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PEMBANGUNAN MANGKIN BERASASKAN NiW-ZEOLIT UNTUK 
PERETAKANHIDRO MINYAK GAS: KAJIAN SINTESIS, PENCIRIAN, 

AKTIVITI DAN KINETIK 
 

ABSTRAK 

 

Satu reaktor goncang-bertekanan tinggi telah dibina untuk  proses 

peretakanhidro bagi minyak gas dan kondisi pencampuran reaktor ini telah 

dikaji dalam penyelidikan ini. Peretakanhidro minyak gas telah dikaji keatas 

mangkin NiMo/Al2O3 pada suhu 300-450 oC, masa sentuh 30-120 min, nisbah 

berat mangkin kepada minyak gas 0-0.08 dan tekanan hidrogen 1000-3000kPa 

menggunakan reaktor goncang bertekanan tinggi. Nilai maksimum jumlah 

penukaran dan hasil bahan api sulingan adalah  59.61 dan 51.91%bt, masing-

masing yang diperolehi pada suhu 450 oC, masa sentuh 90 min, nisbah 

mangkin kepada minyak gas 0.04 dan tekanan hidrogen 1000 kPa. Zeolit USY 

berasaskan NiMo, CoMo, NiW dan CoW disediakan menggunakan kaedah 

pengisitepuan basah. Keputusan ini menunjukkan  mangkin NiW/USY 

memberikan jumlah penukaran dan hasil bahan api sulingan sebanyak 15.54 

and 15.77wt%, masing-masing lebih tinggi daripada yang diperolehi daripada 

mangkin zeolit USY tanpa muatan. Mangkin NiW/USY dengan komposisi 5 %bt 

nikel dan 23 %bt tungsten memberikan jumlah penukaran dan hasil bahan api 

sulingan sebanyak 63.35 and 52.35 %bt, masing-masing. Suatu siri mangkin 

yang NiW berasaskan MCM-48 berliang meso dengan nisbah SiO2/Al2O3 yang 

berbeza disediakan untuk mengkaji kesan kandungan alumina keatas sifat-sifat 

asid mangkin yang telah disintesis. Keputusan menunjukkan keaktifan dan sifat-

sifat mangkin dapat diperbaiki dengan meningkatkan kandungan alumina 

dimana nilai maksima jumlah penukaran dan hasil bahan api sulingan yang 



 xix

diperolehi pada nisbah  berat SiO2/Al2O3 50. Bahan komposit MCM-48-USY 

juga disediakan dengan menyalut zeolit USY dengan satu lapisan bahan MCM-

48 berliang meso pada nisbah SiO2/USY yang berbeza digunakan sebagai 

penyokong untuk mangkin nikel dan tungsten. Keputusan menunjukkan nilai 

maksimum jumlah penukaran dan hasil bahan api sulingan adalah pada nisbah 

SiO2/USY 0.5. Keputusan daripada tindakbalas peretakanhidro minyak gas 

menggunakan mangkin MCM-48-USY dibandingkan dengan keputusan yang 

diperolehi menggunakan mangkin USY dan MCM-48 yang digabungkan secara 

fizikal. Kinetik tindakbalas minyak gas menggunakan mangkin NiW/M50 juga 

dikaji. Mangkin-mangkin yang dipilih berasaskan keaktifan tindakbalas 

peretakanhidro, keasidan dan luas permukaan mangkin yang tinggi dengan 

purata saiz liang pada julat berliang meso yang amat bersesuaian untuk  

tindakbalas peretakanhidro minyak berat. Statistik rekabentuk ujikaji, (DOE), 

digunakan untuk memperolehi keadaan pengendalian optimum. Keputusan 

menunjukkan keadaan pengendalian optimum untuk peretakanhidro minyak 

gas oleh mangkin NiW/MCM-48 adalah pada suhu  tindakbalas 465 oC, masa 

sentuh 30 min dan nisbah mangkin kepada minyak gas 0.05. Model kinetik “6-

gumpal” yang mengandungi dua belas parameter kinetik telah dicadangkan 

untuk menerangkan tindakbalas peretakanhidro minyak gas. Keputusan juga 

menunjukkan hasil yang diperolehi dengan kaedah DOE adalah bersetuju 

dengan ujikaji yang dijalankan. 
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DEVELOPMENT OF NiW-ZEOLITE-BASED CATALYSTS FOR 
HYDROCRACKING OF GAS OIL: SYNTHESIS, CHARACTERIZATION, 

ACTIVITY AND KINETICS STUDIES 
 

ABSTRACT 

 

