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 PENYADURAN ALOI Cu-Sn DAN LAPISAN BERBILANG DENGAN 
KOMPOSISI TERMODULAT ALLOY Cu-Sn-Zn-Ni PADA SUBSTRAT 

KELULI LEMBUT 
 
 

ABSTRAK 
 
 
 

Dua siri eksperimen elektrosaduran telah dijalankan pada substrat keluli lembut pada 

suhu 65 °C dalam beberapa mandian elektrosaduran di bawah ketumpatan arus 

konstan yang berlainan. Tujuan eksperimen siri pertama adalah untuk mengkaji 

perilaku proses pemendapan elektro Cu dan Sn dari beberapa mandian sianida 

beralkali dan untuk memperoleh syarat elektrosaduran supaya dapat menghasilkan 

saduran Miralloys perduaan kuning dan putih. Eksperimen siri kedua melibatkan kajian 

eksperimen lapisan berbilang dengan komposisi termodulat yang mengandung lapisan 

nano kuarterner Miralloy kuning dan putih secara berselang-seli dengan menggunakan 

teknik dua mandian. Kinetik dan sifat elektrosaduran aloi Cu-Sn telah dikaji melalui 

pengukuran sifat polarisasi katodik keduanya dalam mandian elektrosaduran yang 

berlainan. Pengaruh komposisi mandian dan ketumpatan arus pada komposisi dan 

sifat perduaan saduran Cu-Sn aloi pada substrat keluli lembut telah dilakukan 

menggunakan mandian elektrosaduran. Keseragaman saduran yang dihasilkan dalam 

eksperimen ini diperiksa di bawah FE-SEM, sementara keseragaman komposisi 

saduran dan fasa-fasa yang ada dalam saduran masing-masing dikaji dengan EDX 

dan XRD. Saduran aloi perduaan Cu-Sn dan kuarterner Cu-Sn-Zn-Ni khususnya 

Miralloy kuning dan putih yang tumpat, merekat, berpermukaan halus, dan seragam 

dapat dihasilkan pada substrat keluli lembut dengan kadar laju yang tinggi. 

Penambahan zink dan nikel dalam saduran tidak banyak merubah sifat-sifat kimia dan 

mekanik saduran. Pembentukan saduran lapisan berbilang dengan komposisi 

termodulat yang mengandungi lapisan berbilang yang berskala nano telah 

meningkatkan kekerasan mikro saduran. Pengenapan lapisan saduran berbilang 

dengan ketebalan lapisan < 300 nm adalah sangat berarti. Hubungan antara ketebalan 
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dua lapisan (d-1/2,(μm)) dan kekerasan mikro saduran (HV) didapat HV = 17.37d-1/2 + 

602.66. Kekerasan yang paling tinggi dari saduran lapisan termodulat kerencaman 

berbilang yang diperoleh dari eksperimen ini adalah 689.62 HV dan ini dihasilkan dari 

saduran lapis berbilang yang mengandungi lapis Miralloy kuning dan putih yang 

berselang-seli dengan ketebalan sub-lapisan 20-30 nm. Dari eksperimen ini dapat 

dinyatakan bahawa pembentukan saduran aloi Cu-Sn atau Cu-Sn-Zn-Ni terutama 

saduran lapisan termodulat memungkinkan aplikasi saduran timah untuk industri 

automotif. 
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ELECTROPLATING OF Cu-Sn ALLOYS AND COMPOSITIONALLY 
MODULATED MULTILAYERS OF Cu-Sn-Zn-Ni ALLOYS ON MILD STEEL 

SUBSTRATE 
 
 

ABSTRACT 
 

Two series of electroplating experiments have been carried out onto mild steel 

substrate at 65 °C in several electroplating baths under different constant applied 

current densities. The objectives of the first series of experiments are to understand the 

behavior of electrodeposition of Cu and Sn in the several alkaline cyanide baths and to 

explore the electroplating conditions which are appropriate for fabricating binary Yellow 

and White Miralloys coatings. The second series of experiments deals with an 

experimental study on electroplating of Compositionally Modulated Multilayer (CMM) 

consisting of multiple alternate nano-layers of quaternary Yellow and White Miralloys 

using dual bath technique (DBT). The kinetics and electrodeposition behavior of Cu-Sn 

alloys have been assessed by measuring their cathodic polarization behavior in 

selected electroplating baths. The influence of bath composition combined with current 

density to the compositions and properties of binary Cu-Sn and quarternary Cu-Sn-Zn-

Ni alloys coatings deposited onto mild steel substrate have been studied in several 

electroplating baths. The uniformity of the coatings developed in this experiment is 

examined under FE-SEM, while the compositional uniformity of coating and phases 

present in the coating are assessed by EDX and XRD respectively. Dense, adherent, 

smooth and uniform binary Cu-Sn and quaternary Cu-Sn-Zn-Ni alloys coatings 

especially Yellow and White Miralloys, can be deposited with relatively high deposition 

rate. Introducing zinc and nickel into the coating does not significantly alter their 

chemical and mechanical properties. Formation CMM coatings has significantly 

increased the micro-hardness of the coatings. However, fabrication of multilayer 

coatings with individual layer thickness < 300 nm are essential. The relationship 

between the bilayers thickness (d-1/2,(μm)) and coating micro hardness (HV) has been 
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formulated as HV = 17.37d-1/2 + 602.66. The highest hardness of CMM coating 

obtained from this experiment is 689.62 HV and this is achieved by fabricating CMM 

coating consisting of multiple alternate thin layers of Yellow and White Miralloys with 

individual layer thickness of 20-30 nm. This experiment confirms that the formation of 

Cu-Sn or Cu-Sn-Zn-Ni alloys coatings especially CMM coating have made the 

application of tin for automotive industries feasible. 
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CHAPTER 1 
INTRODUCTION 

 
 
 
1.1 Research Background 

Tin is one of the first metals mined and has been recognized previously as an 

important metal in industry. The largest tin mines are mostly in Asia. The most 

important ore-supplying countries in the Asia are Indonesia, Malaysia and followed by 

China [Habashi, 1997; Malaysian Chamber of Mines, 2006] and only Indonesia and 

China after about 1994. Currently, the Malaysian Smelting Corporation (MSC) group is 

one of the largest integrated producers of tin metal and tin-based products in the world. 

In 2004, the group contributed about 18% of the world’s tin production with a combined 

production of 57,270 tons of tin metal from the group’s smelting operations in Malaysia 

and Indonesia (MSC Annual Report, 2004). Most of the tin consumption in the world is 

for producing tin solders, tin coatings, tin compounds and alloys containing tin. Besides 

tin metal exhibits unique properties such as low melting point and resistant to 

corrosion, tin has also recognized as a green metal (non toxic metal) and therefore tin 

is still used as a base metal for producing lead free solders and it also considered as a 

proper metal for substituting lead such as for fishing tackles and shot gun bullets. In 

ASEAN countries for instance, the major consumption of tin metal is for producing tin 

solders, tin cans and pewter. Even though tin is an important metal in industry, the 

annual (demand) is still small compared to those of many other metals. It has been 

reported that the world production and consumption of tin have not really grown in the 

past 20 years, due mainly to the substitution of tin by plastic, paper or aluminum in the 

manufacture of cans and other containers, such as plastic tubes for toothpaste and 

ointments. Consequently, attempts should be made by Tin Mining and Tin Smelting 

Companies to increase or at least to maintain the world tin consumption. This is done 

by increasing the role of tin in various applications. One of the possibilities to increase 
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the world tin consumption which is in consideration recently, is to increase the role of 

tin in electroplating industries. 

 

Electroplating is widely used for production of new materials that require 

specific mechanical, chemical and physical properties. This technique has 

demonstrated to be very convenient because of its simplicity and low cost in 

comparison with the other method such as sputtering and vapor deposition. Pure tin is 

non-toxic, can be electrodeposited as an extremely bright, white and lustrous deposit. It 

has excellent resistance to corrosion and easily to be soldered. As mentioned 

previously, it is being applied to produce tin cans for food packaging. However, pure tin 

is soft and is not practical to be used as coated material for automotive applications. 

While the hardness of alloys coatings such as White Miralloy (55%Cu-45%Sn or 

55%Cu-30%Sn-15%Zn) and Yellow Miralloy (80%Cu-17.5%Sn-2.5%Zn, 80%Cu-

15%Sn-5%Zn or 85%Cu-15%Sn) are respectively 550 HV and 400 HV. These coating 

layers are extremely abrasion resistant and are suitable for automotive application. The 

coatings also exhibit other interesting characteristics such as low surface tension, good 

sliding ability, high hardness, sufficient ductility, solder ability, low porosity and/or 

resistance to corrosion depending on their composition. Such properties have led to 

these coating being widely used in industries. For example, because of White Miralloys 

exhibit an acceptable contact resistance, it may be used for coating electric connectors. 

More over, worn machine parts can be re-electroplated by these alloys to extend their 

service live. These may lead to a decrease in the cost of the parts.  

 

Recently, it has been reported that electroplating of Cu-Sn alloys can be 

successfully done in laboratories using non cyanide solution e.g. in acid sulfate solution 

[Survila, et al. 2004]. Even though co-deposition of such alloys can be done using non-

cyanide baths, most of the industrial tin alloys plating use cyanide solutions because of 

the high quality requirement of the coating [Picincu, et al., 2001]. Electrocodeposition in 



 3

cyanide bath will produced adherent, smooth and uniform coating on both planar and 

non planar substrates. Moreover quarternary alloys (e.g. an alloy which contains Cu 50 

%wt, Sn 32 %wt, Zn 17 %wt and Ni 1%wt) can be easily electrocodeposited from 

cyanide baths [Helton et. al, 1989]. Cyanide is deemed typical of complexing agents 

that have been used for long time in providing stable solution. It is still used intensively 

in industries such as in gold extraction plants and in electroplating industries as “strike” 

solution. However, extra care has to be performed to avoid fatal accident and to 

eliminate environmental problem especially during disposal of cyanide. Despite the fact 

that cyanide systems are the most toxic electrolytes known, the technology of waste 

disposal treatment on them is well established and has been implemented in industries 

for many years. 

 

Multilayers especially compositionally modulated multilayer (CMM) coatings, 

consisting of multiple alternate thin layers of alloys, have received increasing attention 

recently because of their unique properties. These materials comprised of alternating 

layers of different metals and /or alloys are expected to exhibit unusual and enhanced 

electrical, optical, magnetic and mechanical properties when the sublayer thickness is 

confined to the nanometer scale [Miyake, et al. 2001]. The properties of multilayered 

systems depend on bilayer thickness, global thickness and good multilayer formation 

[Gomez, et al. 2003]. However, most of the studies of CMM coatings have been 

reported for Cu/Ni, Cu/Co-Ni, Cu/Ni-Fe, Au/Co, Pt/Co etc. [Haseeb, et al. 1994; Kanani, 

2004]. So far, there is no research has been reported on the production of CMM 

coatings consisting of multiple alternate thin layers of Yellow and White Miralloys or 

White Miralloy with another metal such as gold, silver, platinum, palladium, etc, in order 

to increase the electric conductivity of the coatings.  
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1.2 Research Objectives  

The research reported in this thesis relates to a study of electro-codeposition 

of Cu-Sn and Cu-Sn-Zn-Ni alloys on mild steel substrate from several cyanide baths. 

