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ABSTRAK 

 
 

  Karbon teraktif daripada tempurung kelapa dan tempurung kelapa sawit 

telah berjaya dihasilkan melalui proses pengaktifan kimia dengan menggunakan zink 

klorida dan asid fosforik sebagai agen pengaktif.  Kesan suhu pengaktifan, masa 

pengaktifan dan kepekatan agen pengaktif terhadap luas permukaan BET, morfologi 

permukaan dan hasil (berat kering) telah dikaji. Keputusan menunjukkan di dalam semua 

kes, peningkatan suhu pengaktifan dari 300˚C hingga 500˚C dan masa pengaktifan dari 60 

minit hingga 180 minit menyebabkan peratus hasil menurun, manakala luas permukaan 

meningkat. Nilai luas permukaan karbon teraktif tertinggi diperolehi dengan menggunakan 

5 M kepekatan zink klorida dan 30% kepekatan larutan asid fosforik iaitu 893 m2/g dan 833 

m2/g masing-masing.  Oleh itu, suhu optimum yang diperolehi adalah pada 500˚C dan 

masa pengaktifan yang diperlukan adalah 120 minit.  Pencirian ke atas karbon teraktif 

dilakukan dengan memilih empat sampel yang dihasilkan dari kedua-dua jenis bahan mula 

(CS & PS) pada suhu, masa dan kepekatan yang optimum (CSZ, PSZ, CSH, PSH). 

Keputusan analisis unsur menunjukkan kandungan karbon di dalam sampel adalah lebih 

daripada 75% manakala kandungan nitrogen dan sulfur adalah kurang dari 0.1%.  

Manakala, kandungan karbon tetap bagi karbon teraktif yang dihasilkan adalah di antara 

54% hingga 79% dan kandungan bahan meruap yang tinggal adalah dari 11% hingga 

36%. Kandungan peratus lembapan pula adalah kurang daripada 10% dan akhir sekali 

nilai abu akhir adalah kurang dari 2%.  Analisis FTIR menunjukkan bahawa kumpulan 

hidroksil, karbonil, alifatik, eter, alkohol, fenol dan kumpulan karbosilik dapat dikesan pada 

permukaan kedua-dua bahan mula.  Setelah proses pengaktifan dan pengkarbonan, 

keputusan menunjukkan bahawa terdapat kumpulan berfungsi baru yang terbentuk seperti 



 xvii

karbon-aromatik dan polifosfat-ester pada karbon teraktif yang dihasilkan dan beberapa 

kumpulan berfungsi telah disingkirkan seperti karbosilik, alkohol dan karbonil. Ujian 

keupayaan penjerapan telah dijalankan keatas karbon teraktif yang dihasilkan 

menggunakan kaedah pentitratan nombor iodin. Keputusan menunjukkan bahawa nilai 

nombor iodin yang tinggi telah diperolehi bagi sampel CSZ dan PSZ iaitu pada 966 mg/g 

dan 959 mg/g masing –masing.  Kajian keberkesanan penyingkiran sianida telah 

dijalankan untuk menentukan potensi penggunaan karbon teraktif yang dihasilkan. Peratus 

penyingkiran sianida berjaya diperolehi lebih daripada 98% pada kepekatan awal sianida 

25 mg/l dengan menggunakan 0.5 g karbon teraktif yang dihasilkan dari tempurung kelapa 

sawit melalui pengaktifan dengan asid fosforik yang telah di jerap-isi dengan 5 % larutan 

kuprum sulfat.  Bagi karbon teraktif yang tidak dijerap-isi, keputusan menunjukkan peratus 

penyingkiran sianida adalah kurang dari 60% pada kepekatan awal sianida 25 mg/l dan 50 

mg/l.  Daripada ujian penyingkiran sianida, ia menunjukkan bahawa karbon teraktif yang 

dihasilkan daripada tempurung kelapa dan tempurung kelapa sawit boleh digunakan 

sebagai penjerap dalam perawatan air sisa sianida.   
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ABSTRACT 
 