A high-pressure shaking reactor was fabricated for hydrocracking of gas 

oil and the mixing condition of this reactor was verified. The hydrocracking of 

gas oil was studied over NiMo/Al2O3 catalyst at reaction temperature of 300-450 

oC, contact time 30-120 min, catalyst to gas oil ratio 0-0.08 and hydrogen 

pressure 1000-3000 kPa using high-pressure shaking reactor. Maximum values 

of total conversion and distillate fuels of 59.61 and 51.91 wt%, respectively, 

were obtained at temperature of 450 oC, 90 min contact time, 0.04 catalyst to 

gas oil ratio and1000 kPa hydrogen pressure. USY zeolite supported NiMo, 

CoMo, NiW and CoW were prepared using the incipient wetness method. Over 

NiW/USY catalyst, the total conversion and distillate fuels were 15.54 and 15.77 

wt%, respectively higher than those obtained over unloaded USY zeolite. Then 

NiW/USY catalyst with different nickel and tungsten loadings were prepared. It 

was observed that at tungsten and nickel loadings of 23 and 5 wt%, the total 

conversion and yield of total distillate fuels were 63.35 and 52.35 wt%, 

respectively. A series of NiW supported on mesoporous MCM-48 with different 

SiO2/Al2O3 ratios was prepared to study the effect of alumina on the acidic 

properties of synthesized catalysts. The catalyst activity and properties were 

improved with increasing alumina content and found that maximum values of 

total conversion and distillate fuels were obtained at SiO2/Al2O3 ratio of 50. 

MCM-48-USY composite materials were also prepared by coating USY zeolite 

by a layer of MCM-48 mesoporous material at different SiO2/USY ratios and 



 xxi

used as support for nickel and tungsten catalysts.  The maximum values of total 

conversion and distillate fuels were obtained at SiO2/USY ratio of 0.5. The 

obtained results from hydrocracking of gas oil over composite MCM-48-USY 

catalysts were compared with those obtained over physically mixed USY and 

MCM-48 catalysts. The kinetic of gas oil was studied over NiW/M50 catalyst. 

This catalyst was chosen due to its high hydrocracking activity, acidity and 

surface area with average pore size in mesoporous range which is desirable for 

hydrocracking of heavy oil. Statistical design of experiment, (DOE), was used to 

obtain the optimum operating conditions. It was found that the optimum 

operating conditions for hydrocracking of gas oil over prepared NiW/MCM-48 

catalyst are: reaction temperature of 465 oC, contact time of 30 min and catalyst 

to gas oil ratio of 0.05. A six-lump kinetic model contained twelve kinetic 

parameters was proposed to describe the hydrocracking of gas oil. It was found 

that the obtained results were in good agreement with those obtained from DOE 

and experimental results.  
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 WORLD ENERGY DEMAND 

Energy is the vital basis of the development of human society, and is 

associated with several aspects of the social activities and daily life. With 

increasing world population and rising living standards, the demand for energy 

is steadily increasing in the world. As energy is an important resource, its cheap 

and stable supply is necessary to safeguard the economy and social 

development. Developing countries face the double pressure of economic 

growth and environmental protection as they enter the 21st century. Petroleum 

became more and more important to the world’s economy, so important that 

today, without a steady flow of oil, most human activities on this planet would 

grind to a halt. Petroleum provides fuels and lubricants for our trucks, trains, 

airplanes, automobiles and precursors for the world’s petrochemical industries. 

The fuels that are derived from petroleum supply more than half of the world’s 

total supply of energy. Gasoline, kerosene, and diesel oil provide fuel for 

automobiles, tractors, trucks, aircraft, and ships. 
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At the end of 2006, the world was consuming 84.8 million barrels of oil per 

day. Global petroleum demand is expected to rise by 1.5 million barrels per day 

in 2007, an increase of 0.7 million barrels per day above the 2006 growth 

(Energy Information Administration (EIA), 2007). The world production of 

petroleum has been stagnant for the past few years because of the lack of new 

sites found. Even though there are reports that few new sites has been found to 

contain petroleum, the world production of petroleum is insufficient to meet the 

demand. In many parts of the world, light oil production is declining and heavy 

oil conversion, therefore, becomes increasingly important to maintain economic 

viability of these regions. In 2006, the price of crude oil has averaged US $ 

66.02 per barrel in the international market (Energy Information Administration 

(EIA), 2007). The majority of machines and equipments being made at present 

are designed to run using liquid fuel. For all these reasons and others, it is 

important to extract much useful products from crude oil. The ongoing trends in 

the petroleum refining industry have resulted in the need to upgrade heavy oils 

that otherwise are difficult to transport and market due to their high viscosity and 

high levels of contaminants such as sulphur metals sphaltenes carbon residues 

and solid particles. These have made the conversion of heavy petroleum 

fraction into valuable liquids products to be one of the most important objectives 

for upgrading heavy petroleum oils (Yang et al., 1998).  
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1.2 HYDROCRACKING PROCESS 