Its main objective is to find electroplating conditions that are suitable for producing 

binary and quarternary Yellow and White Mirralloys. It is also proposed to extend the 

research of previous workers [e.g. Helton et. al, 1989; Picincu et al., 2001] by 

investigating the possibility to produce CMM coatings consist of multiple alternate thin 

layers of Yellow and White Miralloys using a dual baths technique. These multilayer 

coatings were expected to be harder than that of White Miralloy, but it is still exhibited 

suitable resistant to corrosion.  

 

The study has been focused on the production of coatings and most of 

characterization measurements have been proposed to collect additional information 

which will be used to obtain range of electroplating conditions in which adherent, 

smooth and uniform Yellow and White Miralloys as well as CMM coating can be 

produced. It consists of two series of experiments namely Preliminary Experiment and 

Production of CMM Consisting of Multiple Alternate Nano-Layers of Yellow and White 

Miralloys.  

 

The scopes of the research are as follows: 

Part A. Preliminary Experiment 

The possibility to electro-codeposition of Cu-Sn alloy coatings onto mild steel substrate 

in cyanide baths is studied. The compositions of these plating baths are adopted from 

established Cu-Sn alloys plating composition cited in electroplating texts [Gabe, 1974; 

Pletcher et al., 1990]. All of the electroplating solutions utilized in this experiment 

contain saturated Na2SnO3. Factors that influence the composition and properties of 

binary alloys which are deposited from these plating solutions are observed. The 
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results are used to select the composition of plating baths for depositing quarternary 

Cu-Sn-Zn-Ni alloys and compositionally modulated multilayers consisted of multiple 

alternate quarternary Yellow and White Miralloys layers on a mild steel substrate. The 

research of this part will include : 

1. Measurement cathodic polarization behavior of Cu, Sn and Cu-Sn from 

selected cyanide solutions. 

2. A study on the influence of current density on the composition, phases formed 

and uniformity of Cu-Sn deposits produced from several electroplating bath 

compositions at 65 °C. 

3. An assessment on the influence of chemical composition of coatings to their 

micro-hardness and corrosion resistance in 2 g/l H2SO4 solution at ambient 

temperature. 

 

Part B. Production of Compositionally Modulated Multilayer Consisting of 

Multiple Alternate Nano-Layers of Quarternary Yellow and White Miralloys 

             Since electroplating of quarternary Cu-Sn-Zn-Ni alloys may produce brighter 

coatings and multilayers coating is expected to possess outstanding coating properties, 

the main objective of this part is to produce multilayer coating consisted of multiple 

alternate quarternary Yellow and White Miralloys layers. Consequently, the experiment 

must be initiated with the observation of factors that influence the composition and 

properties of quarternary alloys deposited from designated prepared plating solutions.  

Hence, the main research activities of this part are:        

1. Exploring the proper electroplating conditions which are appropriate for 

fabricating quarternary Yellow and White Miralloys onto mild steel substrate.  

2. Investigating the possibility of production compositionally modulated multilayer 

consisting of multiple alternate nano layers of Yellow and White Miralloys on 

mild steel substrate using a dual baths method. 
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3. Investigating the influence of the present of Zn and Ni in the coating to the 

corrosion resistant of Yellow and White Miralloys.  

 

1.3 Research Methodology 

Research activities are conducted following the flow charts presented in 

Figure 1.1 and 1.2. It is initiated by selecting the electroplating system that is suitable 

for binary and quarternary Cu-Sn-Zn-Ni deposition. High throwing power alkaline 

cyanide baths is chosen and its throwing power is remeasured using a conventional 

test method in a Haring Blum cell. The polarization curves of Cu, Sn and Cu-Sn alloy 

depositions is further measured, both on steel and coated steel specimens. This will 

give information the kinetics of Cu, Sn and Cu-Sn alloy deposition.  Since Cu and Sn 

depositions might not occur with the same rate during alloy electroplating, the 

composition of the coating is expected to be influenced by deposition potential/current 

density which is a function of total current density and the concentration of electroactive 

species in the electroplating bath.  Consequently study the influence of bath 

composition and current density to the chemical composition of binary Cu-Sn coating 

produced is necessary to be considered. The physical and chemical properties of the 

coatings are further characterized using SEM and EDX, micro hardness testing 

machine and potentiostat. This preliminary experiment is followed by investigating the 

influence of current density to the chemical composition of quarternary Cu-Sn-Zn-Ni 

coatings developed in selected electroplating baths for depositing Yellow and White 

Miralloys. The coatings produced are then subjected to be characterized with the same 

characterization procedures applied for binary coatings. The best electroplating bath 

compositions and electroplating conditions for depositing quarternary Yellow and White 

Miralloys are explored and they will be utilized for producing nanometer scale 

compositionally modulated multilayers using a dual baths technique. 
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Figure 1.1: Proposed research stages for preliminary experiments 

 

Plating Baths Selection 

In electrodeposition of alloys, the electrolyte and deposition conditions are chosen so 

that deposits have uniform composition and properties over the course of the 

deposition process. Based on potential-pH equilibrium diagrams for the systems Cu-

H2O, Sn-H2O, Zn-H2O and Ni-H2O which are respectively presented in Figure 2.16, 2.3, 

2.17 and 2.2, electroplating can be done either in acid or in alkaline solutions. In acid 

solution electroplating may be conducted by reducing simple cations (e.g. Cu2+, Sn2+, 
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Zn2+ or Ni2+) while in alkaline deposition must be conducted by reducing complex 

anions. Electroplating of metal/alloy from simple cation onto non planar metal 

substrates tends to produce a non-uniform coating because local deposition current 

density at location close to anode will be significantly higher than that at locations far 

from the anode. Basically ternary Cu-Sn-Ni alloys can be co-deposit during 

electroplating and zinc is not expected to be deposited simultaneously with the alloy 

because its deposition potential is too low. Thereby the utilization of alkaline cyanide 

solution has been selected for producing quarternary Cu-Sn-Ni-Zn coating for this 

experiment.  

 

More uniform deposit can be obtained for the electroplating which is 

influenced by mass transfer of cation toward the cathode especially at locations closer 

to anode. In contrast electroplating from complex anion in alkaline solution will tends to 

produce more uniform coating because the complex anion will migrate away from the 

cathode and the rate of migration will be higher at locations closer to anode.  More over 

electroplating from alkaline solution will have advantages such as: (1) electroplating 

bath has higher covering power; (2) more uniform thickness coating can be formed on 

non planar substrate; (3) solution is not very corrosive compared to acid solution; (4) 

less hydrogen evolution and thus coating will be less brittle compared to that produced 

in acid solution. It should be noted that no Cu-Sn-Ni-Zn alloy deposition will occur 

except the deposition potential of copper can be lower close to Sn, Zn and Ni. Based 

on the potential-pH diagram Cu–CN–H2O system (Appendix A) [Lu et. al. 2002], the 

deposition potential of copper from alkaline cyanide bath can be suppressed as low as 

the deposition potential for zinc and therefore codeposition of Cu, Sn, Zn and Ni can be 

done simultaneously in this plating bath.  
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Figure 1.2: Proposed research stages for production of Compositionally Modulated 
Multilayer (CMM) coatings consisted of nanometer scale of Yellow and White miralloys. 
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(1) One of the aims of the electroplating experiment is to prepare alloy plating for 

automotive application which most substrate is steel including mild steel,  

(2) Alloy plating is more difficult to be implemented on steel rather than on copper 

because the equilibrium potential of steel is significantly lower than that of copper. 

Therefore, if alloy plating can be successfully done on mild steel, it will be successfully 

conducted on copper e.g. for plating electric connector.  

 

Throwing power measurement 

Throwing (macrothrowing) power of the electroplating bath is determined 

experimentally using a small electroplating cell of special geometrical shape (Haring-

Blum). Two cathodes are placed at markedly different distances from a single anode 

and electroplating is carried out. The throwing power is calculated using the following 

equation  

2MK
)MK(100powerthrowing%

−+
−

=                                          (1.3) 

where K and M are ratios of distance from the anode and weights of metal deposited 

for two cathodes respectively. (K = X2 / X1, M = W1 / W2) 

 

Polarization measurement 

An alloy deposition process is more complex than that for single metal deposition. 

However, an examination of partial polarization curves from alloy deposition and from 

single metal deposition under similar condition can help to understand the mechanism 

of deposition process of copper-tin alloys. Cathodic polarization behavior for single 

metals and alloy deposition processes will be discussed and used to gain qualitative 

information on the mass transport and kinetic aspects of binary and quarternary 

copper-tin alloys deposition. All of polarization curves are measured in an 

electrochemical cell consisted of three electrodes and test solution as its electrolyte. 

The measurements are conducted in a slightly stirred solution open to air using a 
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Gamry’s potentiostat with the scanning rate of 5 mV/second. Saturated copper 

sulphate and graphite electrodes are employed respectively for reference and counter 

electrodes.   

 

The influence of the common variables in alloy plating 

The independent variables which are current density, agitation, temperature, pH, and 

concentration of bath constituents, influence the ratio in which two or more metals are 

co-deposited, the physical and chemical characteristics of the coatings, and the rate of 

deposition. An appreciable change in any one variable may require an appreciable and 

compensating change in another variable or combination of variables in order to 

maintain a given plate composition or physical properties, each variable can be 

considered with regard to its general effect. In this experiment agitation and 

temperature are maintained constant. The concentration of Cu(CN)2 will be varied 

between 5 and 20 g/l in the bath solution while the concentration of Na2SnO3, NaCN 

and NaOH are fixed on 45, 25 and 12 g/l respectievely. The duration time of deposition 

(t) are proposed to be 8.5 hours (30600 seconds) for current density 5 mA/cm2, 3.5 

hours (12600 seconds) for current density 10 mA/cm2 and 94 minutes (5640 seconds) 

for 20 mA/cm-2. The composition of electrolyte baths for quarternary deposition of 

White and Yellow Miralloys respectively are 20 g/l Cu(CN)2, 45 g/l Na2SnO3, 1 g/l ZnO, 

0.03 g/l Nickel acetate, 25 g/l NaCN, and 12 g/l NaOH; and 40 g/l Cu(CN)2, 45 g/l 

Na2SnO3,  0.25 g/l ZnO, 0.02 g/l Nickel acetate, 25 g/l NaCN, and 12 g/l NaOH. Zinc 

and nickel are co-deposited together with Cu and Sn to promote the development of 

corrosion resistant, bright and untarnished coatings. Nickel is added into the 

electroplating bath to enhance the inclusion of tin within the plate alloy.  

The cathodic current efficiency (η) is calculated using the following equation   

              %100x
tw

Δw
efficiency currentCathodic =                         (1.4) 
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and the theoretical weight of electrodeposited alloy is expressed in term of Faraday’s 

laws of electrolysis as follows; 
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(1.6) 

where, Δw is the weight of electrodeposited alloy (gram), wt is the theoretical weight of 

electrodeposited alloys (1) is indicated for binary and (2) for quarternary (gram), MCu, 

MSn, MZn and MNi are respectively the molecule mass of copper, tin, zinc and nickel 

(gram/mol), iCu, iSn, iZn and iNi are respectively the partial current densities of copper, tin, 

zinc and nickel (Ampere/cm2), A is the surface area of electrode (cm2), t is the duration 

of deposition process (second), nCu, nSn, nZn and nNi are the numbers of moles electron 

needed to reduce a unit mole of CuCN2
-, Sn(OH)6

=, Zn(CN4)= and Ni2+ ions (these are 

equal to 1, 4, 2 and 2, respectievley), and F is the Faraday’s constant (Ampere. sec. 

mol-1).  

