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PENYELIDIKAN VOLUMETRIK SISTEM PENYEBARAN LESITIN-AIR 

 

ABSTRAK 

 

Kajian volumetrik mengenai sistem penyebaran lesitin-air telah dijalankan. Satu 

tinjauan literatur mengenai liposom dan kegunaannya dalam beberapa bidang sains 

dan perubatan telah diperincikan untuk menjelas kepentingan pengajian liposom. 

Objektif utama bagi penyelidikan ini adalah untuk menentukan secara jitu, ketumpatan 

sistem penyebaran lesitin dan ketumpatan lesitin dalam sistem penyebaran, serta 

mengkaji susunan struktur molekul lesitin dalam liposom bagi sistem penyebaran lesitin 

itu. Untuk mencapai tujuan ini, saiz liposom telah dianggar melalui ukuran kekeruhan, 

sementara ketumpatan sistem penyebaran lesitin telah ditentukan dengan tepat pada 

julat suhu antara 25 °C ke 55 °C dengan menggunakan satu meter ketumpatan berdigit. 

Kajian yang selanjutnya ke atas kesan kehadiran ion juga disiasat. Anggaran saiz 

liposom bagi sistem penyebaran lesitin yang berbeza menyokong pemerhatian yang 

menyatakan bahawa tempoh sonikasi yang berpanjangan biasanya akan 

menghasilkan liposom unilamela kecil. Ketumpatan lesitin dalam sistem penyebaran 

dihitung dan nilainya didapati setanding dengan nilainya dalam keadaan kering (1.056 

g cm-3). Namun begitu, nilai itu didapati adalah tinggi sedikit untuk sistem penyebaran 

yang mempunyai kepekatan lesitin yang lebih tinggi. Pemerhatian ini telah disahkan 

selanjutnya dengan nilai anggaran untuk isipadu molekul berkesan lesitin, di mana nilai 

itu adalah lebih kecil bagi sistem penyebaran yang mempunyai kepekatan lesitin yang 

lebih tinggi. Kajian sandaran ketumpatan dengan suhu menunjukkan kehadiran satu 

peralihan fasa termotropik pada kira-kira 40 °C hingga 45 °C. Dengan penambahan ion 

Ca2+ atau ion Na+ dalam sistem penyebaran lesitin, ketumpatan sistem penyebaran 

lesitin dan juga ketumpatan lesitin dalam sistem penyebaran meningkat. Akan tetapi, 

isipadu molekul berkesan lesitin dalam sistem penyebaran menurun. Kesan itu adalah 



 xv

lebih ketara dengan penambahan ion Ca2+ berbanding dengan penambahan ion Na+. 

Dengan sedemikian, boleh dinyatakan bahawa ion Ca2+ akan menyusun molekul lesitin 

dalam sistem penyebaran dengan lebih padat berbanding dengan ion Na+. 
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VOLUMETRIC STUDIES OF LECITHIN-WATER DISPERSIONS 

 

ABSTRACT 

 

Volumetric studies of lecithin-water dispersions were carried out. A literature 

review of liposomes and their applications in various areas of science and medicine 

was presented to illustrate the importance of research studies on liposomes. The main 

objectives of this present study are to determine accurately the density of the lecithin 

dispersions and the density of the lecithin in the dispersions, as well as to elucidate the 

molecular packing structure of the liposomes in the lecithin dispersions. To achieve this 

aim, sizes of liposomes were estimated via turbidity measurements, while the density of 

the lecithin dispersions were determined accurately over a temperature range from 

25 °C to 55 °C using a digital density meter. Further studies on the effects of ions were 

similarly investigated. The estimation of the liposome sizes in different lecithin 

dispersions supported the observation that prolonged sonication typically produced 

small unilamellar liposomes. The density of the lecithin in the dispersions was 

calculated and the value was found to be comparable to the value in the dry state 

(1.056 g cm-3). Nevertheless, the value was found to be slightly higher for dispersions 

with higher concentrations of lecithin. This observation was further confirmed by the 

calculated values of the effective molecular volume of lecithin, which were smaller for 

higher concentrations of lecithin in the dispersions. Temperature dependence studies 

of density demonstrated the presence of a thermotropic phase transition at about 40 °C 

to 45 °C. With the addition of Ca2+ ions or Na+ ions to the lecithin dispersions, the 

density of the lecithin dispersions and the density of the lecithin in the dispersions 

increased. However, the effective molecular volume of lecithin in the dispersions 

decreased. The above effects were more pronounced with the addition of Ca2+ ions 
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compared to the addition of Na+ ions, thus probably indicating that Ca2+ ions pack the 

lecithin molecules in the dispersions even tighter when compared to that of Na+ ions. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 Introduction 