 Activated carbon from coconut shell and palm kernel shell has been successfully 

produced through chemical activation process using zinc chloride and phosphoric acid as 

activating agents.  The effect of activation temperature, activation time and concentration 

of activating agent on BET surface area, surface morphology and yield (dry weight basis) 

were studied.  The result showed that in all cases, increasing the activation temperature 

from 300˚C to 500 ˚C and activation time from 60 to 180 minutes caused a decrease in the 

percentage yield while the BET surface area is increased, progressively. The highest BET 

surface area of the activated carbon obtained by using 5 M zinc chloride concentration and 

30% concentration of phosphoric acid is 893 m2/g and 833 m2/g respectively. Hence, the 

optimum temperature for production of activated carbon was obtained at 500˚C and 

optimum activation time was obtained at 120 minutes.  Characterization of the activated 

carbon produced was done by selecting four samples from both the raw materials (CS & 

PS) at optimum temperature, activation time and concentration (CSZ, PSZ, CSH, PSH).  

Elemantal analysis showed that carbon content in the samples is high which is over 75% 

and the nitrogen and sulphur content is less than 0.1%. While, the fixed carbon of 

activated carbon produced is in the range of 54% to 79% and the volatile matter left is from 

11% to 36%.  The moisture content is less than 10% and finally ash content is less than 

2% for all samples selected.  FTIR analysis showed the hydroxyl, carbonyl, aliphatic, 

ethers, alcohol, phenol and carboxylic groups are present on the surfaces of both the raw 

materials.  
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After the activation and carbonization process, the new functional groups were assigned 

such as carbon-aromatic groups and polyphosphate esters on activated carbon produced 

and some of the functional groups were eliminated such as carboxylic, alcohol and 

carbonyl. The adsorption capacity test of the produced activated carbon was determined 

by iodine number.  The highest iodine number obtained from CSZ and PSH samples are 

966 and 959 mg/g respectively. The cyanide removal efficiency was carried out to 

determine the potential application of produced activated carbon. The percentage of 

cyanide removal is successfully obtained more than 98 % at initial cyanide concentration 

of 25 mg/l by using 0.5g of activated carbon produced from palm kernel shell through 

phosphoric acid activation (PSH) impregnated with 5 % of copper from Cu(II)SO4 solution.  

For raw activated carbon (non-impregnated AC), the results showed a lower cyanide 

removal of below 60 % at initial cyanide concentration of 25 mg/l and 50 mg/l.  From the 

cyanide removal test, the activated carbon produced from coconut shell and palm kernel 

shell by chemical activation can be used as an adsorbent in cyanide waste water 

treatment. 
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CHAPTER ONE 
INTRODUCTION 

1.1 Background 

Recently, carbon has been one of the magnificent elements which have 

revolutionized material science. From carbon we obtain the best porous absorber 

(activated carbon) with excellent properties for large spectrum of industrial applications. 

Activated Carbon (AC) is the common term used for a group of absorbing substances 

of crystalline form, having a large internal pore structures that make the carbon more 

absorbent (Strand, 2001). These properties are obtained when a char is subjected to 

controlled gasification by oxidizing gases, or when a raw material impregnated with 

dehydrating agents is subjected to carbonization. 

 

Generally, the raw materials for the production of AC are those with high carbon 

but low inorganic contents such as wood, lignite, peat and coal (Lua and Guo, 2001). 

Beside that, lot of agricultural waste and by product have successfully  converted to AC 

for examples macadamia nutshell (Ahmadpour and Do, 1996), paper mill 

sludge(Khalili, et al., 2000) and peach stones (Arriagada, et al., 1997). In Malaysia 

there are potential raw materials resources for the production of the activated carbon. 

In this research, two local agricultural waste which are coconut shells and palm kernel 

shells were used to produce an activated carbon due to the availability and inexpensive 

material with high carbon and low inorganic content. A number of researches have 

been reported in the literature using coconut shell and palm kernel shell as a raw 

materials. Table 1.1 summarizes various works with reference to the raw materials 

using, methods and their application of AC produced.  
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Table 1.1 Summary of earlier work on activated carbon using coconut shell and palm 
shell. 