The conversion of heavy petroleum fraction into valuable products has 

been achieved mainly by thermal cracking, catalytic cracking and hydrocracking 

(Yang et al., 1998). In thermal cracking process, hydrocarbons with higher 

molecular weight in heavy oils can be transformed to lighter hydrocarbon 

products by thermolysis at a higher temperature, which is accompanied with the 

formation of coke. The development of thermal cracking process for producing 

middle distillates has been limited because large amounts of gas and naphtha 

with lower quality are produced due to over cracking. Catalytic cracking is 

different from thermal cracking because carbon-carbon bond cleavage of 

hydrocarbons in the former occurs on a solid acid catalyst. However, the 

absence of a high partial pressure of hydrogen in the catalytic cracking process 

not only makes possible the rapid build up of coke on the catalyst but also 

results in products containing a significant amount of olefinic and aromatic 

compounds. Hydrocracking process using a metal supported solid acid catalyst 

is considered to be a fine method for producing high quality motor fuels. 

Hydrocracking reactions proceed through a bifunctional mechanism. A 

bifunctional mechanism is one that requires two distinct types of catalytic sites 

to catalyze separate steps in the reaction sequence. These two functions are 

the acid function, which provide for the cracking and isomerization and the 

metal function, which provide for the olefin formation and hydrogenation (Yang 

et al., 1998). 
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Many catalysts used for the hydrocracking process are formed by 

composting various transition metals with the solid support such as alumina, 

silica, alumina-silica, magnesia and zeolites. Most of the conventional 

hydrocracking catalysts are dual functional catalysts. They have a 

hydrogenation–dehydrogenation function as well as an acidic function. The 

cracking activity is controlled mainly by the support that is acidic in nature, 

whereas the hydrogenation–dehydrogenation catalyst activity is due to the 

metals loaded on the support. High acidity tends to cause coking, which leads 

to deactivation. In order to prepare a suitable hydrocracking catalyst, a good 

balance between the two functions has to be maintained.  

 

Zeolites and related crystalline molecular sieves are widely used as 

catalysts in the industry since they possess catalytically active sites as well as 

uniformly sized and shaped micropores that allow for their use as shaped 

selective catalysts in oil refining, petrochemistry and organic synthesis. 

However, due to the pore size constraints, the unique catalytic properties of 

zeolites are limited to reactant molecules having kinetic diameters below 10 Å 

(Maesen et al., 2004). Zeolites have been successful because of their 

crystallinity, high surface area, adsorption capacity, and uniform size distribution 

which enable shape selectivity (Weitkamp, 2000).  

 

Recently, a group of researchers at Mobil Oil Company reported a series 

of mesoporous molecular sieves, named M41S materials. These molecular 

sieves with mesopore diameters of 15-100 Å overcome the limitation of 

microporous zeolites and allow the diffusion of larger molecules. The most 
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popular members of this family are MCM-41 and MCM-48. Compared to the 

more familiar MCM-41, MCM-48 provides easier access to guest molecules due 

to its 3-dimensional pore network. This decreases diffusion limitations and make 

MCM-48 more resistant to pore blocking (Sun and Coppert, 2002). MCM-48 

contains uniform mesopores, which are larger than nanopores and smaller than 

macropores, which makes the material particularly suited to reactions involving 

large molecules, such as gas oil. Despite this advantage over MCM-41, the 

synthesis of high quality MCM-48 with controlled pore size is more challenging. 

The synthesis of aluminium containing mesoporous MCM-48 with improved 

acidic characteristics is important in many catalytic applications. To improve the 

acidic characteristics of MCM-48, the alumina content (SiO2/Al2O3 ratio) 

incorporated into framework was investigated in this work. While increasing 

alumina content increases the activity of the catalyst, the lack of order resulting 

from silicate substitutions causes structure thermal instability. It is therefore 

important to optimize the SiO2/Al2O3 ratio to achieve a reactive and stable 

catalyst. 