 

Cells are the basic structural and functional units of all living organisms 

(Widmaier et al., 2004). The human body is composed of trillions of cells. There are two 

classes of cells, eukaryotic cells and prokaryotic cells. The cells of the human body, as 

well as those of multicellular animals and plants, are eukaryotic cells. These cells 

consist of a nuclear membrane surrounding the cell nucleus and numerous other 

membrane-bound structures. Prokaryotic cells, for example, bacteria, lack these 

membranous structures (Figure 1.1). 

 

Cells are surrounded by a plasma membrane, which covers the cell surface. 

Within each eukaryotic cell are numerous membrane-bound compartments, particles 

and filaments, known as cell organelles (Figure 1.1). Each cell organelle performs 

specific functions that contribute to the cell’s survival. 

 

The interior of a cell is divided into two regions, the nucleus and the cytoplasm 

(Figure 1.2). The cytoplasm contains two components, cell organelles and the cytosol. 

The term intracellular fluid refers to all the fluid inside a cell, which includes the cytosol 

plus the fluid inside all the organelles and also the nucleus. The chemical compositions 

of the fluids in the cell organelles may differ from that of the cytosol. 

 

As mentioned earlier, all living cells are enclosed by a plasma membrane. 

Membranes form a major structural element in cells. Membranes serve not only as a 

sturdy envelope inside which the cell can function, but also as a discriminating portal. 
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Figure 1.1 Comparison of eukaryotic cell and prokaryotic cell. 
 

 

 

 
Figure 1.2 Comparison of cytoplasm and cytosol. (a) Cytoplasm (colored area) is the 
region of the cell outside the nucleus. (b) Cytosol (colored area) is the fluid surrounding 
the cell organelles. 
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They act as a selective barrier to the passage of molecules, allowing some molecules 

to cross while excluding others. The plasma membrane regulates the passage of 

substances into and out of the cell, whereas the membranes surrounding cell 

organelles regulate the movements of substances between the organelles and the 

cytosol. 

 

The structure, function and chemistry of the membranes are highly significant in 

biological systems. The passive and active transport functions involve the membranes. 

Membranes play an important role in excitability phenomena and signal transmissions. 

They also provide the ordered structures for enzymatic, hormonal and drug activities. 

The elucidation of membrane structure, the organization of the component 

macromolecules and the studies of their dynamical behavior, have been subjects of 

much additional research for the past few decades. 

 

Membranes are composed almost entirely of two classes of molecules, proteins 

and lipids. The proteins serve as enzymes or biological catalysts, and provide the 

membrane with their distinctive functional properties. The lipids, however, provide the 

gross structural properties of the membrane. Several models have been proposed to 

represent the geometrical arrangement of these two classes of molecules in the 

biological membrane. In 1925, Gorter and Grendel reported that lipids extracted from 

erythrocyte membranes spread as a monolayer at an air-water interface (Harrison and 

Lunt, 1975). Apparently independently, Danielli and Davson in 1935 proposed that the 

lipid matrix of natural membranes was sandwiched between two layers of protein. The 

widespread occurrence of such apparently similar membrane structures led Robertson 

to promote the concept of a universal unit membrane based on the Davson-Danielli 

model. In the Davson-Danielli-Robertson bilayer leaflet model (Figure 1.3), the protein 

molecules in either globular or extended form are spread over both surfaces of a 

continuous lipid bilayer. As more was learned about the interactions between lipids 
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Figure 1.3 Schematic representations of the Davson-Danielli-Robertson model 
(adapted from Harrison and Lunt, 1975). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.4 Schematic representation of the fluid mosaic model of membrane structure. 
(a) Cross-sectional view. The phospholipids are arranged in a discontinuous bilayer. (b) 
Three-dimensional view. The globular proteins are partially embedded in a 
phospholipid bilayer (adapted from Singer and Nicolson, 1972). 
 

(a) 

(b)
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and proteins in membranes, it became evident that lipids and proteins jointly form the 

membrane continuum (Singer, 1971). The membrane model, so called the fluid mosaic 

model, which was amplified by Singer and Nicolson (1972), has wide acceptance at the 

present time. In this model (Figure 1.4), membrane proteins float in a sea of lipid 

(phospholipid) bilayer. 