Authors Year Raw materials Method Application 

Lua and Guo 2001 Oil palm stones CO2 activation SO2 removal 

Hu and 

Srivinasan 
2001 

Coconut shell 

and palm shell 

ZnCl2 activation 

and CO2 

activation 

Phenol, 

methylene blue 

Guo and Lua 2003 Palm shell H3PO4  
Ammonia 

adsorption 

Mozammel et al. 2002 Coconut shell ZnCl2activation Iodine 

Hu et al. 2001 
Coconut shell 

and palm seed 
ZnCl2 activation Phenol and dye 

Daud and Ali 2004 
Palm shell and 

coconut shell 

Physical 

activation 

 (N2 gas) 

Nitrogen 

adsorption 

  

By now, a lot of research has been done on AC to improve the application of 

AC. One of the fastest growing areas is in environmental applications such as 

wastewater treatment. In the treatment of wastewater, it is used for purification, 

decolorization and the removal of toxic organics and heavy metal ions (Kim, et al., 

2001).  Recently, a researches have been focused more on removal of heavy metal 

ions such as copper (Kim et. al, 2001), zinc and chromium (Monser and Adhoum, 

2002) and mercury ( Budinova et. al, 2006). But only few researches have done on 

removal of cyanide pollutants by activated carbon.  Adams (1994) studied the effect of 

copper in the adsorption of cyanide onto activated carbon. It was found that the 

removal capacity was highly improved by the presence of copper. Williams and 

Petersen (1997) reported that 56.5% of free cyanide (20 mg/l) could be removed using 

silver impregnated carbon compared with plain carbon ( 11 % CN removal). In column 

test, Monser and Adhoum (2002) observed that silver and nickel impregnated activated 

carbons could adsorb up to 26.5 and 15.4 mg CN per unit mass of adsorbent 

respectively compared with 7.1 mg CN/g for plain carbon.  
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Deveci et. al (2006) also reported that by using copper and silver impregnated 

activated carbon prepared from coconut shell could adsorb up to 22.4 and 29.9 mg/g 

CN respectively. Therefore, in this research the produce activated carbon will used to 

examine the potential application of local activated carbon produced on removal of 

cyanide pollutants.  

 

1.2 The Importance of the Research 
 

The world production of AC in 1990 was estimated to be 375,000 ton, excluding 

what was then Eastern Europe and also China (Mozammel et.al, 2002). In 2002, the 

demand for activated carbon reached 200,000ton per year in United States and the 

market will very probably be negatively affected by imports from the Asia-Pacific 

region. The demands of AC were increase over the year and market growth was 

estimated at 4.6% per year (Mozammel et. al, 2002). The strong market position held 

by AC relates to their unique properties and low cost compared with that of possible 

competitive inorganic adsorbents like zeolites. 

 

AC is used primarily as an adsorbent to remove organic compounds and 

pollutant from liquid and gas streams. The market has been increasing constantly as a 

consequence of environmental issues, especially water and air purification. 

Furthermore, as more and more countries are becoming industrialized, the need for 

activated carbon to comply with environmental regulation will grow at faster rate. Liquid 

phase applications represent the largest outlet for AC. In these applications, AC is used 

in the purification of a variety of liquid streams, such as those used in water treatment 

and the processing of food, beverages and pharmaceuticals.  
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 The growth of the activated carbon market in the last two decades in the most 

industrialized region will very probably continue in the near future as more developing 

areas of the world will realize the importance of controlling water and air pollution. This 

demand can be satisfied considering the large number of raw material available for the 

production of AC, the variety of activation processes described, and the available forms 

of AC.  Thus, the continuous research has to be implementing to develop the high 

quality of AC for specific uses.  