 

Microhardness measurement 

Hardness measurements are performed on polished cross section specimens at room 

temperature in accordance with ASTM standard E-384 [1999].   

 

Corrosion resistant measurement 

Study of the corrosion resistance of coatings is performed by assessing their 

polarization behavior in relatively aggressive solution. For this study, coatings with an 
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exposed surface area of approximately 1 cm2 are prepared. The anodic polarization 

measurements are done in 2 g/l H2SO4 solution at room temperature using the same 

potentiostat used for cathodic polarization measurement of electrodeposition process. 

The measurement method is adopted from that recommended by ASTM standard G-5. 

The corrosion rates of coating specimens are determined their cathodic and anodic 

polarization curves, while the tendencies to become passive are evaluated with respect 

to their anodic polarization behavior.  

 

Electroplating study for producing Compositionally Modulated Multilayer 

(CMM) coatings 

Electrodeposition of compositionally modulated multilayers (CMM) coatings consisting 

of multiple alternate thin layers of Yellow and White Miralloys on a mild steel substrate 

is carried out using the dual baths technique. The series of experiments that we have 

conducted earlier suggested that the best solutions for depositing Yellow and White 

Miralloys are the electroplating bath containing 40 g/l Cu(CN)2, 45 g/l Na2SnO3, 12 g/l 

NaOH, 25 g/l NaCN, 0.25 g/l ZnO and 0.02 g/l Ni(CH3COO)2 and that containing 20 g/l 

Cu(CN)2, 45 g/l Na2SnO3, 12 g/l NaOH, 25 g/l NaCN, 1 g/l ZnO and 0.03 g/l 

Ni(CH3COO)2 respectively. These solutions are used as electroplating baths for 

producing CMM coatings which are done under current densities of 20 and 10 mA/cm2 

respectively for depositing thin layer of Yellow and White Miralloys. Depending on the 

thickness of individual thin layer, each electroplating process is carried out with 

different electroplating time and it is estimated from the results of earlier experiment. 

CMM coatings with different thin layer thickness (from 1000 nm down to 20 nm) are 

proposed to be deposited on mild steel substrates. The relationships between the 

maximum individual layer thickness and its mechanical properties (e.g. micro 

hardness) as well as the thickness of individual layer at which the superior properties of 

CMM begin to appear will be determined. 
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1.4 Expected Outcomes 

The expected outcomes of these experimental works are the electroplating conditions 

that are appropriate for producing binary and quarternary Yellow and White Miralloys. 

These will be further implemented for automotive and probably also for the electronic 

applications. Experimental results are also expected to give additional information in 

the kinetics of codeposition of Cu-Sn and the influence of electroplating bath 

composition and current density on the coating composition, phases present within the 

coating, microhardness and corrosion resistance of the coatings. The possibility to 

increase microhardness of coating by producing such the CMM coating has been 

expected as the main outcomes of the current experimental works.  

 

 

 

 

 



 15

CHAPTER 2 
LITERATURE REVIEW 

 
 
 
2.1 Electroplating 

Metal finishing is the name given to a wide range of process carried out in 

order to modify the surface properties of a metal, e.g. by the deposition of a layer of 

another metal alloy, composite, or by formation of an oxide film. The origins of the 

industry lay in the desire to enhance the value of metal articles by improving their 

appearance, but in modern times the importance of metal finishing for purely decorative 

reason has decreased. The trend is now towards surface treatment which will impart 

corrosion resistance or particular physical or mechanical properties to the surface (e.g. 

electrical conductivity, heat or wear resistance, lubrication or solderability) and hence, 

to make possible the use of cheaper substrate metals or plastics covered to give them 

essential metallic surface properties. It should be emphasized that not all surface 

finishing is carried out using electrochemical methods, but electroplating is still 

represents a large portion of the metal finishing industry.  

 

The objective of an electroplating process is to prepare a uniform deposit 

which adheres well to the substrates and which has the required mechanical, chemical 

and physical properties. Moreover, it is of overriding importance that the deposit 

properties meet their specification on all occasions, i.e. the process is both predictable 

and reproducible. On the other hand, many metals may (by modification of the bath 

and electroplating conditions) be deposited with different properties. It is for this reason 

that it is not possible to define a single set of conditions for electroplating of each metal; 

the bath, current density, temperature, etc., these will depend to some extent on the 

deposit properties required. 
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It is important that the plating bath is stable for a long period of time because 

of the importance of the reproducibility of the deposit. It is also necessary that the 

quality of deposit is maintained over a range of operating conditions, since some 

variations in concentrations and current density are bound to occur, particularly when 

different objects are to be plated. Tolerance of the bath to carry over from previous 

process liquors or mishandling during operation on the factory floor is an additional 

advantage. 

 

The principle components of an electroplating process are shown 

schematically in Figure 2.1. The essential components include: 

1. An electroplating bath containing a conducting salt and the metal to be plated in a 

soluble form, as well as perhaps a buffer and additives. 

2. The electronically conducting cathode, i.e. the workpiece to be plated. 

3. The anode (also electronically conducting) which may be soluble or insoluble. 

4. An inert vessel to contain (1)-(3), typical, e.g. steel, rubber-lined steel, 

polypropylene or polyvinylchloride. 

5. A direct current source, usually a regulated transformer/rectifier. 

 

Metal electroplating is the process of electrolytically depositing layer of metal, 

alloy or metal matrix composite onto a surface. The object to be plated is made as a 

cathode/cathodes in an electrolyte bath containing a simple cation (e.g. Mn+) or a 

complex metal ions (e.g. M(CN)2
-). So that the example of possible reactions that can 

occur at the cathode during a single metal electroplating are: 

Mn+ + ne- → M,                                                                       (2.1) 

         or        M(CN)n
 (n-1)- + e → M + nCN- 

                                                  (2.2) 
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Figure 2.1: Component of Electroplating 

 

Hence, the metal ion may be a simple ion such as hydrated Cu2+ or it may represent a 

metal complex such as [Cu(CN)2]-. Where possible, the preferred anode reaction is the 

dissolution of the same metal to its precursor in solution. 

M → Mn+ + ne                                                              (2.3) 

   or        M + nCN → M(CN)n
 (n-1)- + e                                         (2.4) 

In ideal, the electrolysis conditions are controlled in such a way that the current 

efficiencies of reaction (2.1 or 2.2) and (2.3 or 2.4) are the same and, hence, the 

concentration of Mn+ or metal complex ion in the bath remains constant. In a few cases, 

the metal ion has to be added as a solid oxide and then an inert anode is employed; 

the main anode reaction is oxygen evolution. For a successful electroplating process, 

the correct pretreatment of the cathode and careful selection of the anode material, 

plating bath, current density and other electrolysis condition, are essential.  By using 

proper type of electroplating baths and adjusting its composition as well as 
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electroplating parameters such as current density and temperature, following type of 

layer may be electroplated: 

1. Single metals: the most important are Sn, Cu, Ni, Cr, Zn, Cd, Pb, Ag, Au and Pt. 

2. Alloys including: Cu-Zn, Cu-Sn, Pb-Sn, Sn-Ni, Ni-Co, Ni-Cr, Ni-Fe, Cu-Sn-Zn, and 

Cu-Sn-Zn-Ni. 

3. Composites: i.e metals containing dispersed solid such as PTFE, Al2O3, WC, 

diamond, SiC, Cr3C2 and graphite. 

4. Multilayers: including multiple alternate layer of Cu and Ni; Ni and Fe; Cu and Co; 

Cu and Ag; Fe and Pt; Zn and Zn-Ni; Ni-P and Ni etc. 

 

The mass of metal w (g) deposited during electroplating may be expressed in terms of 

Faraday’s laws of electrolysis as follows 

Fn
qM~w φ

=                                     (2.5) 

where M~  is the mol weight of metal (g/mol), q is equal to It (A.sec.) namely as the 

electrical charge, n is the moles of electron that gets involve in the half cell reaction per  

1 mol metal deposited and φ (< 1) is the cathode current efficiency for metal 

deposition. The majority of electroplating processes are carried out batchwise, at a 

constant current density I for a measured time t. The averaged rate of mass deposition 

per unit area is then given by:  

FAn
M~I

tA
w φ

=                                     (2.6) 

where the factor M~ / n F is the electrochemical equivalent (g/A.sec.) and A is the 

surface area (cm2 or m2). This expression can also be written in terms of the useful 

current density (i).  

Fn
M~i

tA
w φ

=                              (2.7) 
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Thus the rate of deposition depends upon the current density, the molar mass of the 

metal M, the number of electrons n per mole of Mn+ and the prevailing current 

efficiencyφ.  

 

2.2 Thermodynamic of Electrodeposition 

Information contains in potential-pH diagrams is useful in several ways for application 

to problem involved in electroplating, for cathodic and anodic processes as well as the 

stability of solution.  

 

2.2.1 Cathodic Processes 

The desired cathodic reaction in electroplating is ordinarily metal deposition. In 

most electroplating processes, dissolved oxygen reduction also occurs at the cathode, 

while hydrogen ion reduction is undesirable and may cause coating embrittlement and 

produced uneven coating surface. As an example, consider potential-pH equilibrium 

diagram for Ni-H2O system at 25°C (Figure 2.2). Nickel can be deposited from acid and 

alkaline solutions. It is obvious, most of nickel electroplating are done from nickel 

sulphate solutions open to air because the stability of nickel sulphate solution appears 

in wide range of pH. At, say, pH 4.5 and potential (E) = -0.4 Volt, evidently dissolved 

oxygen and hydrogen ions can be reduced as well as nickelous ions; however, the 

overpotentials required to reduced dissolved oxygen and hydrogen ion at sensible 

rates are fortunately considerably higher than that required for nickelous ion reduction, 

and this can consequently results in efficiently less than 100 % (e.g. 96 %). Decrease 

of pH tends to increase the relative amount of hydrogen ion reduction. Nevertheless, 

the acid type of Watts nickel bath operating at pH 2 can give good nickel deposition 

even though, somewhat more hydrogen is evolved, because the pH of the solution at 

the cathode interface rises, through hydrogen ion reduction and under steady-state 

deposition conditions the relative amount of hydrogen ion reduction is not unduly large. 
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Figure 2.2: Potential–pH diagrams for Ni–H2O system at 25 °C [Pourbaix, 1974] 

 

On the other hand, increase of pH of the bulk solution beyond about 5 causes 

the catholyte under deposition conditions, to contain sufficient nickelous hydroxide 

(Ni(OH)2), present as positively charged colloidal particles, to lead to co-deposition of 

hydroxide with metal; this gives a harder and more brittle deposit that, although suitable 

for rather limited purposes, is in general undesirable. The very small Faradic current 

required for hydroxide or oxide deposition, due to the small charge/mass ratio of the 

colloidal particles, explains why a high pH nickel bath may give almost 100 % cathode 

current efficiency and yet yield deposits containing considerable hydroxide. 

 

2.2.2 Anodic Processes 

In electrodeposition, it is usually desired to have either (a) an anode of the metal being 

deposits that dissolved at near 100 % current efficiency or (b) an anode that is totally 

insoluble and that acts merely as an inert basis for oxygen evolution. It is rarely 
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desirable to have an anode that gives mixture of these processes, or that operates 

consecutively in the dissolving and the passive state. 