 

There are two classes of membrane proteins, integral and peripheral. Integral 

proteins are amphipathic, having polar amino acid side chains in one region of the 

molecule and nonpolar side chains clustered together in a separate region. They are 

arranged in the membrane with the same orientation as lipids, the polar regions are at 

the surfaces in association with polar water molecules, and the nonpolar regions are in 

the interior in association with nonpolar fatty acid chains. They have thus 

predominantly hydrophobic interaction with the lipids. Peripheral proteins, on the other 

hand, are not amphipathic. They do not associate with the nonpolar regions of the 

lipids in the interior of the membrane. They are held at the membrane surface by 

predominantly electrostatic interactions, where they are bound weakly to the polar 

regions of the integral proteins (Figure 1.5). 

 

 

 
Figure 1.5 Arrangement of integral and peripheral membrane proteins in association 
with a lipid (phospholipid) bilayer (adapted from Widmaier et al., 2004). 
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This thesis is concerned with studying the model membrane system, which is 

formed by lipids without any protein. Since lipids form the structural skeleton of 

biological membranes, it is necessary to develop a detailed understanding of the 

physical properties and functional roles of model membrane systems made from lipids. 

The lipids found in membranes are of amphipathic character, which consist of both a 

polar or hydrophilic (water loving) head group region and a nonpolar or hydrophobic 

(water hating) region. In most membrane lipids, the nonpolar or hydrophobic region 

consists of hydrocarbon chains of fatty acids, with a carboxyl group (-COOH) at one 

end. In a typical membrane lipid, two fatty acid molecules are chemically bonded 

through their carboxyl ends to a backbone of glycerol, while the glycerol backbone in 

turn, is attached to a polar or hydrophilic head group consisting of either phosphate or 

other groups, which often carry an ionic charge. Phosphate-containing amphipathic 

lipids are known as phospholipids (Figure 1.6). 

 

 
 
Figure 1.6 Glycerol and fatty acids are the major subunits that combine to form 
phospholipids. (a) Arrangement of subunits in phospholipids. (b) Structure and formula 
for a common membrane phospholipid, phosphatidylcholine. (c) Space-filling model of 
phosphatidylcholine. (d) Diagram used to depict a phospholipid molecule. 
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The major membrane lipids are phospholipids. They are amphipathic molecules, 

one end constitutes a charged region, whereas the fatty acid chains provide a nonpolar 

region at the opposite end. Additional small molecules can be linked to the phosphate 

group to form a variety of phospholipids, including phosphatidylcholine, phosphatidyl-

ethanolamine, phosphatidylserine, phosphatidylinositol and cardiolipin. As mentioned 

earlier, the phospholipids in cell membranes are organized into a bimolecular layer 

(bilayer) with the nonpolar of fatty acid chains in the middle, while the polar regions of 

the phospholipids are attracted to the polar water molecules in the extracellular fluid 

and cytosol, and oriented toward the surfaces of the membrane (Figure 1.7). 

 

Numerous model membrane systems have been developed for studying the 

structure-function relationships exhibited by biological membranes. The study of the 

properties of lipids as model membrane systems has been rationalized as a shortcut 

approach necessitated by the complexity of biological membranes. The three major 

frequently used model membrane systems are monolayers, bilayers and vesicles 

(liposomes) (Figure 1.8). 

 

 

 

 
Figure 1.7 Bilayer arrangement of phospholipids. 
 

Extracellular fluid 

Intracellular fluid 
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Figure 1.8 Three of the most frequently used model membrane systems. (a) 
Monolayers at the air-water interface. (b) Bilayers. (c) Vesicles or liposomes. 
 

(a) 

(c) 

(b) 
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The monolayer at the air-water interface is a system in which the hydrophilic 

parts of the lipids are submerged in the water phase, while the hydrophobic parts 

remain outside pointing into the air to form an insoluble monolayer. Although the 

monolayer system is limited in terms of applicability to transport phenomena, it provides 

extremely useful information on molecular packing and interactions at an interface. The 

characteristics of such a system are usually described by experimentally measured 

properties, such as surface pressure, surface potential and surface viscosity (Blaudez 

et al., 1999; Brzozowska and Figaszewski, 2002). 

 

The bilayer systems, also known as black lipid membranes, are favorite model 

systems for studying the electrical properties of lipid bilayers (Tanaka and Yonezawa, 

1997; Winterhalter, 2000). Typically, the black lipid membranes are formed by 

dissolving lipids in a hydrocarbon solvent and applying them across a small aperture 

that separates two electrically-insulated compartments. The solvent tends to collect at 

the perimeter of the aperture, leaving an optically black bilayer membrane across the 

center. The electrical properties of the barrier are then measured employing electrodes 

in the two buffered compartments (Figure 1.9). 