 

The selection of a proper catalyst for a given high activity is a complex 

problem. While microporous zeolites such as Y, ZSM-5 and β are playing 

important roles in modern petrochemical industry for their abundant uniform 

microporous structures and strong intrinsic acidities, much attention is being 

given to the development of mesoporous zeolites that provide larger pores (>2 

nm) to allow the conversion of large molecules and thus overcome the 

limitations of microporous zeolites. At present, a popular resolvent is to prepare 

a composite zeolites material comprising of both the microporous zeolites 
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matrix and mesoporous material by multi-step crystallization. However, all of 

these methods mainly aim at modifying mesoporous material on its structure 

stability and acidity, which are still far away from microporous zeolites (Chen et 

al., 2006). Despite the intensive research on synthesis, characterization and 

application of MCM-41 materials, MCM-48, being the cubic member of the 

M41S family, has received much less attention especially in the field of 

catalysis. A contraction of the unit cell occurred by substituting the silicon with 

larger aluminum atoms. The mesoporous molecular sieves MCM-48 possesses 

bi-continuous and three dimensional pore channels. Consequently, both the 

diffusional limitation and the pore blockage are reduced as compared to MCM-

41. These characteristic properties show its potential applications in catalysis, 

adsorption and separation (Chang and Ko, 2004). 

 

The main goal of this work was to develop zeolite-based catalysts with 

proper mesoporosity that are favourable for the hydrocracking of gas oil. For 

this purpose, different types of microporous, mesoporous and composite zeolite 

catalysts were prepared, characterized and tested for hydrocracking of gas oil. 
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1.3 OBJECTIVES OF THE RESEARCH 

The main objectives of this study are: 

1- To design, fabricate and verify the mixing condition of a high-pressure 

shaking reactor for hydrocracking of gas oil.  

2- To study the effects of various operating conditions (temperature, time, 

hydrogen pressure and catalyst to gas oil ratio) in the hydrocracking of gas 

oil over commercial NiMo/Al2O3 catalyst. 

3- To synthesize and characterize a series of transition metals NiMo, NiW, 

CoMo and CoW with different active component and promoter loadings 

supported on USY zeolites and test the activity of these catalysts for 

hydrocracking of gas oil.  

4- To prepare and characterize a series of NiW supported on various types of 

prepared MCM-48 and USY/MCM-48 and test the activity of these 

catalysts for hydrocracking of gas oil. 

5- To obtain the optimum operating conditions for hydrocracking of gas oil 

over NiW/MCM-48 catalyst using design of experiment (DOE).  

6- To develop the kinetic model for hydrocracking of gas oil over NiW/MCM-48 

catalyst that included six lumps, namely, gas oil, gasoline, kerosene, 

diesel, gas (C1-C5) and coke with six cracking reactions and to determine 

the kinetic parameters.  
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1.4 SCOPE OF WORK 

 

High-pressure shaking reactor was designed and fabricated to study the 

hydrocracking reaction of gas oil under industrially relevant conditions with an 

excellent mixing. Firstly, hydrocracking of gas oil over commercial NiMo/Al2O3 

catalyst was conducted in order to verify the mixing condition of the shaking 

reactor and find the range of operating conditions. 

 

The influence of the acidity on the hydrocracking performance has been 

examined with USY zeolite as support for NiMo, CoMo, NiW and CoW 

catalysts. Furthermore, catalysts with different active component and promoter 

concentrations were synthesized to carry out the effect of active component and 

promoter content. Activity of catalysts were investigated in hydrocracking of gas 

oil at reaction temperature of 450 oC, contact time of 90 min, catalyst to gas oil 

ratio of 0.04 and hydrogen pressure of 1000 kPa. These operating conditions 

were selected according to the results obtained over commercial NiMo/Al2O3 

catalyst.  

 

For the hydrocracking of gas oil, large pore size is preferred to allow the 

conversion of large molecules and thus overcome the limitations of microporous 

zeolites. MCM-48 was prepared, characterized and tested for hydrocracking of 

gas oil. Due to the low acidity of MCM-48 materials (compared to the USY 

zeolite), alumina incorporated into framework to improve the acidic 

characteristics of MCM-48. While increasing alumina content increases the 

activity of the catalyst, the lack of order resulting from silicate substitutions 
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causes structure thermal instability. It is therefore important to optimise the 

SiO2/Al2O3 ratio to achieve a reactive and stable catalyst. 