 

1.3 Objectives of the Research 
 

The aim of this research is to produce activated carbon from the local 

agricultural waste which is coconut shell and palm kernel shell impregnated with two 

activation agent for a particular application. To achieve these, a study was carried out 

with the following objectives: 

 

i. To evaluate various operating parameters such as activation temperature and 

activation time for the activated carbon produced from coconut shell and palm 

kernel shell. 

ii. To study the effect of chemical activation on the development of pore structure 

on the activated carbon produced. 

iii. To examine the characteristic of granular activated carbon produced (i.e 

elemental analysis, proximate analysis, adsorption capacity, surface 

functionality and pore size of AC produced). 

iv. To evaluate the potential application of locally produced activated carbon in 

inorganic pollutants such as its performance in cyanide removal. 
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1.4 Scope of the research  
  

 

Production of all these oils by the small scale or traditional producers is spread 

over various areas in the country, whilst the established industries engage mostly in 

production of palm oil. The supply of the palm shells is easier as many established 

industries dumped the shells as a waste after getting the kernels from the nuts. 

Coconut shell wastes, on the other hand, are spread over wider area in the country and 

collection ore effort than that of palm shells. 

 

In this research, the production of activated carbon was carried out by using 

chemical activation method. In chemical activation, the carbonization and activation are 

accomplished in a single step by carrying out the thermal decomposition of the raw 

material impregnated with certain activating agents. Two activating agents were used, 

there are phosphoric acid and zinc chloride. Zinc chloride known as a Lewis acid is a 

strong dehydrating agent which could alter the structure of carbon to form the porous 

structure. While phosphoric acid, was also known as a strong acid acts as an acid 

catalyst to promote cleavage reactions (Rodriguez-Reinoso, 2002). By using these two 

chemical, the influences on the pore structure of AC produced can be compared.  

After the impregnation step, the samples were carbonized in the horizontal 

furnace under inert atmosphere by using nitrogen gas (N2) by varying the operating 

parameter such as carbonization temperature and carbonization time. The 

carbonization temperatures of this activation were varied between 300 to 500 ºC to 

analyze the effect of temperature on the yield and pores development of activated 

carbon.  

This work also focuses on optimizing the activation time, instead to optimizing 

the activation temperature. The raw materials that have been activated will be 

carbonized under certain temperature with control time of 0.5, 1, 2, 3, 4 hours. After 

carbonization, the activated carbons produced were washed with water or 
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hydrochloride acid several times until the residual activating agent on the surface of 

activated carbon completely removed.  

This stage was important because during impregnation the activating agent will 

penetrated into raw material particles and occupied substantial volumes. Once they 

were extracted by intense washing, a large amount of microporosity was created.  

 In order to analyze the activated carbon produced, several standard analyses 

were employed to characterize the product that will meet the condition for 

commercialization. The characterization of the activated carbon produced were 

performed by using several analyses such as the elemental analysis, proximate 

analysis, pore size analysis, surface functional groups analysis and adsorption 

capacity.  
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        CHAPTER TWO 
LITERATURE REVIEW 

 

2.1 ACTIVATED CARBON 

2.1.1 Introduction 
 

Activated carbons form a large and important class of porous solids, which have 

found a wide range of technological applications. As a consequence, the porous 

structures of these materials and their adsorption of gases, vapors, and liquids have 

been extensively studied. In this section the microstructural and porous properties of 

the principal classes of activated carbon are reviewed. It is outside the scope of this 

contribution to consider in detail the very many industrial applications and processes 

that employ activated carbon. 

Activated carbons have been explained in different way of definition from 

several authors. In sec 2.1.2 the definition of activated carbons are reviewed from 

certain authors that give an overview about the activated carbons.  On the other 

hand, some of the principal methods used to characterize the pore structure in 

activated carbons are outlined (Section 2.2). Furthermore, the pore structure is having 

been reviewed in section 2.3. In order to understand the porous structure of activated 

carbons it is first necessary to give an outline review of the carbonization processes 

that convert the organic precursors to the carbon product (Section 2.4). This provides 

a basis for understanding the relationship of the pore structure of activated carbons to 

the fine structure of the solid carbon materials. An appreciation of the fine structure of 

activated carbons leads to an account of the surface forces in pores that give rise to 

the powerful adsorptive properties of activated carbons. 
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The processing method involved two types of activation, physical and chemical 

activation (Sect. 2.5).  The development of porosity in activated carbons by "physical" 

activation, i.e., by reaction of the carbon with oxidizing gases (steam. carbon dioxide. 

and air) is reviewed in Section 2.5.2. Chemical activation. i.e. by reaction of carbon 

precursors with reagents, such as phosphoric acid and zinc chloride is considered in 

Sect. 2.5.3. The review continues with a some applications of activated carbons (Sect. 