 

The model membrane vesicles or liposomes are self-enclosed spherical or oval 

structures, composed of the lipid bilayers encapsulating an inner solution phase 

(Bangham et al., 1965). Liposomes possess unique properties owing to the 

amphipathic character of the lipids. Liposomes are of major interest as model 

membrane systems due to their vast potential applications in biological, medical, 

pharmaceutical and chemical fields. The following section is a brief discussion on 

liposomes so as to provide some background and rationale for the studies to be 

reported in this thesis. Further details would be highlighted in Chapter 2. 
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Figure 1.9 Schematic representation of the study of black lipid membranes. (a) Simple 
experimental design showing a plastic septum with an aperture in the centre. The 
bilayer membrane covers the aperture and separates the two aqueous phases. (b) The 
black lipid membrane is prepared by applying membrane-forming solution across the 
aperture in the plastic septum. After thinning over a period of about 15 min, the final 
bilayer membrane can be observed as the hydrocarbon torus held on at the edge of the 
aperture. It appears black in reflected light. 
 

 

1.2 Studies on Liposomes 

 

Liposomes are quasi-spherical structures composed of lipid bilayers that 

encapsulate an aqueous space (Bangham et al., 1965). Liposomes form 

spontaneously when lipids are dispersed in an aqueous media, giving rise to a 

population of liposomes with various sizes. They can be prepared in the laboratory by 

various methods, such as organic solvent injection, sonication or extrusion, all of which 

are reviewed in Section 2.3 in Chapter 2. 

 

The study of liposomes is very essential because of their similarity to biological 

membranes and their medical value as delivery agents for enzymes, drugs, and in 

genetic manipulation and diagnostic imaging (Papahadjopoulos, 1978; Philippot and 

Schuber, 1995). Nowadays, liposomes are not only commonly used as model 
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membrane systems. Their use as drug delivery system in pharmaceutical industry 

however, has a gradual, progressive application (Lasic and Papahadjopoulos, 1998). 

Because of their vast applications, liposomes are of particular interest. 

 

In the present study, model membrane system used was a sonicated dispersion 

of lipid in water. It was observed by Bangham and Horne (1964) from electron 

micrographs that multilamellar liposomes were formed in the dispersions (Figure 1.10). 

 

Liposomes can be manufactured from a variety of lipids and lipid mixtures. 

Phospholipids are most commonly used. The phospholipid used in this study is 

dipalmitoyl lecithin, also known as dipalmitoyl phosphatidylcholine (DPPC). The choice 

was mainly based on the fact that a substantial fraction of phospholipids in cell 

membranes is phosphatidylcholine (PC). Phosphatidylcholines are often used as the 

principal phospholipid in liposomes for a wide range of applications because of their 

neutral charge and chemical inertness. Dipalmitoyl lecithin has a 16:0 hydrocarbon 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1.10 Multilamellar liposomes dispersed in excess water. 
 

Water 
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chain. In other words, it has a chain length consisting of 16 carbon atoms and without 

double bonds. Further, dipalmitoyl lecithin has a characteristic thermotropic phase 

transition at a convenient temperature of 41 °C in excess water (Chapman et al., 1967). 

 

Various investigations have addressed the biological aspects of liposomes, both 

in vivo and in vitro. The relationship between the structure of the simple lipid membrane 

and that of the lipid phase of biological membranes has been a matter of some concern. 

As is well known, the polymorphism of the bilayer arises from alterations in the packing 

arrangements of lipid hydrocarbon chains, order or disorder isomerizations in 

intramolecules, and hydrophobic or hydrophilic interactions between water and lipid. 

Consequently, considerable interest underlying the subject of the molecular packing 

structure of liposomes in lipid-water systems has been generated. 

 

The size or radius of curvature of liposomes is an important parameter that 

determines their physical properties. In addition, the liposome radius of curvature is 

known to significantly affect the physicochemical properties of lipid bilayers. In 

pharmaceutical applications, drug encapsulation efficiency and in vivo behavior are 

highly dependent on liposome size. Uchiyama et al. (1995) previously investigated 

liposomes as drug carriers for delivery to tumor. They indicated that the accumulation 

of liposomes into the tumor was primarily governed by their size. Later, the size of 

liposomes has been concluded to be an important factor in the efficient delivery of an 

antitumor agent to a tumor by Nagayasu et al. (1999). It has been further shown that 

the size of liposomes influences the dermal delivery of substances into the human skin 

(Sentjurc et al., 1999; Verma et al., 2003). Henceforth, the determination and control of 

liposome size are critically essential. 