 

While microporous zeolites such as USY are playing important roles in 

modern petrochemical industry for their abundant uniform microporous 

structures and strong intrinsic acidities, and mesoporous zeolites that provide 

larger pores (>2 nm) to allow the conversion of large molecules and thus 

overcome the limitations of microporous zeolites, preparation of composite 

zeolites material comprising of both the microporous zeolites matrix and 

mesoporous material is more important. For this purpose, USY zeolite was 

coated with a layer of MCM-48 mesoporous material at different 

meso/microporous ratios.  These composite MCM-48/USY materials were 

characterized and tested for hydrocracking of gas oil at reaction temperature of 

450 oC, contact time of 90 min and catalyst to gas oil ratio of 0.04. The obtained 

results from hydrocracking of gas oil over composite MCM-48/USY catalysts 

were compared with those obtained over physically mixed USY and MCM-48 

catalysts. 

 

All prepared catalysts were regenerated and re-used for hydrocracking of 

gas oil. The performance of fresh and regenerated catalysts was compared to 

select the best catalyst in order to use it in modelling and kinetics studies. 

 

NiW/MCM-48 catalyst was chosen due to its high hydrocracking activity 

and used to evaluate the effects of important variables in the hydrocracking of 

gas using design of experiment (DOE). Finally, kinetics study was carried out 
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over NiW/MCM-48 catalyst using lump parameter model based on parallel 

reaction of gas oil hydrocraking in order to predict all reaction parameters of gas 

oil hydrocracking. 

 

1.5 ORGANIZATION OF THE THESIS 

 

Addition to this chapter (chapter one) there are six chapters in this thesis, 

and each chapter gives valuable information of the thesis. Chapter two presents 

a review of literature. It is divided into three sections, the first section presents a 

general background on gas oil and its chemical composition, the second section 

gives details aspects of hydrocracking catalysts and process, and the last 

section gives a discussion of statistical analysis and reaction kinetics. 

     

Chapter three deals with experimental methodology and focuses on the 

various methods used in this study. This chapter describes the materials and 

the experimental apparatus used in this work. The apparatus comprised four 

parts, i.e. the catalyst preparation, the hydrocracking system, product analysis 

and characterization of catalysts. It describes as well the experimental 

procedures, design of experiment and reaction kinetic model.  

 

Chapters four and five present the experimental results together with the 

discussion. Chapter four is divided into seven sections; the first section gives 

general introduction on this chapter, the second section presents the 

preliminary results on the hydrocracking of gas oil, the third to fifth sections give 

results and discussions of hydrocracking of gas oil using NiW catalysts 
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supported on USY zeolites, MCM-48 and MCM-48/USY composite, 

respectively. Section six presents regeneration of catalysts.  

 

Chapter five details on statistical design of experiment, selection of 

operating conditions and kinetics studies. Chapter six gives conclusions of this 

work. Finally, Chapter seven gives recommendations for future studies. 
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CHAPTER TWO 

 

LITERATURE SURVEY 

 

2.1   PETROLEUM  

 

Petroleum (also called crude oil) is perhaps one of the most important 

substances consumed in modern society. It provides not only raw materials for 

the plastics and other products but also fuel for energy, industry, heating, and 

transportation. The oil industry classifies crude oil by the location of its origin 

(e.g., West Texas Intermediate, Brent) and often by its relative weight (API 

gravity) or viscosity (light, intermediate or heavy). Refiners may also refer to it 

as "sweet," which means it contains relatively little sulphur, or as "sour," which 

means it contains substantial amounts of sulphur and requires more refining in 

order to meet current product specifications. The word petroleum, derived from 

the Latin petra and oleum, means literally “rock oil” and refers to hydrocarbons 

that occur widely in the sedimentary rocks in the form of gases, liquids, 

semisolids, or solids (Speight, 2002). Petroleum is generally considered to be 

formed from animal and vegetables debris accumulating in sea basins or 

estuaries and buried there by sand and salt. The debris may have been 

decomposed by anaerobic bacteria under reducing conditions, so that most of 
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the oxygen was removed, or oil may have been distilled from the partially 

decayed debris by heat generated by earth movements or by depth of burial 

(Francis and Peters, 1980). The final result is a black viscous very complex 

mixture containing many different hydrocarbon compounds like paraffin, 

naphthene and aromatic hydrocarbons that vary in appearance and composition 

from one oil field to another. On average, crude oil contains about 84% carbon, 

14% hydrogen, 1-3% sulphur and less than 1% each of nitrogen, oxygen, 

metals and salt (Alajbeg et al., 2000).  