 

For example, nickel dissolves to nickelous ions at unit activity, at potentials more 

positive than -0.23 V and at pH less than about 6. At higher pH, solid nickleous 

hydroxide is the initial anodic product, and this is converted to higher oxides at higher 

anode potentials, under such conditions, passivation of a nickel anode occurs at once. 

However, passivation can also occur below pH 6, indeed, as low as pH 0.5 because 

the anodic overpotential required to dissolve nickel to nickelous ions at the current 

densities required in electrodeposition process is considerable. Thus, if the polarization 

raises the anode potential above the broken line extension of the Ni/Ni(OH)2 line 

(Figure 2.2), solid nickleous hydroxide may be formed at low pH, and since there is 

good evidence that its formation from the metal is kinetically easier than the formation 

of dissolved nicklelous ion, its preferential formation is not surprising, and the tendency 

of nickel anodes to passivate is easily understood. In practice, this is remedied by the 

incorporation of a little oxide in the nickel anode and/or of chloride in the solution; the 

overpotential required for dissolution is thereby much reduced and the potential for 

passivation is not reached. 

 

Soluble anode operating in alkaline solution, such as tin and zinc, can also passivate at 

high current densities, mainly because the supply of complexing hydroxyl ions in the 

solution next to the anode become insufficient, so that insoluble hydroxides or oxides 

are formed. In the special case of tin anodes required to dissolve as stannate rather 

than stannite, a pseudo-passivation effect of this kind is advantageous; the anode is 

first passivated by the formation of stannic oxide at high current density, and 

subsequent operation at lower current density enables the stannic oxide to dissolve in 

the alkaline solution as stannate while being reformed anodically at the same rate. The 
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potential-pH conditions for these transformations can be seen in the diagram for tin 

(Figure 2.3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Potential–pH diagrams for Sn–H2O system at 25 °C [Pourbaix, 1974] 

 

2.3 Kinetic and Mechanism of Electrodeposition Process 

2.3.1 Relationship between Current and Potential 

In electrodeposition, the basic parameter which causes deposition to occur is the 

potential at cathode. For any electrodeposition to take place, a current has to flow 

through an electrochemical cell. When a net current flows through an electrochemical 

cell, the electrode potential deviates from its equilibrium value. The difference between 

the actual electrode potential (Ea) and the equilibrium potential (Ee) is the overpotential 

(η). It can be expressed by 

Ea = Ee + η                             (2.8) 

Activation overpotential refers to the energy needed to move ions across the interface 

between electrolyte and electrode and to build the discharged atom (adatom) into the 
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crystal structure of the cathode deposit. For a single step process the current in an 

activation controlled process responds to the electrode potential according to the 

Butler-Volmer equation [Bockris and Reddy, 1977]: 
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In the above equations, kO is a rate constant; io is the exchange current density; C is 

the concentration of the metal ions at the interface and E, is the equilibrium potential of 

the electrode. β is the symmetry factor defined in terms of the ratio between distance 

across double layer to summit of activation energy and distance across whole double 

layer. To describe a multi-step process, β must be replaced by an experimental 

parameter, α, which is called the transfer coefficient. Equation (2.9) retains a form 

which emphasizes that the measured current density at certain overpotential is the sum 

of the partial cathodic and anodic current densities. When η is very low, say, η< 10 mV 

and 5.0=α=α , a limiting form of current density can be obtained  

( )ηTR/Fii o=                                                (2.10) 

Equation (2.10) shows that i depends linearly on η. Another limiting form is when η<-52 

mV and the first term in the Butler-Volmer equation becomes negligible compared with 

the second. The equation applying to this region can be written as:  

η
TR2.303

F
oilogilog

α
−=−                                     (2.11) 

which is known as the cathodic Tafel equation. Similarly, positive overpotentials greater 

than 52 mV lead to the anodic Tafel equation. Figure 2.4 shows a log l i l vs η curve for 

a solution and the exchange current density and transfer coefficients are obtained from 

the intercepts and slopes. 
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Figure 2.4: Plot of log l i l vs η 

 

 

2.3.2 Influence of Mass Transport on Electrodic Kinetics 

The current-potential relationship defined by equation (2.9), (2.10), and (2.11) is valid 

for the case where electrodic process is being controlled by the charges transfer. 

Under the condition of mass transport control, the electrode reaction rate is determined 

by the diffusion rate of the electroactive species. The concentration of the electroactive 

species at the interface between electrode and electrolyte is lower than that in the bulk 

solution. The concentration overpotential is expressed as follows: 

( ) )i/i(1logFn/TR2.303η LC −=                                 (2.12) 

where iL is the limiting current density, which is defined as a current density at the 

maximum rate of mass transport of electroactive species through the diffusion layer. 

This occurs when the concentration of electroactive species at interface approaches 

zero. By referring to first Fick’s equation, the limiting current iL that is independent of 

potential might be written as 
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δ+−
=

)t1(
oCDFn

iL                                               (2.13) 

where D is the diffusion coefficient, CO is the bulk concentration, and δ is the diffusion 

layer thickness and depends on the diffusion, t+ is the transfer number of electroactive 

specie and convection conditions in the bath. The essence of mass transport is the 

quantity δ. Decreasing δ can increase iL. Stirring the solution will decrease the effective 

value of δ. When the process is a mixed control, the activation and mass-transport 

processes always occur in series and they combine to determine the overall rate. A 

general qualitative description of the relationship between current density and potential 

is shown in Figure 2.5 [Gileadi, 1993]. iL is the limiting current density controlled by 

mass transport.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5: A general qualitative description of the relationship between current density 
and potential [Gileadi, 1993] 
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Diffusion layers are not formed immediately upon the application of potential, 

but require several seconds or perhaps a minute, to be formed, depending on the rate 

of agitation. On flat electrodes, thickness increase infinitely with time if there is no 

convection. At the flat vertical electrodes, δ is fairly constant over most of the surface, 

unless there are local variations in the rate of agitation but it is much smaller near the 

leading edge, where the streaming electrolyte first encounters the electrode, and 

especially on corners [Gileadi, 1993].  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 2.6: Schematic cross-section showing microroughness of cathode, at peaks (P), 
supply of electroactive species is relatively rapid over the short distance from the 
diffusion boundary, whereas at valley (V) it is too slow [Paunovic and Schlesinger, 
1998]. 
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The cathode surface is never entirely smooth. If the roughness profile has 

dimensions about equal to the thickness of the diffusion layer, or somewhat smaller, its 

thickness varies between micropeaks and microvalleys; it cannot follow the contours, 

but is smaller over the peaks (Figure 2.6). During deposition, local thickness 

differences in the diffusion layer affect a different supply of electroactive species toward 

the cathode. On peaks diffusion layer is thin, and supply of ions faster than in 

microvalley where there is a thicker diffusion layer.  

 

2.3.3 Hydrogen Evolution 

The above elementary discussion of deposition reaction was aimed at giving 

the first essentials of how metal is deposited. However, the simultaneous reduction 

reaction of two or more electroactive species may occur during electroplating. This 

arises from the fact that one sometimes finds that there is less metal deposited than 

there should be on the basis of Faraday’s laws, which requires that the deposition of 

one gram equivalent of metal per faraday of electricity passed through the system. In 

fact, in some cases, there is almost no deposit at all. In such cases, hydrogen evolution 

is occurring. From a technological point of view, however, one seeks to deposit a metal 

without wastage of electrical energy on hydrogen evolution. Basically, increases 

current density higher than the limiting current density for the deposition of the metal is 

due to hydrogen evolution. In aqueous solutions hydrogen will always be evolved if the 

total deposition current is made sufficiently high; the hydrogen may come not only from 

H+ (of limited concentration) but also from the water itself. The effects of hydrogen co-

deposition on the crystallography of metal deposition are widespread and rather 

complicated. Several starting paths to new effects and mechanisms may be noted, 

however. Hydrogen atoms may adsorb more freely on certain crystal planes and block 

them so that the metal grows preferentially on others. The development of a preferred 

orientation of the deposit crystals can sometimes be ascribed to the preferential 

adsorption of hydrogen on certain crystal facets (Bockris and Reddy, 1977). Hydrogen 
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may also permeate into the metal and change its mechanical properties. Finally, 

removal of H+ ions from the diffusion layer near the electrode changes its properties, 

too, it makes the solution at interface becomes more alkaline. If the hydrogen reaction 

leads to produce a sufficiently alkaline solution at interface, the solubility product of a 

hydroxide of the metal ion present will be exceeded, which would cause precipitation 

and may be contaminated the coating. Thus, hydrogen co-deposition produces many 

things and they are usually destructive. The hydrogen evolution reaction from aqueous 

solution can be presented as, 

in acid solutions, the overall reaction is 

2H+ + 2e → H2 + 2H2O                                              (2.14) 

2H2O + 2e → H2 + 2OH-                                            (2.15) 

and in alkaline solutions, it is only 

2H2O + 2e → H2 + 2OH-                                            (2.16) 

It should be noted however, in several electroplating cases such as zinc electroplating 

in acid bath, hydrogen evolution reaction cannot be avoided.  

 

2.3.4 Atomic Aspects of Electrodeposition 

Electrodeposition or electrocrystallization is the process in electroplating 

where the incoming metal ions are reduced and then join the metal deposit. The rate of 

incoming metal ions is the main factor related to the structure formed. A low rate (low 

current, low polarization) favors the growth of existing nuclei, while a high rate (high 

current, high polarization) favors the formation of new nuclei. Other factors, which 

affect the structure of the deposit, are the surface finish of the base metal, and the 

effects of solution additive which are adsorbed onto the cathode surface and inhibit the 

growth pattern [Doesburg and Ivey, 2000].  

 

Electrocrystallization has two competing processes: nucleation and grain 

growth. If a deposition starts on an electrode surface of a different material, that of the 
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object to be plated, the first step will be the formation of nuclei of the new phase and 

their growth into crystals with the characteristic lattice. Then, once the electrode 

surface is fully covered by a few atomic layers of this metal, the layer is thickened into 

a macroscopic deposit. Nucleation is an improbable event and is achieved at an 

electrode surface by the application of a large overpotential. The nuclei, once formed, 

grow quite rapidly at comparatively low overpotentials, and in constant-current 

operation. The overpotential will decrease substantially once nucleation has occurred. 

The growth of the crystals occurs by incorporation of the individual metal atoms into the 

crystal lattice [Sun, 1998]. 

.  

 

 

 

 

 

 

 

Figure 2.7: Discharge site on a growing surface: (1) surface vacancy; (2) ledge 
vacancy; (3) ledge kink; (4) ledge; (5) layer nucleous [Gabe, 1978; Pletcher and Walsh, 
1990; Paunovic and Schlesinger, 1998; Doesburg and Ivey, 2000] 
 
 
 

In general, electrocrystallization is the incorporation of the metal atoms into 

the crystal lattice of the cathode during electroplating. There are two main factors, 

which determine the type of structure, which is formed. The first is the current density, 

which is directly related to the rate of incoming atoms, and the second is the inhibition 

of the cathode surface by adsorbed substances. There are various sites on the cathode 

surface onto which an atom can become attached. The diff and Ivey, 2000erent types 

of sites are identified in Figure 2.7 [Gabe, 1978; Pletcher and Walsh, 1990; Paunovic 

and Schlesinger, 1998; Doesburg and Ivey, 2000]. A surface vacancy (1) has minimum 
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energy, but these types of sites are not present in large numbers. Ledge sites (2, 3 and 

4) are favorable for growth because they are repeatable steps. Once an adatom (one 

neighbor) or adion diffuses to a ledge or ledge kink (where the atom can interact with 

three neighbors) and is incorporated into the lattice, the same ledge structure is 

present for the next growth step. The nucleation of a new layer (5) requires the most 

energy.  