 

The occurrence of a thermotropic phase transition is characteristic of lipid-water 

systems. The study of thermotropic lipid phase transitions in both natural and model 
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membranes has proven to be a productive approach towards the understanding of the 

structure, organization and interactions present in lipid bilayer assemblies. The phase 

behavior of lipid bilayers and their structural relationship to biological membranes have 

motivated scientists from many disciplines to study their unique properties. For 

example, fundamental studies of temperature and pressure dependence (Yi and 

MacDonald, 1973; Spiker and Levin, 1976; Asher and Levin, 1977; Utoh and Takemura, 

1986) that induced structural changes in biological membrane organizations, have 

provided the background needed for better understanding of how the ordering and 

disordering mechanisms vary at the respective transition points, as well as for 

comparing the results obtained on more complex biological membrane systems. 

 

Knowledge of how lipids arrange or pack in liposomes with other molecules, 

such as cholesterols (Ladbrooke et al., 1968; Hinz and Sturtevant, 1972a), proteins 

(Massari and Colonna, 1986; Trivedi et al., 2000) and ions (Verkleij et al., 1979; Blatt 

and Vaz, 1986), are essential in understanding the arrangement of lipids in biological 

membranes and their interaction with other biomolecules. 

 

Ions are known to greatly influence many physiological and biochemical 

processes. At the cell membrane level, the ions can significantly influence the 

conformation of proteins inserted or attached to the lipid bilayer, the packing of the 

lipids present in the membrane, the structure of the water in contact with the membrane 

and the interactions between membranes (Cunningham et al., 1986). 

 

The binding of ions (cations or anions) to liposomes plays a conspicuous role in 

determining the physical properties and functions of biological membranes. Information 

on binding sites and the mechanism and strength of binding are therefore of great 

importance. Recent studies suggest that perturbations of thermotropic lipid phase 

transitions using ions may be biologically significant. However, the behavior observed 
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experimentally of the effects of ions on the transition temperatures in lipid-water 

systems is apparently rather complex. 

 

1.3 Objectives and Scope of Present Work 

 

The main objectives of this study are 

• to determine the density of the lipid-water dispersions and subsequently the 

density of the lipid in the dispersions1 

• to elucidate the molecular packing structure of the liposomes through accurate 

density measurements of the lipid-water dispersions, both with and without 

addition of ions. 

 

The lipid-water dispersions are to be prepared by means of sonication to 

produce liposomes of minute sizes. Measurements of the turbidity as a function of 

wavelength, range from 400 nm to 800 nm, using a spectrophotometer, will provide a 

means of evaluating the average size of the liposomes in the dispersions. The sizes of 

the liposomes formed in the dispersions are generally within the range of 80 nm to 170 

nm. 

 

Most of the work in this study will focus on the methodology of density 

measurements. The densities of the lipid-water dispersions will be measured using a 

digital density meter. The densities will be measured in the temperature range from 

25 °C to 55 °C, within the specific thermotropic transition points of the lipid used. 

 

A theoretical approach, based on the precise density measurements, will be 

formulated to estimate the effective volume of lipid molecules packed in the liposomes 

                                                 
1 The density of the lipid-water dispersion is the density for the whole dispersion, while the 
density of the lipid in the dispersion refers only to the density of the lipid itself in the dispersion. 
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in the dispersions. The changes of the effective molecular volume, which are relatively 

dependent upon the measured densities, will indirectly serve as a study on the 

structural changes of the liposomes in the dispersions. The thermotropic phase 

transition will also be observed by means of density measurements. 

 

In order to reach a general understanding of the factors determining molecular 

packing structure of the liposomes in the lipid-water dispersions, it is necessary to 

extend the above considerations to take into account the effects of ions. Ions to be 

used in this study are calcium (Ca2+) and sodium (Na+) ions, which are divalent and 

monovalent cations, respectively. Further studies on the ions effects via density and 

turbidity measurements will similarly be investigated. Changes of density result in 

changes of effective molecular volume. The molecular packing structure of the 

liposomes with the addition of ions is therefore, expected to vary. The study of 

thermotropic phase transition of the lipid-water dispersions, with addition of ions, will 

also be reported. 