 

Petroleum varies dramatically in colour, odour, and flow properties that 

reflect the diversity of its origin (Table 2.1) (Speight, 2002). The majority 

products of crude oil are LPG (liquid petroleum gas), gasoline, kerosene, diesel, 

gas oil and residues. Table 2.2 summarized product types and carbon number 

range (Speight, 2002). These products are separated by distillation in refinery 

(Gray, 1994; Speight, 1998). Distillation is the separation of crude oil in 

atmospheric and vacuum distillation columns into groups of hydrocarbon 

compounds of different boiling point ranges called fractions or cuts (Speight, 

2002). Figure 2.1 shows schematic diagram of crude oil refinery distillation 

columns (Speight, 1998).  
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Table 2.1 Illustration of the Variation in Composition (Residuum Content) and 
Properties (Specific Gravity and API Gravity) of Petroleum (Speight, 2002) 

 
Crude Oil Specific Gravity API Gravity Residuum > 1000°F 

California 0.858   33.4 23.0 

Oklahoma 0.816   41.9 20.0 

Pennsylvania 0.800   45.4 2.0 

Texas 0.827   39.6 15.0 

Bahrain 0.861   32.8 26.4 

Iran 0.836   37.8 20.8 

Iraq 0.844   36.2 23.8 

Kuwait 0.860   33.0 31.9 

Saudi Arabia 0.840   37.0 27.5 

Venezuela 0.950   17.4 33.6 

 
 
 

Table 2.2 General summary of product types and their carbon number range 
(Speight, 2002) 

 
Product Lower Carbon Upper Carbon 

Refinery gas C1 C4 

Liquefied petroleum gas C3 C4 

Naphtha C5  C17 

Gasoline  C4 C12 

Kerosene/diesel fuel C8  C18 

Aviation turbine fuel C8 C16 

Gas oil C12 >C20 

Lubricating oil >C20 - 

Wax C17 >C20 

Asphalt >C20 - 

Coke >C50 - 
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Figure 2.1 Schematic diagram of refinery distillation columns (Speight, 1998) 
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2.1.1   Gas oil  

Gas oil is the fraction of crude oil, which is obtained by atmospheric or 

vacuum distillation of crude oil, and the boiling range from petroleum is between 

215-337 oC (light gas oil) or 320-426 oC (heavy gas oil) (Gray, 1994). Figure 2.2 

presented the boiling point and carbon number for gas oil and other petroleum 

products (Speight, 2002). Gas oil consists of a mixture hydrocarbon 

homogeneous compounds which contain carbon and hydrogen, further 

hydrocarbon heterogeneous compounds which contain sulphur (for example 

hydrogen sulphide and methyl mercaptan), nitrogen (i.e andole and carbazole) 

and oxygen (i.e. methyl alcohol and acetic acid) as well as there are very small 

amounts of nonhydrocarbon metallic compounds as iron, copper, nickel and 

vanadium (Speight, 1981). Representative properties of light and heavy gas oil 

are shown in Table 2.3 (Gary and Handwerk, 2001). 

 

Gas oil is also classified based on production process from crude oil by 

various refining processes. They have been allocated to six groups as follows 

(American Petroleum Institute (API), 1987): 

• straight-run gas oils obtained by the atmospheric distillation of crude oil 

(straight-run gas oil). 

• cracked gas oils obtained from refinery feedstocks by thermal, catalytic 

or steam cracking processes (cracked gas oil). 

•  hydrocracked gas oils obtained from refinery feedstocks by 

simultaneous processes of cracking and hydrogenation (cracked gas oil). 

• gas oil distillate fuels normally obtained by blending straight-run, cracked 

and hydrocracked gas oils (gas oil - unspecified). 
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Figure 2.2 Boiling point and carbon number for gas oil and other petroleum 
products (Speight, 2002) 
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Table 2.3 Properties of light and heavy gas oil (Gary and Handwerk, 2001) 

Property Light gas oil Heavy gas oil 

Flashpoint, oC, minimum 38 38 

Pour point, oC, maximum -18 -6 

Initial boiling point, oC 215 320 

Final boiling point, oC 337 426 

Viscosity, mm2/s, 40 oC, minimum 1.3 1.9 

Viscosity, mm2/s, 40 oC, maximum 2.1 3.4 

Density, kg/m3, 15 oC, (API) 850 (35) 876 (30) 

Ramsbottom carbon residue, wt% 0.15 0.35 

Sulphur, wt% 0.50 0.50 

Water and sediment, vol% 0.05 0.05 
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• Distillates obtained by vacuum distillation of the residues left after the 

atmospheric distillation of crude oil (vacuum gas oil). 