2.6) and concludes with Sect. 2.7 that summarizes the salient points to emerge from 

the review. 

 

2.1.2 Definition of Activated Carbon 
 

Activated carbon (AC) as many known as a solid, porous, black carbonaceous 

material and tasteless. Marsh (1989) defined AC as a porous carbon material, usually 

chars, which have been subjected to reaction with gases during or after carbonization 

in order to increase porosity. AC is distinguished from elemental carbon by the 

removal of all non-carbon impurities and the oxidation of the carbon surface. While 

according to Norlia Baharun (1999) AC is an organic material that has an essentially 

graphitic structure. The main features common to all AC are; graphite like planes 

which show varying degrees of disorientation and the resulting spaces between these 

planes which constitute porosity, and the unit built of condensed aromatic rings are 

referred to as Basic Structure Units (BSU) (Benaddi,2000). Benaddi(2000) also stated 

that AC is predominantly an amorphous solid with a large internal surface area and 

pore volume. Cokes, chars and activated carbon are frequently termed amorphous 

carbon.    
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  X-ray studies have shown that many so-called amorphous substances have 

crystalline characteristics, even though they may not show certain features, such as 

crystal angles and faces, usually associated with crystalline state. Although 

interpretation of the X-ray diffraction patterns is not free from ambiguities, there is 

general agreement that amorphous carbon consists of plates in which the carbon 

atoms are arranged in a hexagonal lattice, each atom, except those at the edge, being 

held by covalent linkages to three other carbon atoms. The crystallites are formed by 

two or more of these plates being stacked one above the other. Although these 

crystallites have some structural resemblance to a larger graphite crystal, differences 

other than size exist (Hassler,1974).  

 

From all the definition, it can be summarized that AC is black, amorphous solid 

containing major portion of fixed carbon content and other materials such as ash, water 

vapor and volatile matters in smaller percentage. Beside that, AC also contain physical 

characteristic such as internal surface area and pore volume. The large surface area 

results in a high capacity for absorbing chemicals from gases or liquids.  The 

adsorptive property stems from the extensive internal pore structure that develops 

during the activation process.  

 

2.2 Characterization and Properties of Activated Carbon 
 

Characterization for activated carbon (AC) is very important in order to 

classified AC for specific uses. Basically, AC characterized by physical properties and 

chemical properties. As Guo and Lua(2003) mentioned that the characteristics of 

activated carbon depends on the physical and chemical properties of the raw materials 

as well as activation method used.  
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Physical properties of AC, such as ash content and moisture content can affect 

the use of a granular AC and render them either suitable or unsuitable for specific 

applications. While the specific surface area of activated carbon and surface chemistry 

is classified as chemical properties. Furthermore, the porous structure of activated 

carbon also can be characterize by various techniques such as adsorption of gases(N2, 

Ar, Kr, CO2) or vapors (benzene, water), scanning electron microscopy(SEM) and 

transmission electron microscopy (TEM).   

 

2.2.1 Moisture Content 
 

Activated carbon is generally priced on a moisture free basis, although 

occasionally some moisture content is stipulated, e.g., 3, 8, 10%. Unless packaged in 

airtight containers, some activated carbons when stored under humid conditions will 

adsorb considerable moisture over a period of month. They may adsorb as much as 25 

to 30% moisture and still appear dry. For many purposes, this moisture content does 

not affect the adsorptive power, but obviously it dilutes the carbon. Therefore, an 

additional weight of moist carbon is needed to provide the required dry weight. 

