not mentioned Zhu, 1999 
2 Weiner model C2 splitter Norquay et al., 1999 
3 Wiener model N/A Bloemen et al., 2001 
4 Simple Hammerstein model Ammonia/water Nugroho et al., 2004 
5 Continuous time 

Hammerstein model 
N/A Bhandari and Rollins, 

2004 
6 Block-oriented model methanol and 

ethanol 
Gomez and Baeyens, 
2004 

21 NARMAX model Gasoline/butane Fortuna et al. 2005 
22 Soft sensing model  N/A Yan et al., 2004 
23 TSK piece wise linear 

fuzzy model 
N/A Mahfouf et al., 2002 

24 Polynomial type nonlinear 
autoregressive models with 
exogenous inputs (NARX) 

Methanol/ ethanol Sriniwas et al., 1995 

25 PLS model  Alcohol/water/ether Kano et al., 2000 
26 PLS model Methanol/ethanol/ 

propanol/n-butanol 
Kano et al., 2003 

27 PLS model Methanol/ethanol/ 
propanol/n-butanol 

Showchaiya et al., 
2001 

28 PLS model C7 Park and Han, 2000 
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As can be seen in Table 2.2, it is found that several approaches have been 

used to develop the nonlinear model for the continuous distillation column. The 

Wiener and Hammerstein models, also known as block-oriented model, are built 

from the combination of linear dynamic and nonlinear static functions. In the early 

2000s, several PLS models were developed to represent the continuous distillation 

column. These models were developed based on the partial least squares regression 

technique which generalized and combined features from principal component 

analysis and multiple regressions. The neural network approach, which is the most 

attractive and widely used method to develop the empirical model, will be discussed 

at the end of this chapter.  

 

2.4.3 Hybrid Model 

Hybrid models are developed by combining both the empirical model and the 

fundamental model. These models are summarized in Table 2.3. Knowledge of the 

process can go to the fundamental model while the input output models can be 

developed for those parts of the process which are hardly formulated.  

 

A common method for developing the hybrid model is either to use empirical 

models in order to estimate the unknown function in the fundamental model or to use 

a fundamental model to capture the basic process characteristic and then use a 

nonlinear empirical model to describe the residual between the plant and the model 

(Henson, 1998).  

 

Table 2.3: Hybrid models applied in distillation column 
No Model Distillation system Reference 
1 Hybrid wave-nets Water-ethanol Safavi and Romagnoli, 
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model 1997 
2 Hybrid model Water - ethanol Safavi et al., 1999 
3 Gray box model Methanol/propanol Pearson and Pottmann, 

2000 
4 Nonlinear Balanced 

model 
N/A Hahn et al., 2000 

5 Reduced DAE model Cyclohexane/heptane Sun and Hahn, 2005 
   

  As shown in Table 2.3, it can be observed that only a handful of studies on 

the development of the hybrid model have been implemented in the continuous 

distillation column. The neural networks together with the fundamental model have 

become the most preferable approach used to develop the hybrid model.  

 

2.5 Neural Network 

2.5.1 Introduction to Neural Networks 

Neural networks appeal to many researchers due to their closeness to the 

structure of the brain, a characteristic not shared by more traditional systems. The 

neural network system works like the biological neural system. In an analogy to the 

brain, an entity which is made up of interconnected neurons is similar to the neural 

networks which are made up of interconnected processing elements, called units, 

which respond in parallel to a set of input signals. The unit is the equivalent of its 

brain counterpart, the neuron (Stergiou and Siganos, 2006). This is shown in Figure 

2.2. 
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