 

1.4 Organization of Thesis 

 

The thesis is broadly organized into six chapters. The first chapter is the 

introductory chapter that consists of a very general background on the organizations in 

both natural and model membrane systems, a brief review of liposomes, as well as the 

objectives and scope of this present study. Chapter 2 covers a basic information of 

liposomes and a more comprehensive review of the literature on liposomes. This 

includes studies on the method of preparation, applications, phase transitions, size and 

density determinations, as well as effects of ions. Chapter 3 outlines the theoretical 

considerations that may be adapted for the study of the molecular packing of liposomes. 

Appropriate equations are developed to relate density and other measurable quantities, 

such as mass and volume. A detailed description of the experimental works, including 
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materials and methods used, is given in Chapter 4. This covers the preparation of 

samples and the measurements of turbidity and density. The results of the 

measurements and calculations are summarized in Chapter 5. This chapter also 

provides a qualitative discussion on the results obtained. Finally, Chapter 6 reports the 

summary and conclusions of this present study and proposes some recommendations 

for future work. 
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CHAPTER 2 

LIPOSOMES (LIPID VESICLES) 

 

2.1 Introduction 

 

During the past few decades, liposomes have been a subject of interest for 

many investigators because of their potential applications as drug delivery systems in 

the areas of diagnosis, catalysis, immuno-modulation as well as genetic engineering 

(Lasic and Papahadjopoulos, 1998). The study of liposomes as model systems for 

biological membranes has contributed greatly to many aspects of cell physiology, such 

as permeability, fusion and membrane-bound enzyme properties. In the preceding 

chapter, some very general information were given on their organizations in both 

natural and model membrane systems. In this chapter, special emphasis is given to a 

review of the literature on model membrane liposomes. 

 

This chapter is organized into eight parts. In Section 2.2, a brief review is given 

on the structure of the liposomes. In Section 2.3, the method of preparation and studies 

that deal with sonication are discussed. In Section 2.4, a further review on the 

applications of the liposomes is presented. The study of polymorphism and 

thermotropic phase transitions of lipid-water systems is reviewed in the section 

following. A summary of literature reviews on the size and density determinations of the 

liposomes in lipid-water systems is presented in Sections 2.6 and 2.7, respectively. A 

further detailed discussion with emphasis on the effects of ions to the lipid-water 

systems is reviewed in the concluding section of this chapter. 
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2.2  Structure of Liposomes 

 

Liposomes or lipid vesicles (Figure 2.1), are colloidal structures formed by the 

self-assembly of amphipathic lipid molecules in solution (Bangham et al., 1965). When 

mixed with water under certain physical conditions, these lipid molecules 

spontaneously form lipid bilayers in which the hydrophilic head groups remain in 

contact with the aqueous environment, while the hydrophobic tails point inward to form 

the inner portion of the bilayers. Apart from their chemical constituents, which 

determine such properties as membrane fluidity, charge density and permeability, 

liposomes are characterized by their size and the number of bilayers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 Structure of liposome formed by phospholipids. Note that the central region 
consists of polar head groups of the inner and bottom surfaces and not a solid mass of 
polar head groups. 
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The nomenclature for liposomes, which was approved upon at the New York 

Academy of Sciences meeting on “Liposomes and Their Uses in Biology and Medicine”, 

has been widely accepted at the present time (Papahadjopoulos, 1978). In this 

nomenclature, liposomes are categorized as multilamellar vesicles (MLVs), small 

unilamellar vesicles (SUVs) and large unilamellar vesicles (LUVs). MLVs generally 

consist of a population of vesicles covering a wide range of sizes, from 100 nm to 1000 

nm, each vesicle usually consisting of five or more concentric lamellae. On the contrary, 

unilamellar vesicles are divided into two classes; vesicles under 100 nm are considered 

as SUVs, while vesicles larger than that are classified as LUVs. 

 

2.3 Preparation of Liposomes 

 

2.3.1 Multilamellar Liposomes (MLVs) 

 

Numerous methods have been employed for the preparation and production of 

multilamellar and unilamellar liposomes (New, 1990; Betageri et al., 1993). Preparation 

of the simplest model system involves the straightforward hydration of a lipid film by 

mechanical agitation. The hydration followed by the agitation result in the generation of 

MLVs (Bangham et al., 1965), which have been used for many years as model systems 

for the bilayer matrix of biological membranes. However, their use is restricted to 

physical studies on bilayer organization and the motional properties of individual lipids 

within a membrane structure. One of the major drawbacks of this thin-film hydration 

method is the poor encapsulation efficiency of water-soluble drugs. 