•  Other gas oils obtained when straight-run or cracked gas oils are 

subjected to further refining processes (gas oil - unspecified). 

 

Straight-run and vacuum gas oils typically contain 70-80% aliphatic 

hydrocarbons, 20-30% aromatic hydrocarbons and less than 5% of olefins. 

However, cracked gas oils may contain up to 75% of aromatic hydrocarbons 

and up to 10% olefins. Since part of the gas oils distil at temperatures in excess 

of 350°C, they may contain minor concentrations of 4 to 6 ring polycyclic 

aromatic hydrocarbons. Typical data for four gas oils, each of a different type 

are given in Table 2.4 (American Petroleum Institute (API), 1987).  

 

The ever increasing demand for lighter engine fuel and higher price of light 

crude oil have stimulated the petroleum refining industry into looking for the 

possibility of processing heavy fractions as well as the comparatively cheaper 

heavy crude oils. Therefore, to meet the growing demand for lighter fuel the 

need for more efficient process is necessary. In petroleum refining, 

hydrocracking of heavy hydrocarbons has been carried out. Among the 

technologies, solid catalyzed hydrocracking processes are believed to be a 

promising technology because of its high product quality to produce high quality 

gasoline, kerosene and diesel (Ali et al., 2002). 
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Table 2.4 Properties of four types of gas oil (American Petroleum Institute (API), 
1987) 

 
Property 

 
Straight- 

run 
Catalytic
cracked 

Hydrocracked 
 

distillate 
Fuels 

Aliphatic hydrocarbons, % 79.7 24 47.9 71.9 

Aromatic hydrocarbons, % 20.3 72.4 21 28.1 

Olefins, % <0.1 3.7 4.4 1 

Density at 15°C (g/ml) 0.82-0.85 0.972 0.837 0.834 

Boiling range, °C 185-391 240-372 216-347 143-347 

 

 

2.2 HYDROCRACKING OF GAS OIL  

 

2.2.1 Hydrocracking process 

Pyrolysis or thermal cracking, catalytic cracking, and hydrocracking are the 

three methods of hydrocarbon cracking. Thermal cracking is the breaking up of 

heavy oil molecules into lighter fractions by the use of high temperature without 

the aid of catalyst. In thermal cracking process hydrocarbons with higher 

molecular weight in heavy oils can be transformed to lighter hydrocarbon 

products by thermolysis at a higher temperature, which is accompanied with the 

formation of coke. The development of thermal cracking process for producing 

middle distillates has been limited because large amounts of gas and naphtha 

with lower quality are produced due to overcracking. Thermal cracking 

processes are commonly used to convert petroleum residue oil into distillable 

products, although thermal cracking processes as used in the early refineries 

are no longer used and the modern thermal cracking processes is visbreaking 

(Speight, 1998). The objective of visbreaking is to reduce the viscosity of heavy 
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feedstock and to increase the hydrogen-carbon atomic ratio (H/C atomic ratio). 

The reduction in viscosity of the unconverted residue tends to reach a limiting 

value with conversion, although the total product viscosity can continue to 

decrease (Gray, 1994). Conversion of residue in visbreaking follows first order 

reaction kinetics. The high viscosity of the residues is thought to be due to 

entanglement of the high molecular weight compounds and formation of order 

structures in the liquid phase. Thermal cracking at low conversion can remove 

side chains from the asphaltenes and break bridging aliphatic linkages. A 5-10 

% conversion of atmospheric residue oil to naphtha is sufficient to reduce the 

entanglements and structures in the liquid phase and give at least a five fold 

reduction in viscosity (Speight, 1998). 

 

Martinez et al., (1997) reported results on thermal cracking of asphaltenic 

residue from synthetic crude obtained by coal liquefaction. A second-order 

reaction was suggested for asphaltene cracking at temperature 425, 435 and 

450 oC. The amount of asphaltene and yields of products, oil, gas and coke 

were presented as a function of residence time.  

 

Wang and Anthony (2003) studied the thermal cracking of asphaltenes by 

re-examining data obtained by Martinez et al., (1997). They derived the 

concentration and conversion or residence time relation for the yields involving 

the secondary cracking of oil by direct integration of the rate equations. They 

reported that thermal cracking of asphaltenes occurs in important heavy-oil 

upgrading processes such as coking and visbreaking. Their analyses confirmed 

that at lower temperatures the three-lump model which considered parallel 



 22

reactions of oil, gas and coke formation described the cracking behaviour 

whereas at higher temperature the secondary cracking of oil may be 

considered. This development has the potential to be useful in describing 

thermal-cracking processes for heavy oils. 