 
 

 

 

 

 

 

Figure 2.8: Growth screw dislocation with a kinked growth ledge 
 

 

A screw dislocation mechanism of crystal growth was proposed by Doesburg 

et al. [2000], and allows growth without the need for nucleation of new layers. In this 

manner a screw dislocation with the Burgers vector perpendicular to the crystal face 

grows by the ledge mechanism, winding itself up like a spiral staircase (Figure 2.8) 

[Gabe, 1978]. The screw dislocation mechanism is a rare case in electroplating and 

operates at low current densities and overpotentials, where there is enough time for the 

adions or adatoms to diffuse to the growth ledge and the overpotential does not 

support the formation of new nuclei. This type of growth has been observed for copper 

plated at low current densities from very pure sulfate solutions [Gabe, 1978; Pletcher 

and Walsh, 1990; Paunovic and Schlesinger, 1998].  
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2.3.5 Growth Mechanism 

According to Paunovic and Schlesinger [1998], there are two basic 

mechanisms for formation of coherent deposit: layer growth and three-dimensional 

(3D) crystallites growth (or nucleation-coalescence growth). A schematic illustration of 

these two mechanisms is given in Figure 2.9. In the layer growth mechanism a crystal 

enlarge by a spreading of discrete layer (steps), one after another across the surface. 

In this case a growth layer, a step, is a structure component of a coherent deposit. 

Steps, or growth layer, are the structural deposition of metals (e.g., columnar crystal, 

whiskers, and fiber texture). It can be distinguished among monoatomic steps, 

polyatomic microsteps, and polyatomic macrosteps. In general, there is a tendency for 

a large number of thin steps to bunch into a system of a few thick steps. Many 

monoatomic steps can unite (bunch, coalesce) to form a polyatomic step. 

 

 
 

 

 

 

 

 

 

Figure 2.9: Schematic representation of layer growth (a,b) and the nucleation-
coalescence mechanism (c) [Paunovic and Schlesinger, 1998] 
 

 
In the 3D crystallites growth mechanism the structural components are 3D 

crystallites and a coherent deposit is built up as a result of coalescence (joining) of 

these crystallites. The growth sequence of electrodeposition via nucleation-

coalescence consist of four stages: (1) formation of isolated nuclei and their growth to 
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TDC (3D crystallites), (2) coalescence of TDC, (3) formation of linked network, and (4) 

formation of a continuous deposit.  

 

The structure of the growing layer is determined largely by the relative rates of 

electron transfer to form an adatom and diffusion of the adatom across the surface into 

a position in the lattice, and the electrolysis conditions, including bath additives which 

may radically modify the electrocrystallization process. At low current density, the 

surface diffusion is fast compared with electron transfer and the adatom is likely to end 

up in a favored site in the lattice. At higher current densities, surface diffusion is no 

longer fast compared with electron transfer and further nuclei must form; the layer will 

be less ordered [Gabe, 1978; Pletcher and Walsh, 1990] 

 

During the thickening stage a key parameter is the current density. At low 

current densities, surface diffusion is fast compared with electron transfer and both the 

crystal lattice and structures such as screw dislocations can be well formed. The 

predominant orientations of surface planes can also be determined using electron 

diffraction. At high current densities, adatoms no longer reach their equilibrium position 

in the lattice and nucleation of additional growth centers remains a more frequent 

event. Hence the lattice formed will be less ordered and macroscale features, such as 

steps, ridges and polycrystalline block growth become more likely. With further 

increase in current density, outward growth of the layer becomes of increasing 

importance and problems arising from mass transport control in solution can arise, e.g. 

dendrites. Once this form of growth commences, it predominates because of the 

enhanced rate of mass transport to the tip and the iR drop to the tip is also a minimum 

as this is the closest point to the anode. A powdered texture usually results in the 

completely mass-transport-controlled potential region.  
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Crystal growth mode is a strong function of overpotential and current density, 

as shown in Figure 2.10. Displacement from the equilibrium potential not only results in 

increasing current, but also influences the morphology of the deposit. At low 

overpotentials, current density is low and crystal growth is epitaxial. Epitaxial growth 

occurs when the lattice structure of the deposit is oriented the same direction as 

crystals in the substrate. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.10: Dependence of crystal growth mode and current density on overpotential 
[Gabe, 1978; Pletcher and Walsh,1990] 

 

As overpotential increases, the nature of the deposit changes until the limiting current 

is reached and the deposit is powdery. At even higher overpotentials hydrogen 

evolution ensues, the pH at the electrode surface becomes increasingly basic, and 

oxides or hydroxides may be incorporated into deposit. Since epitaxial deposits exhibit 

superior adhesive qualities [Dini, 1993], strike-plating baths are often operated at low 

overpotentials and current densities. Cyanide copper strike baths typically operate at 

10-30 mA/cm2, and copper pyrophosphate baths typically operate at 10-75 mA/cm2 

[Durney, 1984]. For purposes of comparison, copper sulfate plating baths operate at 

30-500 mA/cm2 [Lowenheim, 1978].  
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Carneval and Cusminsky [1981] reinvestigated the influence of current density 

on the morphology of copper deposits from cyanide, pyrophosphate, sulfate, chloride, 

and citrate electrolytes. They determine the deposit thickness at which the morphology 

of the deposit changed from epitaxial to polycrystalline, and observed that as current 

density increased, the thickness at which the deposit morphology changed to 

polycrystalline decreased. For cyanide deposits, the transition occurred at 8-10 μm for 

current densities in the 10-30 mA/cm2 range. They found that the thickness which the 

deposit changes to polycrystalline was highest for the smallest anion, Cl-, and least for 

the largest anion, P2O7
4-. The effect that the anion has on the morphology of the 

deposit was greater at higher current densities than it was at lower current densities. 

 

2.3.6 Development of Columnar Microstructure 

The columnar microstructure is perpendicular to the substrate surface, is 

shown schematically in Figure 2.11. This microstructure is composed of relatively fine 

grains near the substrate but then changes to a columnar microstructure with much 

coarser grains at greater distances from the substrate.  

 

 

 

 

 

 

 
 
Figure 2.11: Schematic cross section (perpendicular to the substrate) of the columnar 
deposit [Paunovic and Schlesinger, 1998] 
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The development of the columnar microstructure may be interpreted as the 

result of growth competition among adjacent grains. The low-surface-energy grains 

grow faster than the high-energy ones. This rapid growth of the low-surface-energy 

grains at the expense of the high-energy grains results in an increase in mean grain 

size with increased thickness of deposit and the transition from a fine grain size near 

the substrate to a coarse, columnar grain size [Paunovic and Schlesinger, 1998]. 

 

2.4 Electrodeposition of Alloy 

A large proportion of cast or wrought metals are alloys rather than pure 

metals. This is because the properties of alloys vary over a wider range than those of 

pure metals, and thus alloys can be designed to meet most of the mechanical or 

chemical requirements more satisfactorily than pure metals. On the other hand, 

electrodeposits are mostly unalloyed and are usually produced and used in a state of 

fairly high purity. In fact, a lot of efforts are made to keep the plating baths free of 

metallic contamination. This is not because the electrodeposited alloys are not 

desirable, but because (1) the closer control required for the alloy deposition 

complicates commercial electroplating processes, (2) the properties of the 

electrodeposited alloys are not adequately known. Another less important reason is 

that, electrodeposited metals, even at high purity, can display broader properties 

according to the service requirement, by controlling the plating process [Kanani, 2004].  

 

The most important practical consideration involved in the co-deposition of two 

metals is that their deposition potentials should be fairly close together. The importance 

of this consideration follows born the well-known fact that the more noble metal 

deposits preferentially, frequently to the extent that the less noble metal can not be 

deposited at all. Therefore, to simultaneously co-deposit the two metals, conditions 

must be such that the deposition potential of the less noble metal can be attained 

without employing an excessive current density. Hence, it is necessary to have the 
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potentials of the two metals close together [Gabe, 1978; Paunovic and Schlesinger 

1998].  

 

The table of standard electrode potentials, Table 2.1 may serve as a rough 

guide for deciding if two metals may be co-deposition from a simple salt solution [Gabe, 

1978]. The electrode potentials in Table 2.1 apply only to the equilibrium potentials of 

the metals in a solution of their simplest ions with unit concentrations. These potentials 

are just theoretically the most positive (most noble) potentials at which the metals can 

be deposited. In actual deposition, because of polarization, the deposition potentials 

are more negative than the equilibrium potentials.  

 
Table 2.1: Standard reduction electrode potentials at 25 °C [Gabe, 1978] 
 

Metal couple E° (Volts) 
Au3+/Au + 1.50 
Au+/Au + 1.70 
Ag+/Ag + 0.799 
Cu+/Cu + 0.52 
Cu2+/Cu + 0.337 
Bi3+/Bi + 0.317 
Cu2+/Cu+ + 0.153 
Sn4+/Sn2+ + 0.15 
Al3+/Al - 1.66 
Zn2+/Zn - 0.763 
Fe2+/Fe - 0.44 
Co2+/Co - 0.277 
Ni2+/Ni - 0.25 
Sn2+/Sn - 0.136 
Pb2+/Pb - 0.126 

 

Approximately, the potentials of Table 2.1 represent the potentials of metals in 

slightly acid solutions of the simple salts, such as the chloride or sulfate. In solutions of 

metals complex ions their potentials are more negative (less noble) than in their 

uncomplexed states. Therefore this table can be utilized to derive some conclusions 

regarding alloy deposition from acid solutions of simple ions. Metals which are close 

together in Table 2.1 should generally be more readily co-deposited than metals which 

are widely separated. For example, lead and tin, nickel and tin, copper and bismuth, 
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nickel and cobalt can be readily co-deposited to form alloys, because their potentials 

are less than 0.1 volt apart. On the other hand, silver and zinc do not co-deposited 

readily because of their potential difference of 1.5 volts apart. 

 
 

For metals with rather large differences potentials as listed in Table 2.1, their 

potential can be brought closer together by (a) increasing the current density, (b) 

adjusting the concentration of species in solution, which can be achieved by 

introducing complexants and (c) using organic additives to preferentially inhibit the 

deposition of the more noble metal. However, these factors are effective only if the 

polarization of the more noble metal is increased to a larger extent than is that of the 

less noble metal [Zhang and Abys, 2000]. Brenner has listed five types of deposition 

system:  

(1) Regular solutions under diffusion control. Uncomplexed metal ions and two metals 

of widely differing nobility. 

(2) Irregular solution under cathode potential control. Static potential affected by 

complexing alone; e.g. cyanide bath for copper-zinc alloys. 

(3) Equilibrium solutions where at low current densities the bath metal concentrations 

give the deposit metal directly; e.g. lead-tin alloys from acid baths. 

(4) Anomalous solutions in which the less noble metal deposits preferentially; e.g. 

iron, cobalt or nickel. 

(5) Induced solutions in which a metal can be co-deposited as an alloy although it will 

not deposit singly; e.g. molybdenum or tungsten with iron group metals. 