 

MLVs with relatively high encapsulation efficiencies can be produced by 

hydrating the lipid in the presence of an organic solvent. Papahadjopoulos and Watkins 

(1967) previously developed this method that begins with a two-phase system 

consisting of equal volumes of petroleum ether containing a mixture of lipids and an 
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aqueous phase. The phases are then emulsified by vigorous vortexing and the ether 

phase is removed by passing a stream of nitrogen gas over the emulsion. When the 

solvent is removed by the carrier gas, MLVs form in the aqueous phase. 

 

2.3.2 Small Unilamellar Liposomes (SUVs) 

 

SUVs can be produced from MLVs by subjecting the MLVs to ultrasonic 

irradiation or by passage through a French press. There are two methods of sonication, 

using either a probe sonicator (Huang, 1969) or a bath-type sonicator (Johnson et al., 

1971). The probe sonicator is usually employed for suspensions that require high 

energy in a small volume of high concentrations of lipids, while the bath-type sonicator 

is more suitable for large volumes of dilute lipids, where it may not be necessary to 

reach the minimum size limit for liposomes. Both procedures of sonication may lead to 

formation of SUVs of about 25 nm in diameter. A more detailed discussion on 

sonication is given in Section 2.3.4. 

 

SUVs can also be obtained by injecting the dispersions of MLVs through the 

small orifice of a French press under (generally) very high pressure (Barenholzt et al., 

1979; Hamilton et al., 1980). The heart of a French press is the pressure cell, which is 

manufactured in stainless steel to resist high pressure. A dispersion of MLVs is placed 

in the French press and extruded at pressures up to 20,000 p.s.i. or even 40,000 p.s.i. 

(i.e. pounds per square inch, where 100 p.s.i. is equivalent to approximately 6.9 atm or 

7.0 ×  105 Pa). One pass through the pressure cell produces a heterogeneous 

population of liposomes ranging from several micrometers in diameter to sizes of SUVs. 

Multiple extrusions (mostly four passes) result in a progressive decrease in the mean 

diameter of liposomes. The resulting liposomes are larger than sonicated SUVs, 

ranging in size from 30 nm to 80 nm, depending on the pressure used. Barenholzt et al. 

(1979) previously adapted this method to produce homogeneous population of SUVs 
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by extrusion of MLVs at 20,000 p.s.i. The method is simple, reproducible and 

nondestructive. However, temperature control is difficult. The body of the pressure cell 

must be allowed to cool between extrusions or the temperature rise may lead to a 

damage of the lipids or drugs. The working volumes are relatively small, about 50 ml 

maximum. 

 

An alternative method for producing SUVs that avoids both sonication and 

exposure to high pressure is the ethanol injection method described by Batzri and Korn 

(1973). SUVs form instantaneously when lipids dissolved in ethanol are rapidly injected 

into an excess of buffer solution. This procedure is simple, rapid and highly 

reproducible. However, the ethanol will remain in the liposome suspensions. This 

disadvantage is that some biologically active macromolecules tend to become inactive 

in the presence of even low amounts of ethanol. 

 

Deamer and Bangham (1976) later developed another ideal method for SUVs 

production based upon a solvent evaporation method, which involves injection of an 

ether-lipid mixture directly into warm aqueous solution. Typically, the ether-lipid mixture 

is injected into an aqueous solution of the material to be encapsulated, at 55 °C to 

65 °C or under reduced pressure. Vaporization of the ether leads to the formation of 

SUVs. 

 

2.3.3 Large Unilamellar Liposomes (LUVs) 

 

There are two common procedures for producing LUVs, one involving detergent 

dialysis, the other the formation of a water-in-oil emulsion. Procedures that involve 

detergents vary depending upon the type of detergent. However, the principle is the 

same. Briefly, lipids are first solubilized by the detergent of choice, such as cholate or 

octylglucoside. The detergent is then removed either rapidly by dilution or gel filtration, 
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or slowly by dialysis. When the detergent concentration decreases, the lipids adopt 

unilamellar vesicular structures. Milsmann et al. (1978) previously described a method 

based on a fast and controlled dialysis of sodium cholate from phosphatidylcholine-

cholate mixed micelles. This procedure results in a homogeneous population of LUVs, 

with mean diameters of 50 nm to 100 nm. 