 

2.2.2 Ash content 

The ash content of a carbon is the residue that remains when the carbonaceous 

materials is burned off. As activated carbon contain inorganic constituents derived from 

the source materials and from activating agents added during manufacture, the total 

amount of inorganic constituents will vary from one grade of carbon to another. The 

inorganic constituents in a carbon are usually reported as being in the form in which 

they appear when the carbon is ashed.  
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Ash content can lead to increase hydrophilicity and can have catalytic effects, 

causing restructuring process during regeneration of used activated carbon. The 

inorganic material contained in activated carbon is measured as ash content, generally 

in the range between 2 and 10% (Yang, 2003).  

 

To determine the content of ash, a weighed quantity (2 grams of powdered 

carbon, or 10 to 20 grams granular carbon) is placed in a porcelain crucible and heated 

in air in a muffle furnace until the carbon has been completely burned. The temperature 

should be below 600˚C to minimize volatilization of inorganic constituents, and also to 

leave the ash in a suitable condition for further examination.   

  

2.2.3 Surface area 
 

Generally, the larger the specific surface area of the adsorbent, the better its 

adsorption performance will be (Guo and Lua, 2003). The most widely used 

commercial active carbons have a specific surface area of the order of 600- 1200 m2/g 

(Ng et.al, 2002). The pore volume limits the size of the molecules that can be adsorbed 

whilst the surface area limits the amount of material which can be adsorbed, assuming 

a suitable molecular size (Lartley, 1999). The adsorptive capacity of adsorbent is 

related to its internal surface area and pore volume.  

 

The specific surface area (m2/g) of porous carbon is most usually determined 

from gas adsorption measurement using the Brunauer-Emmett-Teller BET theory (Hu 

and Srinivasan, 1999).    The most commonly employed method to characterize these 

structural aspects of the porosity is based on the interpretation of adsorption isotherm 

(e.g., N2 at 77K). Nitrogen at its boiling point of 77K is the recommended adsorptive, 

although argon at 77K also used.    
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2.2.4 Surface Functional Group of Activated Carbon 
 

The selectivity of activated carbons for adsorption is depended upon their 

surface chemistry, as well as their pore size distribution (Radovic,2001). Normally, the 

adsorptive surface of activated carbon is approximately neutral such as that polar and 

ionic species are less readily adsorbed than organic molecules.  

 

For many applications it would be advantageous to be able to tailor the surface 

chemistry of activated carbon in order to improve their effectiveness. The chemical 

composition of the raw material influence the surface chemistry and offer a potentially 

lower cost method for adjusting the properties of activated carbons.  For example, 

activated carbon fiber produced from nitrogen-rich isotropic pitches have been found to 

be very active for the catalytic conversion of SO2 to sulfuric acid (Radovic,2001). 

Various surface functional groups containing oxygen, nitrogen and other heteroatoms 

have been identified on activated carbon. It because activated carbons have a large 

porosity and numerous disordered spaces, this makes heteroatom are readily 

combined on the surface during manufacturing processes (carbonization and 

activation). Heteroatoms are incorporated into the network and are also bound to the 

periphery of the planes. The heteroatoms bound to the surfaces assume the character 

of the functional groups typically found in aromatic compounds, and react in similar 

ways with many reagents. These surface groups play a key role in the surface 

chemistry of activated carbon (Yang ,2003). 

 

There are numerous methods of determining surface functional groups and 

attempts have been made to study the surface groups by spectroscopic methods, for 

examples by infrared(IR). Figure 2.1 presents several IR- active functional groups that 

may be found at the edges of and within graphene layers after the oxidative treatment 

of active carbon. 
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Figure 2.1 IR- active functionalities on carbon surfaces: (a) aromatic c=c stretching;(b) 
and (c) carboxyl-carbonates; (d) carboxylic acid; (e)lactone(4-membered ring);(f) 
lactone (5- membered ring); (g) ether brigde; (h) cyclic ether; (i) cyclic anhydride (5-
membered ring); (j) cyclic anhydride (6-membered ring); (k) quinine; (l) phenol; (m) 
alcohol; and (n) ketene (Radovic, 2001). 
 