 

The first three are classed as normal systems in that the proportions of metal deposited 

may be estimated on the basis of the polarization curves of the individual metals. If the 

two metals have similar polarization curves (Figure 2.12(a)) the deposit weight ratio is 

i1z1 / i2z2 where i1 and i2 are the individual current densities and z1 and z2 are the 
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respective electro-chemical equivalents. If the degrees of polarization are different 

(Figure 2.12(b)) the deposit composition depends upon the potential.  

 

 

 

 

 

 

 

 

 

 
 
Figure 2.12: Polarization behavior for co-deposition of metals M1 and M2. (a) M1 and M2 
having similar E/I curves, (b) M2 polarizing more than M1 [Gabe, 1978] 
 

 
At the point intersection i1 = i2 and the weight ratio in the deposit must be z1 / z2, but 

below this potential (more positive) the ratio is less while at more negative potential the 

ratio is greater. The overall deposition rate (i1z1 + i2z2) also varies with potential, of 

course. In general alloy electrodeposits give corrosion resistances superior to those of 

their constituents. This is particularly true for tin-nickel alloys, which are stable in cold 

nitric acid and are not tarnished by foodstuffs of a sulphur-staining kind. At present 

applications are relatively specialized, but the copper alloys have found wide 

application for decorative use in the cosmetic jewellery field where their tarnish 

resistance make their substitution for gold realistic. Other alloys having specific 

application include cadmium-zinc for protection, iron-zinc for decoration and protection 

and nickel-iron for magnetic shielding. 

 

 

(a) (b) 
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2.4.1 Structure of Electrodeposited Metal / Alloys 

In the majority of electrodeposited materials, the atoms are arranged in a 

uniform, three-dimensional array. The volume over which this arrangement extends 

uniformly is called, when many crystals form a solid material, they are called grains. If 

the array of atoms is random, the material is amorphous. However, in materials 

considered to be amorphous, there are generally still very small groups of atoms that 

possess the same arrangement as crystals. 

 

Most electrodeposits exist in one of three crystal habits (Figure 2.13). The 

most common one is face-centered cubic (fcc) in which atoms or atom groups are 

located at the corners of a cube and in the center of its faces. Another common crystal 

structure is body-centered cubic (bcc) in which atoms or atom groups are located at the 

corners of a cube and in its center. Materials less often have the hexagonal structure. 

The atomic arrangement of the basal plane of the cube diagonal of the face-centered-

cubic one. The habits only differ in the third atom layer. 

 

 

 

 

 

 

 

Figure 2.13: Unit cells of the three most importance lattices 

 

In many electrodeposits there is a crystal direction that grows faster toward the anode 

than the other ones. Grains possessing this direction can also grow sideways and 

cover the less favorably oriented ones. They can grow sideways until they encounter 

grains of the grains possessing the favorable growth direction. If the grains are not 

BCC FCC HCP 
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randomly oriented, the condition is called a texture. In the case of electrodeposits the 

texture is a fiber axis because just as in a wire drawn through a die, the directions 

perpendicular to preferred orientation are randomly oriented. When electrodeposits are 

annealed, they generally recrystallize, the texture often changes. 

 

2.4.2 Properties of Electrodeposited Metal / Alloys 

The properties of metallurgical metals and alloys (cast or wrought) have been 

studied comprehensively, and this knowledge has led to extensive and varied uses. 

With the growth of technology, electrodeposits are also more and more applied to a 

variety of engineering and scientific purposes and, consequently, more interest is 

shown in their properties.  

 
Table 2.2: Vickers microhardness (HV) for selected metals [Kanani, 2004] 
 

Manufacturing process Metal Metallurgical Electrodeposition 
Cadmium 30 50 
Chromium 350 1000 
Cobalt 200 500 
Copper 50 150 
Nickel 150 500 
Zinc 30 130 
Tin 10 10 

 

The properties of electrodeposited metals often differ from those of cast or 

wrought metals. The former may have finer grains, higher hardness, better mechanical 

properties (tensile strength, ductility and Young's modulus), better electrical and 

magnetically properties and better corrosion resistance [Cavallotti et al. 2005]. The 

Vickers microhardness value is one of the simplest ways of demonstrating such 

differences. From the data in Table 2.2, it will be clear that electrodeposited metal 

coatings are uniformly harder than their counterparts prepared by other metallurgical 

methods. Electrodeposited chromium is much harder than the metal obtained by 

thermal means. Bright nickel is much harder, less ductile and has a higher tensile 
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strength than cast nickel [Kanani, 2004]. The mechanical properties of bulk metals may 

be varied considerably by heat treatment or mechanical working. The properties of 

electrodeposited metals also may be varied, but this is primarily achieved by altering 

the conditions of deposition.  

 

To obtain particular interest from industry, the electroplated alloys must 

possess considerably better properties for a given application than pure metal 

electrodeposits to compensate for the increased difficulty involved in the operation of 

the alloy plating process. However, generally speaking, the properties of 

electrodeposited alloys are still not well known. This has led to applications based on 

their obvious characteristics. For example, electroplated brass and gold alloys are 

utilized because of their color; cobalt nickel alloys are used for their brightness. Many 

potential uses of electrodeposited alloys still need to be exploited, but these 

applications must await the gathering of more data on the properties of the alloys. 

 

2.4.3 Corrosion of Electrodeposited Alloys 

Corrosion, according to the ASM Material Engineering is the chemical or 

electrochemical reaction between a material, usually a metal, and its environment that 

produces a deterioration of the material and its properties. The major requirements for 

good corrosion protection are high corrosion resistance of the coating material, a pore-

free structure, and good adhesion.  

 

2.4.3.1  Corrosion of Coating-Substrate Systems 

 The corrosion behavior of a coated part (a coating substrate system) is 

determined by the corrosion resistance of the coating material in the respective 

medium. However, this holds only for absolutely dense coatings that completely 

separate the aqueous corrosive medium from the underlying substrate material. In 
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practice, coatings and thin films show pores, pin holes. And other defects after their 

deposition, or they may be damaged by scratches or other wear mechanisms. Both 

types of defects allow the corrosive medium to contact the substrate material or 

interlayers and underlayers.  

 

 

 

 

 
 
 
Figure 2.14: Schematic illustration of corrosion of coating substrate systems in the 
presence of pores. M, metal. (a) More noble coating on less noble substrate (galvanic 
corrosion). Increased corrosion of substrate material with small anodic area and large 
cathodic area. (b) Less noble coating on more noble substrate (anodic corrosion). 
Cathodic protection of substrate material, coating material dissolved, large anodic area, 
small cathodic area. 
 

 The relative corrosion behavior depends on the materials combination, the 

coating materials is either more noble or less noble than the substrate material, the 

corrosion medium, and the specific conditions [ASM handbook]. The electrochemical 

reactions are schematically illustrated in Figure 2.14. In the case of a more noble 

coating (Figure 2.14a), the corrosion medium reaches the substrate material, and a 

galvanic cell is formed between the anodic substrate material and the cathodic coating 

material. This results in strong local corrosion of the substrate. 

 

2.4.3.2  Electrochemical Corrosion Test 

 Because corrosion of metals in an electrochemical process, electrochemical 

measurements are especially suited to it. The corrosion reaction occurs between the 

cathodic and anodic parts of a corroding system, resulting in an electric current in the 

metal and an ionic current in the electrolyte at the metal-electrolyte interface. The 
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amount of current produced is a measure of the oxidation or reduction reaction, so it 

provided information about the rate of the corrosion process. 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Current density vs potential curve for a typical metal electrode in neutral or 
acid solution. Active and passive regions are indicated with arrows [Wolf et al., 1995]. 
Et1: transpasive potential due to oxygen evolution on passive metal; Et2: transpasive 
potential which indicates passive film dissolution. 

 

Uniform corrosion of metals may occur as active or passive corrosion. The 

corrosion rate and the corrosion mechanism depend on many variables such as the 

electrochemistry of the metal surface, the composition and pH of the solution. A very 

important variable is the electrochemical potential at the surface of the corroding metal. 

Figure 2.15 shows the dependence of the current on the potential for a typical metal 

electrode in neutral or acid solution.  

 

At E = Ecorr metal continuously corrodes and the rate of this uniform corrosion 

is equal to icorr. Curve (1) indicates the polarization behavior of anode process while 

curve (2) illustrates the polarization behavior of cathodic process. At E > EC the 

dissolution rate rises strongly up to icrit, the critical current (or critical current density) of 

the corroding surface. Around the corresponding potential EF the metal surface is 

covered with a dense surface layer, mostly an oxide, which prevents a further increase 
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of the active dissolution. At more positive potentials the protective layer grows thicker 

and the decrease of the current indicates a very low corrosion rate in this passive state. 

The passive corrosion, with a very low passive current density iP, extends over a rather 

broad potential region until the right hand side where there is oxidation of water (4) and 

for some metals transpassive dissolution (3) starts. The figure illustrates clearly the 

electrochemical processes at the metal surface to be strongly dependent on the 

potential [Wolf et al., 1995]. 

 

2.4.3.3  Dealloying 

The selective dissolution of one component of an alloy (e.g. Zn from brass, Al from 

bronze, Cu from Cu-Au, etc) leads to substantial changes in the composition and 

properties of its surfaces. The corrosion process of various alloy systems has been 

studied by many researchers and reviewed and summarized by Pickering or a dual-

element alloy system A-B, in the normal alloy content range (not extremely little A or B) 

[Ateya et al. 1996]. When selective dissolution occurs, the topmost layers of the alloy 

surface are depleted of the active component, and preferentially enriched in the more 

noble component of the alloy. Ateya et al. developed phenomena of selective 

dissolution, a some of the A atoms dissolve out of the topmost layer of the alloy, the 

remaining B atoms lose some of their A nearest neighbors. The extent of this loss 

depend on the prevailing potential, kinetic parameters of the dissolution of the A atoms 

as well as their mole fraction within the alloy. The remaining B atoms may be only 

mildly affected, become weakly bound to the lattice or, at the limit, become adatoms. 

The structure of the top most layer becomes defective, to varying degrees, because of 

the loss of the A atoms. As the concentration of the active component at the topmost 

atom layer decrease, a concentration gradient is established normal to the alloy-

electrolyte interface. It drives the A atom from the nearest stoichiometric sub-surface 

layers to diffuse through the developing highly defective noble metal-rich layer towards 

the alloy surface and similarly the B atoms into the alloy, to support the reaction. The 
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repetition of this process, with deeper and deeper sub-surface layers, leads to the 

gradual and uniform thickening of the resulting noble metal-rich layer, to progressive 

depletion of the active metal in the surface region, and to continuous decrease of the 

dissolution rate of A with time. 

 

2.5 Electrodeposition of Copper-Tin Alloys 
 
The available information concerning the electrodpeosition of copper-tin alloy is 

virtually confined to the literature. Later claims concerning Cu-Sn alloy plating, 

however, have been based upon the use of both alkaline cyanide and acid sulfate 

electrolytes.  Several recent reports on copper-tin cyanide and sulfate electroplating 

systems are reviewed in the following [Jacky, 1971; Helton et al. 1989; Pincincu et al. 

2001] 

 

2.5.1 Cyanide systems 

Jacky [1971] developed the electroplating of copper-tin-zinc alloy with cyanide 

system. The Jacky bath was comprised of 2.99-3.59 g/l Cu+, 1.35-1.64 g/l Zn+, 1.12-

1.49 Sn4+ g/l, 20.22-23.21 g/l NaCN and 29.95-74.89 g/l Na2CO3. This bath can be 

used for electrodeposition of a bright ternary alloy with composition generally in the 

range of 50-60 % wt. copper, 20-30 % wt. tin, 15-25 % wt. zinc, when plated at current 

densities of 5-45 ASF, temperature 120°-180° F and a pH of between 12.3-12.7 without 

the addition of the organic brightener [Jacky, 1971]. Product plated with the Jacky bath 

or its close equivalent was found to encounter severe tarnishing problems as they 

underwent a cleaning step prior to soldering.  