 

The method employing organic solvent is called reverse phase evaporation 

procedure. LUVs can be prepared by forming water-in-oil emulsions of lipids and 

aqueous buffer in excess organic phase, followed by removal of the organic phase 

under reduced pressure. Removal of the organic solvent under partial vacuum gives 

rise to hydrated lipid in the form of a viscous gel. Removal of the final traces of solvent 

under high vacuum or mechanical disruption, such as vortexing, causes the collapse of 

the gel into a smooth suspension of LUVs. Imura et al. (2002) recently developed a 

modified method, so called the supercritical reverse phase evaporation method (scRPE 

method), for the preparation of LUVs with diameters of 0.1 µm to 1.2 µm, in a single 

step using supercritical carbon dioxide (scCO2) and ethanol. 

 

The methods for producing LUVs indicated previously suffer from major 

drawbacks, including the use of toxic compounds during manufacture, low 

encapsulation efficiencies and irreproducibility of the liposome preparations. An 

alternative procedure that is gaining increasing popularity and would avoid the use of 

organic solvents and exhibit high trapping efficiency, involves the direct extrusion under 

moderate pressures of MLVs through polycarbonate filters of defined pore size 

(Chapman et al., 1991; MacDonald et al., 1991; Turanek, 1994; Berger et al., 2001). 

This procedure can generate LUVs with high trapping efficiency and size distributions 

within the range of 50 nm to 200 nm, depending on the pore size of the filter employed 

(Olson et al., 1979; Hope et al., 1986; Mayer et al., 1986). This procedure that avoids 

the use of organic solvents (Hope et al., 1985) can be applied to all liquid crystalline 
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bilayer lipids (including long chain saturated lipids) and lipid mixtures (Nayar et al., 

1989; Hunter and Frisken, 1998). Therefore, the extrusion procedure is a considerably 

rapid, straightforward and convenient way for the reproducible production of 

homogeneously sized liposomes. 

 

2.3.4 Sonication 

 

In 1969, Huang succeeded in obtaining small and almost homogeneous 

spherical liposomes, with an average diameter of about 250 Ǻ, by prolonged sonication 

of pure egg-yolk lecithin under nitrogen in 0.1 M buffered NaCl solution and 

subsequent molecular sieve chromatography on large-pore agarose gels. 

 

Unilamellar liposomes are now usually prepared by either of two methods of 

sonication, one with a high energy probe immersed directly into an aqueous dispersion 

of lipid, or a lipid dispersion is placed in a glass vial suspended in a low energy 

ultrasonic cleaning bath. 

 

The technique of using sonication as a method for producing homogeneous 

aqueous dispersions of lecithin has been described by many researchers (Bangham 

and Horne, 1964; Chapman et al., 1968; Huang and Thompson, 1974; Chong and 

Colbow, 1976). The effect of time of sonication on the size and shape of lecithin 

aggregates in aqueous dispersion has been studied by Attwood and Saunders (1965). 

They indicated that large and highly asymmetric particles within the lecithin dispersion 

are broken down by prolonged sonication to produce smaller and more symmetrical 

aggregates of round particles of a mean diameter between 100 Ǻ and 200 Ǻ. The 

increased interest in membrane structure and biological transport by using liposomes 

as a model membrane system in lipoprotein and enzyme studies has led to further 
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investigations on the effects of sonication on the structure of lecithin bilayers (Hauser, 

1971; Sheetz and Chan, 1972). 

Numerous reports on the effects of sonication dealt mainly on changes in the 

size and structure of the lipid aggregates. In the majority of studies, little attention has 

been paid to the possibility of chemical modification and degradation of the lipid 

induced by intense sonication. Most of the studies dealt with the physical properties of 

sonicated lipid dispersions and ignored the necessity of checking the purity of the lipid 

after sonication. 

 

The extent of chemical degradation depended on the intensity of ultrasonic 

cavitation and probably on other factors which may influence the ultrasonic cavitation 

(Hauser, 1971). Further, the instrumental settings, the geometry of the probe relative to 

that of the sample tube, the volume, concentration, liquid depth and temperature of the 

dispersion, the depth to which the probe was immersed, the nature of the dissolved gas 

as well as the atmosphere surrounding the sample, were all found to influence the 

effect of sonication. In the light of the findings that under conditions of optimum 

cavitation even very short sonication times, can cause significant chemical degradation. 

Thus, purity tests of the lecithin before and after sonication are imperative. However, 

the insignificant effect of sonication on the state of lecithin molecules reported by 

Huang and Charlton (1972) is in contrast with the observation of Hauser (1971). This 

disagreement is not surprising but reasonable since different conditions of sonication 

were described. 

 

2.4 Applications Involving Liposomes 

 

Liposomes have long been used in basic research as model systems for 

biological membranes because they have structures and functions similar to those of 

biological membranes (Sessa and Weissmann, 1968). Due to their structure, chemical 
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