 

Catalytic cracking is different from thermal cracking because carbon-

carbon (C-C) bond cleavage of hydrocarbons in the former occurs on a solid 

acid catalyst. However, the absence of a high partial pressure of hydrogen in 

the catalytic cracking process not only makes possible the rapid build up of 

coke on the catalyst but also results in products containing a significant amount 

of olefinic and aromatic compounds. This not only accounts for the high-octane 

rating of the catalytic cracking gasoline, but also for the poor quality of middle 

distillates obtained in the catalytic cracking. Hydrocracking is the process of 

breaking up heavier hydrocarbon molecules into lighter hydrocarbon fractions 

by using heat and catalysts in the presence of hydrogen (Hatch and Mater, 

1982). Hydrocracking process using a metal supported solid acid catalyst is 

considered to be a fine method for producing high-quality motor fuels. In thes 

process, the use of higher partial pressures of hydrogen and relatively low 

temperatures decreases the rate of coke formation and favours the 

hydrogenation of olefins and aromatic compounds (Yang et al., 1998). it is an 

endothermic reaction, provides olefins and other unsaturates for hydrogenation, 

while hydrogenation, an exothermic reaction, provides heat for cracking (Al-

Adwani and Anthony, 1996). This process increases the yield of gasoline from 

crude oil. Hydrocracking is hydrogen consuming reaction. Although hundreds of 

simultaneous reactions are taking place, the chemical fundamentals of this 
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process are well understood. It involves catalytic cracking with hydrogenation 

forced to prevail by extremely high hydrogen to oil ratio (≈1000). Catalytic 

cracking is the scission of a carbon-carbon single bond while hydrogenation is 

the addition of hydrogen to a carbon-carbon double bond (Gary and Handwerk, 

1984). The role of hydrogen and temperature is very important because all 

hydrocracking reactions involve hydrogen contact with the reactants at a 

pressure above 7 MPa and temperature up to 470 oC (Speight, 1998). The 

feedstock is thermally cracked and hydrogenated to yield products with 

increased H/C atomic ratio, reduced sulphur and nitrogen content. An increase 

in the reaction temperature results in an increase in reaction rate but has no 

significant effect on the conversion. The main types of reactions that take place 

during hydrocracking are: 

Cracking:          R-CH2= R                   R + CH2= R   (2.1) 

Hydrogenation:       CH2= R + ½H2                     CH3 – R + Heat  (2.2) 

Hydrotreating:  

Removal of sulphur (S)       R-SH + H2                  R-H + H2S    (2.3)                       

Removal of oxygen (O)      R-OH + H2           R-H + H2O   (2.4) 

Removal of nitrogen (N)     R-N + 2 H2                 R-H + NH3   (2.5) 

Removal of metals (M)       R-M + ½ H2                R-H + M    (2.6) 

 

These chemical equations are simplified since sulphur, oxygen, nitrogen and 

metals are present in large heteroatom cyclic compounds. Also taking place in 

hydrocracking processes are isomerization reactions of straight paraffinic 

chains to high octane isoparaffins and conversion of aromatic compounds to 

cycloparaffins (Laine and Trimm 1982). Hydrocracking and hydrotreating are all 
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first-order reactions with hydrocracking as the rate-controlling step, and kinetic 

data of the reaction follow a Langmuir-Hinshellwood approach (Choudhary and 

Saraf 1975). 

 

Hydrocracking offers several advantages over thermal cracking such as 

(Gary and Handwerk, 1984): 

• Higher gasoline yield. 

• Better gasoline octane quality. 

• Improved balance of gasoline and distillate production. 

• Higher yield of isobutene in the butane fraction. 

 

2.2.2 Hydrocracking catalysts 

A Catalyst is a substance that increases the rate at which a chemical 

reaction approaches equilibrium without itself becoming permanently involved in 

the reaction. The main processes that use catalysts for petroleum heavy oil 

upgrading are: hydrotreating, hydrocracking and fluid catalytic cracking (FCC) 

(Halabi et al., 1997). 

 

 Most of the conventional hydrocracking catalysts are dual functional 

catalysts. They have a hydrogenation–dehydrogenation function as well as an 

acidic function. The cracking activity is controlled mainly by the support that is 

acidic in nature, whereas the hydrogenation–dehydrogenation catalyst activity is 

due to the metals loaded on the support. High acidity tends to cause coking, 

which leads to deactivation. In order to prepare a suitable hydrocracking 

catalyst, a good balance between the two functions has to be maintained. It is 
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