 

Another patent gave a cyanide solution for plating an alloy of copper, tin, and 

zinc [Helton et al. 1989]. The preferred electroplating bath composition includes a 

predetermined amount of copper, tin, and zinc ions, and an effective amount of nickel 
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ions sufficient to promote the plating of corrosion resistant, bright silvery-colored plate 

of copper-tin-zinc alloy. Nickel is added to the bath to enhance the inclusion of tin 

within the plate alloy and is added at concentration between about 12.0 to 20.0 ppm 

(weight/volume). The practical implementation of the bath included 2.99-3.59 g/l Cu+, 

1.35-2.09 g/l Zn+, 1.12-1.49 Sn4+ g/l, 23.21-26.21 g/l NaCN and 4.49-5.61 g/l NaOH, 

plated at current density between 2-10 ASF and temperature 150° F (66° C). The bath 

aims at obtaining an alloy of 60-70 % wt. copper, 20-30 % wt. tin and 5-10 % wt. zinc, 

by Auger analysis using pure metal standard. The addition of sodium carbonate 

appears to be optional. Since sodium carbonate is a by-product of the plating process 

and appears in bath during plating. Test plates run as well run on bath composition 

having 30 ppm nickel to produce a tarnished brown plate in areas of high current 

density.  

 

Copper-tin-zinc alloy codeposition using the chemistry of a commercial 

alkaline cyanide system was studies by Pincincu et al. [2001]. The voltammetry, the 

deposit composition and the morphology was investigated as a function of the 

concentrations of the three metal ions, Cu(I), Zn(II) and Sn(IV) as well as the 

concentration of cyanide, hydroxide, carbonate and Copper Glo additive. Over a range 

of temperature and current density (or potential), deposits that were adherent, silver in 

colour and highly reflecting could be produced and their composition in the range 47-

51% wt. copper, 8-12 % wt. zinc and 38-43 % wt. tin. The desired silver colour required 

control of the alloy composition and an acceptable rate of deposition necessitated the 

use of a temperature above ambient (333 K). The Copper Glo additive has the role of 

improving reflectivity without changing the composition of the alloy.  

 

2.5.2 Sulfate systems 

A non-cyanide sulfate copper-tin alloy plating bath has been developed, which has the 

advantage of low toxicity and relative ease of handling [Paunovic et al. 1998; Finazzi et 
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al. 2004; Survila et al. 2004). However, the electrolytes investigated have limitations, 

such as susceptibility to corrosion, low solubility of copper and tin, bath decomposition 

and the need for various additives, for example polyalcohol to improve the bath 

properties and result in high quality deposits. Copper-tin plating bath containing sorbitol 

as ligand has been developed by Finazzi [2004]. Bright reddish copper-tin 

electrodeposited were successfully obtained with the deposit have a maximum of ~ 3% 

of tin and that sorbitol was not incorporated in the deposit. The kinetic studies showed 

that copper (II) species control the electrochemical process of the copper-tin deposition 

and that this reduction process is controlled by mass transport, with a diffusion 

coefficient of 8.1 x 10-8 cm2 s-1.  

 

Survila et al. [2004] developed co-deposition of copper and tin from Acidic 

Sulfate solution containing polyether Laprol 2402C. The electrolytic baths contained 

0.01 M CuSO4, 0.01 M SnSO4, 0.6 M H2SO4, 50 mg/l of Laprol and various amounts of 

potassium halides (Cl-, Br-, I-) to help efficiently control the composition of bronze 

coatings. Introducing halide reduces the potential at which the copper and tin co-

deposition begins and narrows the potential range for producing deposits of yellow 

bronze that contain 8-10% of tin. The optimum concentration of potassium halide for 

controlling the composition of bronze coating decreased in the series I- < Br- < Cl-. 

 

2.5.3 Plating Bath Selection 

It has been mentioned previously in Chapter I, in electrodeposition of alloys, the 

electrolyte and deposition conditions are chosen so that deposits have uniform 

composition and properties over the course of the deposition process. Based on 

equilibrium potential-pH diagrams for the systems Cu-H2O, Sn-H2O, Zn-H2O and Ni-

H2O which are presented in Figure 2.16, 2.3, 2.17 and 2.2 respectively, electroplating 

can be done either in acid or in alkaline solutions. In acid solution electroplating may be 

conducted by reducing simple cations (Cu2+, Sn2+, Zn2+, Ni2+) while in alkaline 
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deposition must be conducted by reducing complex anions such as HCuO2
-, CuO2

2-, 

HNiO2
-, SnO3

2-, HZnO2
- and ZnO2

2-.  Electroplating of metal/alloy from simple cation 

onto non planar metal substrates tends to produce a non-uniform coating because local 

deposition current density at location close to anode will be significantly higher than 

that at locations far from the anode. Basically ternary Cu-Sn-Ni alloy can be co-deposit 

during electroplating even though it should be done under mass transport control of 

copper ion. Zinc is not expected to be deposited simultaneously with the copper 

because its deposition potential is too low. It should be noted that no Cu-Sn-Ni-Zn alloy 

deposition will occur except the deposition potential of copper can be lower close to Sn, 

Zn, and Ni. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Potential–pH diagrams for Cu–H2O system at 25 °C [Pourbaix, 1974] 

 

Deposition of copper from alkaline solution is disfavor due to the solubility limit 

of copper ions. At pH of about 13 (Figure 2.16), the copper ions appear as HCuO2
- and 

CuO2
2-. Their solubility limits at this pH are < 10-5 mol/L. Electrodeposition of copper 

from this solution might resulting copper powder adherence to substrate.  As a 
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consequent, it is not convenient to electrodeposit copper from alkaline solution. 

Moreover, the equilibrium reduction potentials (E) of those anions at 25 °C are 

influenced by pH and their relationships may be expressed as follows; 

HCuO2
- +3H+ + 2 e = Cu  + 2 H2O, E°= 1.127 – 0.0886 pH + 0.0295 log −

2HCuOa V (2.17) 

CuO2
2- + 4H+ + 2 e = Cu + 2 H2O, E°= 1.515 – 0.1182 pH + 0.0295 log −2

2CuOa  V   (2.18) 

These equilibrium reduction potentials are markedly higher than those for HNiO2
-, 

SnO3
2-, HZnO2

- and ZnO2
2- which can be examined in the equilibrium potential-pH 

diagrams Figure 2.2, 2.3 and 2.17, respectively. Therefore, co-deposition of copper 

with these ions, especially with zinc cannot be conducted from simple alkaline 

solutions. On the other hand, copper cyanide can be dissolved in the presence of 

excess cyanide to form cyanocuprate ions Cu(CN)2
-, Cu(CN)3

2- and Cu(CN)4
3- in 

alkaline solutions. Since the stability of these species is influenced by pH and potential, 

potential-pH diagrams presented in Appendix A are required to discuss their stability 

region and their equilibrium reduction potentials.   

 

 

 

 

 

 

 

 

Figure 2.17: Potential–pH diagrams for Zn–H2O system at 25 °C [Pourbaix, 1974] 
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As shown in those potential pH diagrams, with increasing CN:Cu mole ratio, the 

distribution of copper cyanide species shifts more completely to the highly coordinated 

complex  (Cu(CN)4
3- ) at a high cyanide concentration than that at low cyanide 

concentration. The equilibrium reduction potential of cyanocuprate ions decreases with 

increasing CN:Cu mole ratio. Increasing the pH is similar to increasing free cyanide 

concentration. In contrast, increasing temperature results in decreasing stability 

constants, therefore the distribution of copper cyanide shift to the lowly coordinate 

complexes. Because the reduction potential of cyanocuprate ions can be markedly 

lowered, e.g. by adjusting Cu:CN mole ratio in the electroplating bath, deposition of 

copper can be simultaneously occur with tin, nickel and even zinc and binary Cu-Sn 

and quarternary Cu-Sn-Zn-Ni alloys coatings can be developed in many metal 

substrates.  

Tin can be deposited from SnO3
2- which is dissolved in alkaline solution as 

shown in equilibrium potential-pH diagram Figure 2.3. Its solubility increases with 

increasing pH. However the solubility of this ion is limited because the more stable 

oxide (SnO2) might be precipitated. This tin ion is not influenced by the presence of 

cyanide ions. The equilibrium potential-pH diagram for the zinc-water system also 

exhibits the solubility of both HZnO2
- and ZnO2

2- ions is increased with increasing pH. 

ZnO2
2- ions is predominant in very alkaline solution (pH>13).    

 

More uniform deposit can be obtained for the electroplating which is 

influenced by mass transfer of cation toward the cathode especially at locations closer 

to anode. The rate of mass transfer of the cation may be formulated as follow:  

JT = JC + JD + JM (mol/cm2 sec)                                 (2.20) 

where JT, JC, JD, and JM are total flux of ion, convection flux, diffusion flux and migration 

flux, respectively. In contrast electroplating from complex anion from alkaline solution 

will tends to produce more uniform coating because the complex anion will migration 
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away from the cathode and the rate of migration will be higher at locations closer to 

anode. 

JT = JC + JD - JM+ (mol/cm2 sec)                                 (2.21) 

This phenomenon is also appeared during electroplating using alkaline cyanide 

solution. It is also contributed by the presence of cyanide ions that can create the 

condition at which the deposition of copper from highly coordinated complex Cu(CN)4
3- 

is disfavor. Electroplating from alkaline solution including alkaline cyanide bath will 

have advantages such as (1) electroplating bath has higher covering power; (2) more 

uniform thickness coating can be formed on non planar substrate; (3) solution is not 

very corrosive compared to acid solution; (4) Mostly hydrogen evolution is more difficult 

to from. Therefore the coating is less brittle than that produced in acid solution.  

Alkaline cyanide baths have been selected in this research works. Beside those 

advantages the utilization of cyanide baths allow the electroplating of quaternary Cu-

Sn-Zn-Ni alloys can be conducted. 

 

2.5.4 Properties of Copper-Tin Alloys 

Copper-tin alloys are materials that have good corrosion resistance, 

malleability, ductility and solderability. These alloys are used industrially for metal 

coating, with the aim of conferring corrosion protection and mechanical properties to 

the substrate and therefore the proportions of copper and tin in the alloy are of 

fundamental importance in obtaining the desired characteristic [Finazzi et al., 2004].  

 

White Miralloy coatings contain about 55 % of copper and 45 % of tin, or 55 % 

of copper, 30 % of tin and 15 % of zinc. Yellow Miralloy coatings as alloy components 

on an average contain 80 % of copper, 17.5 % tin and 2.5 % of zinc, or 85 % of copper, 

10 % of tin and 5 % of zinc, or 85 % of copper and 15 % tin. Miralloy coatings are 

characterized by an excellent thickness distribution even in the case of parts with 
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complex shapes. The coating hardness of Yellow Miraloy and White Miralloy are 400 

HV 0.1 and 550 HV 0.1, respectively [http:/www.umicore-galvano.com].  