  

2.3 Pore structure 
 

The word pore comes from the Greek word, meaning a passage (Marsh, 1989). 

In this sense, a pore is a class of void which is connected to the external surface of a 

solid and will allow the passage of fluids into, out of, or through a material. Marsh’s 

(1989) claim that, in the scientific literature on porous solids the terms ‘open pore’ and 

‘closed pore’ are used, the former a pore which is not so connected. Examples of 

different pore types are shown schematically in Figure 2.2. 
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        Figure 2.2 Different types of porosity in a porous solid (Marsh, 1989) 
                               O-open pores; C- closed pores; t-transport pores; b-blind pores. 

 
 

Transport pores are those pores in which a concentration gradient exists during 

steady state or time-independent fluid flow through the material. Blind pores are 

connected to transport pores by a single opening so that in them concentration 

gradients and hence fluid flow only occur during unsteady state or time independent 

flow. 

 

Differences in pore sizes affect the capacity for molecules of different shapes 

and sizes, and this is one of the criteria by which carbons are selected for a specific 

application. Porosity is classified by IUPAC into three different groups of pore sizes 

(Guo and Lua, 2003): 

 

i. Micropores- width less than 2nm 

ii. Mesopores- width between 2 and 50nm 

iii. Macropores- width greater than 50nm 
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The schematic of internal pores structure in activated carbon was shown in Figure 2.3 

below. 

 

Figure 2.3 The schematic of internal pore structure in activated carbon 

(http://buildingprotection.rdecom.army.mil/images/af_carbon_pore.jpg) 

 

 

 

 

 

 

 

 

Figure 2.4 Cellular micropores in an almond shell carbon (Marsh, 1989). 

 

The shapes of pores in activated carbon vary from slit- shaped cracks to spheroidal 

bubbles. Cracks may follow tortuous paths through the solid and may be connected to 

other pores to form an extensive and irregular network. The shapes of pores can have 

important effects on some properties of carbons and graphite, for example mechanical  
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strength and kinetics reaction. An optical micrograph (Figure 2.4) of pores in an active 

carbon made from almond shells showed the section of the pores.  

The micrograph is approximately elliptical with a mean equivalent circle pore 

diameter of about 15µm, so that they are large macropores. They are relics of the 

cellular structure of the precursor material. This is general characteristic of macropores 

in active carbon derived from lignocellulosic precursors. On the atomic scale, activated 

carbon have a very disordered carbon structure (Figure 2.5), as indicated in the high 

resolution electron micrograph of a cellulose carbon.  Electron microscopical studies 

have led to models for the ultrastructure of activated carbons consisting of a twisted 

network of defective carbon layer planes cross-linked by aliphatic bridging groups.  

 

Micropores are formed in the interlayer spacing with widths in the range 0.34-

0.8nm. It is the micropores in activated carbon which have the greatest influence upon 

gas adsorption, while macropores and mesopores are important in transport of fluids to 

and from the micropores.    

 

 

 

 

 

 

 

 

 

 

Figure 2.5 HREM of a cellulose carbon (Marsh, 1989) 
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Adsorption takes place in micropores and mesopores with macropores acting 

as transport channels. In adsorption from the gas phase, mainly microporous carbon is 

used whereas mesoporous carbon is applied in liquid phase processes (Benaddi et.al, 

2000). Beside their significant contribution to adsorption, mesopores also serve as the 

main transport arteries for this adsorbate (Hu et al., 2001). The mesopores volume lies 

between the limits 0.1 to 0.5 cm3 per gram and mesopores surface areas are in the 

range of 20 to 100 m2 per gram (Hu et al., 2001). In carbon, mesopores can be formed 

by enlargement of micropores, for example by reaction with oxidizing gases as in 

activated carbon (Marsh, 1989).  