 

The coating is extremely abrasion-resistant, for this reason Yellow Miralloy 

coatings are particularly for coating bearing shells or piston. White Miralloy coatings 

exhibit an acceptable contact resistance, for this reason they are used for coating 

connectors in the motor industry. The solderability of the coating is good with suitable 

fluxes. Furthermore, the coatings are diamagnetic. Therefore connectors for high-

frequency technology provided with Miralloy coatings reach very low intermodulation 

values in the mobile radio frequency range. Copper has become the metal of choice to 

meet the needs of present and future generation devices. In order to further improve 

the intrinsic resistance of copper to EM/SM induced failure, researchers have 

attempted to introduce various alloying elements into copper lines. 

 

Copper has become the metal of choice to meet the needs of present and 

future generation devices. The copper-tin system has shown significantly higher 

electromigration lifetimes and activation energy than pure copper. The continuing 

shrink in device size, the copper-tin has generated great interest to create 

interconnects with low resistivity and superior electromigration (EM) and stress 

migration (SM) lifetimes in comparison to the existing Al or Al-alloy interconnections 

[Padhi et.al. 2003]. Hu et al. [1995] studied the impact of addition of Mg, Sn, and Zr on 

the EM of sputtered copper lines. They concluded that the drift velocity of copper 

increased by addition of Mg, while addition of Sn and Zr resulted in reduction of drift 

velocity. Activation energy for EM of copper increased from 0.75 to -1.3 eV with 

addition of 1 wt. % Sn, while the resistivity increased to 4.1 mV/cm2. Furthermore, due 

to the low solid solubility of tin into copper, the copper-tin system is amenable to heat 

treatment to produce precipitation of intermetallic phases and segregation of solute 

species to grain boundaries, thereby, reducing the aggregate resistivity of the alloy. In 
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addition to improved resistance to EM induced voiding, copper-tin alloy films have 

superior resistance to corrosion, which is very desirable in the processing of multilevel 

Cu-wiring.  

 

2.6 Electrodeposition of Multilayers 

Multilayer alloys are the materials which consist of multiple alternate layers of 

at least two suitable metals/alloys. These materials have been found to possess 

outstanding properties, such as enhanced tensile strength and microhardness, and 

improved wear resistance [Tench et al. 1984, 1991; Ebrahimi et al. 1998; 2001]. The 

enhancement is attributed to the unique multilayered structure of these composites, 

i.e., the blocking effect of the structure to dislocation glide from one layer to another. 

The merit of this structure is that the composition and properties of its component 

layers can be adapted individually. Thus, the properties of the composites are 

designable and predictable. By choosing suitable combination of the metals and 

appropriate processing parameters, the nature of the interface between the layers can 

be modified also. Two possible processes can be considered in electrodeposition of 

metallic multilayers, single bath and dual bath technique.  

 

The single-bath technique, in these processes only multilayers with elements 

capable of being electrodeposited from a one electrolyte containing both elements can 

be produced [Haseeb et al. 1992; Roy, 1998; Miyake et al. 2001]. A pure metal and an 

alloy of first metal and a second less noble metal are plated successively by changing 

the current density, by controlling diffusion near the cathode surface, by changing the 

agitation or by a combination of these parameters [Haseeb et al. 1992; NabiRahni et al. 

1996]. The deposition potential of the two constituents should be far enough apart 

allow the separated deposition of each element. The single bath technique is in fact a 

pulsed plating process in which at higher overpotential or current the less noble 
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constituent, and at lower overpotential or current the more noble constituent are 

deposited  [Haseeb et al. 1992].   

 

Lashmore and Dariel [1988] prepared Ni/Cu multilayered coatings from single 

nickel sulfamate electrolyte with added copper content. Their processing was based on 

the disparity in standard potentials of nickel and copper, which is given in Table 2.1. 

According to this table, Eo Cu++/Cu, = +0.34 V, and Eo, Ni++/Ni = -0.25 V. There is a 

potential gap between Cu and Ni, and Cu is a more noble element than Ni. If the 

cathode potential is between + 0.34 V and -0.25 V, only copper ions can discharge. If 

the cathode potential is more negative than -0.25 V, both copper and nickel can be 

deposited. However, if the copper ion concentration is much lower than that of nickel, 

and the deposition time is very short, only nickel can be deposited in the latter case. 

This is because the copper deposition is controlled by copper ion diffusion from bulk 

solution to the vicinity of the cathode surface. Therefore, by controlling the cathode 

potential, copper ion concentration, and the deposition time, nickel and copper can be 

separately and alternately plated on the same substrate from a single electrolyte. Their 

nickel sulfamate electrolyte contained 90 g/l Ni, 0.9 g/L Cu in the form of copper 

sulfate, and 30 g/L boric acid at pH ranging from 3 to 3.5.  

 

 

 

 

 

 

 

 

 
 

Figure 2.18: The current pulse electroplating of Cu/Ni multilayered composites. 
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A platinum sheet was used as the anode, and a copper single crystal sheet 

was employed as the cathode substrate. The cycle consisted of a short and high 

current pulse for depositing the nickel layer, and a long but low current pulse for 

depositing the copper layer (Figure 2.18). Between them, a short, zero current pulse 

was designed to improve the sharpness of the nickel-copper interface. Copper was 

deposited at 0.3 mA/cm2 and nickel at 12-20 mA/cm2 current densities. The thickness 

of each Cu or Ni layer was about 10 nm. An overall thickness of 15-20 μm was 

deposited [Lashmore et al. 1988]. 

 

The dual-bath technique employs two separate electrolytic plating baths. The 

substrate is successively transferred between separate plating baths and each layer is 

deposited alternately to laminate the sublayer from the relevant bath. The plated parts 

are activated prior to entering the first solution, plated and subsequently rinsed and 

activated all again before entering the second solution [Haseeb et al. 1994; Wang 

1997]. Interesting results using dual bath technique have recently been published by 

Hasseb et al. (1994). They conducted electrodeposition of Cu/Ni compositionally 

modulated Multylayer with sublayer thickness in the nanometer range. 

Electrodeposition of copper was carried out in a copper sulfate bath (90 g/l CuSO4. 

5H2O and 200 g/l H2SO4) while nickel was deposited from a nickel sulfamate bath (400 

g/l Ni(NH2SO3)2 and 30 g/l H3BO3) both maintained at temperature 30 °C. Both copper 

and nickel were deposited galvanostatically at a current density of 20 mA/cm2 and the 

thickness of copper and nickel sublayers were kept equal. 

 

In the single bath technique, the type of ion discharging on the cathode 

surface is determined by the electrochemical potential and mass transport (ion 

diffusion). The major merit of this process is high efficiency, especially for the 

deposition of nano-scale multilayers. However, not any two metal combinations can be 

deposited in this way because of the requirement of a relatively wide standard 
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electrode potential gap between the two metals. Since co-deposition is not completely 

eliminated, the concentration profile at the interface can not be very sharp. Although it 

is very efficient in thin layer deposition, this method may not be applicable to thick 

layered specimen preparation because the pulse time of the less noble species is 

limited by the diffusion of the more noble species. Other difficulties involve the 

designing of the electrolyte composition and the maintenance of the concentration ratio 

of the two metal ions. These difficulties and limitations prompt us to use another 

process in which two metals are deposited alternately from two separate electrolytes. 

 

2.6.1 Compositionally Modulated Multilayer Alloy Applications 

Compositionally modulated multilayer alloy are the materials which consist of multiple 

alternate layers of at least two suitable metals. These composites have been found to 

possess outstanding properties, such as enhanced tensile strength and microhardness, 

and improved wear resistance [Tench et al., 1991]. The enhancement is attributed to 

the unique multilayered structure of these composites, i.e., the blocking effect of the 

structure to dislocation glide from one layer to another. The merit of this structure is 

that the composition and properties of its component layers can be adapted 

individually. Thus, the properties of the materials are designable and predictable. By 

choosing suitable combination of the metals and appropriate processing parameters, 

the nature of the interface between the layers can be modified also. Therefore, 

mechanical properties of these multilayers can be controlled over a wide range.  

 

Several measurements of mechanical properties of metallic multilayers have 

been conducted. These works involved indentation microhardness measurement and 

tensile tests [Tench et al., 1991].  A common conclusion made from these tests was 

that, as the layer spacing decreases, the tensile strength and microhardness of the 

materials increase. The enhancement effect was attributed to the influence of the 
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interfaces of micro-layered structure to dislocation behavior. Two general models were 

employed to explain this effect. One is Koehler's modulus theory which indicates that 

the interfaces of multilayered structure can offer strong barrier to dislocation glide from 

lower modulus metal to higher modulus metal when two moduli differ greatly. He found 

a relation for the minimum shear modulus required for dislocation transmission to occur 

as,  
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≈                                                     (2.22) 

where μa is the shear modulus of material a, μb is the shear modulus of material b. 

Another is the Hall-Petch relation which gives the dependence of the strength on the 

layer spacing where the image force increases with decreasing layer spacing. Hall-

Petch relation is expressed as,  

σY = σO +Kd-n                      (2.23) 

where σY is the yield strength of materials, d is the thickness of layers, σO and K are the 

constants related to the properties of the materials, n is the exponential which is 

typically taken as 0.5. Hall-Petch relation is applicable to most bulk polycrystalline 

materials during low-temperature deformation. For multilayer, this relation also gives 

reasonably accurate prediction of the dependence of strength on layer spacing. 

However, as the layer spacing is reduced below a critical value, the tensile strength of 

the composites even decreases with decreasing the layer thickness. This loss in 

strength enhancement was attributed to incoherence or misfit dislocation formation at 

the layer interfaces. 

  

Tench et al. [1991] studied the tensile strength of Ni/Cu multilayered alloys. A 

wide range of copper layer thickness, from 3.20 to 0.01 μm, was prepared but the 

composition was always controlled at 90%Ni-10%Cu. The total thickness of deposits 

was about 50 μm. The tensile test data, shown in Figure 2.19 [Tench et al. 1991], 

indicated that the tensile strength remained practically constant at about 600 MPa 
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down to a thickness of about 0.4 μm, and then increased sharply to about 1300 MPa 

for thicknesses in the 0.01 μm range. Pure nickel specimens deposited from the same 

bath were also tested. The measured tensile strength was always < 400 MPa, 

indicating that the multilayered structure yielded a factor of three time improvement.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.19: Tensile strength vs. copper layer thickness for 90%Ni-l0%Cu 
electrodeposited multilayered [Tench et al. 1991] 
 

Drastic changes in tensile strength, ductility and other mechanical properties 

have been reported by a number of researchers. Other, perhaps even more interesting 

properties such as magnetic, optical, physical and chemical properties are known to 

change as well. Compositionally modulated alloy and/or laminated nanostructures can 

be looked upon as new materials because the two alternating metals in the structure 

are constantly blocking the formation of the individual structure that each of the two 

metals would approach if allowed to form in the pure state [NabiRahni et al. 1996]. 

Some of the most promising compositionally modulated alloy results indicate several 

interesting applications: 
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(i) The use of structures with high tensile strength or corrosion resistance in 

micromechanics, with such potential applications as biocompatible, implantable drug 

delivery pumps in medicine; 

(ii) Information storage devices using a perpendicular,   i.e. out-of-plane orientation of 

the magnetization vector to create true vertical recording (for hard discs) also, for 

nanomizing chip circuit designs and magnetic thin films;  

(iii) Optical devices such as laser mirrors or mirrors for long-wavelength neutrons; 

(iv) Implantable micromechanical pumps for monitoring and drug delivery. 
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