 

             
  (a)      (b) 

             
(c) (d) 
 

Figure 2.6 SEM shows different shape of pores depending on types of raw materials. 
                 (a) coal (http://www.air-purifier_home.com/images/2-ccoall.jpg),   
                 (b) wood (http://www. Yahoo.com/images/pore carbon/activated carbon    

wood.jpg) 
                 (c) husk (http://www. Yahoo.com/images/pore carbon/husk.jpg) 
                 (d) coconut (http://www.lunor.ch/english/nbcfilters.html) 
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The distribution of pores in activated carbons can vary significant depending 

upon the raw material. Figure 2.6 shows the different shape of pore with different of 

raw material. The pore size distribution also affects the efficiency and selectivity of 

adsorption. A consideration of the dimensions of some pollutants shows that activated 

carbon can feasibly be used to remove many of the impurities occurring in water 

(Radovic, 2001). The small organic molecules with low solubility have sizes in the 

range 0.6 to 0.8 nm and can be adsorbed in micropores while large compounds such 

as color molecules and humid acids have dimensions around 1.5 to 3.0 nm that will 

favor their adsorption in mesopores. Figure 2.6 show the different of the pore 

distribution in activated carbon from different precursor materials. 

 

 

 

 
Figure 2.7 The pore distribution in activated carbon from different precursor materials              

(Radovic, 2001) 
 

 As in Figure 2.7, the activated carbon produced from different type precursor 

gave the different pore distribution. Activated carbon made from anthracite give a high 
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proportion of micropores while activated carbons from bituminous coal give a broad 

pore size distribution while lignite produces mesoporous carbon.  

 

    A large part of the carbon surface is furnished by the walls of the pores, 

and such surface is accessible only to molecules that are small enough to enter. Table 

2.1 showed the minimum pore diameter for adsorbate. 

 

Table 2.1 Minimum pore diameter for adsorbate (Hassler,1974) 

Adsorbate Minimum Pore, Diameter, Å 

Iodine 10 
Potassium permanganate 10 
Methylene Blue 15 
Erythrosine Red 19 
Molasses 28 
 

 

2.4 The microstructure of activated carbon 
 

Activated carbon, relatively known as amorphous carbon, show a very 

disordered microcrystalline structure in which graphitic microcrystals are randomly 

oriented (Gomez-Serrano et.al., 2005). The term "turbostratic" has been used to 

describe a-graphite like structure with random translation of layer planes along the a-

axis and rotation of layer planes about the c-axis. The interlayer spacing in a 

turbostratic structure is 0.344 nm, which is larger than the spacing in a graphite single 

crystal-, 0.3354 nm. Various microporous models have been proposed based on 

HRTEM studies (McEnaney,2002).  

 

One of the examples of microporous structure for activated carbon is shown in 

figure 2.8. An essential feature of all of the models is a twisted network of carbon layer 

planes, crosslinked by an extended network of aliphatic carbon. The layer planes are 

defective, for example, they may contain vacancies and hetero-elements. The latter are 
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bound to the edges of the layer planes as simple functional groups. e.g., -OH, C-O.      

-C--O -C-. There is a continuum of interlayer spaces ranging from the turbostratic value 

up to sizes that can form micropores.  

Typically, in nongraphitizing carbons heated to -900 ˚C the interlayer spacing 

are separated by small stacks of two or three carbon layer planes. Thus, micropores 

are an inherent feature of the microstructure of activated carbon. 

 

 

 

 

 

 

 

 

 

 
 
                 Figure 2.8  A model for the microstructure of a microporous carbon              

(McEnaney,2002) 
 

 

Another feature of the microstructure is constrictions in the microporous net-

work that control access to much of the micropore space (McEnaney,2002). Also. 

entrances to micropores may be blocked by functional groups attached to the edges 

of layer planes and by carbon deposits formed by thermal cracking of volatiles 

released during carbonization.  

Thus, the micropores in activated carbons are incorporated into an aperture 

cavity network. Constrictions and blockages in the microporous network cause 

activated diffusion effects at low adsorption temperatures when the adsorptive has 

insufficient kinetic energy to penetrate the pore space completely (McEnaney,2002). 
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2.5 Processing of activated carbon  
 

AC manufactured by the pyrolysis of carbonaceous materials of vegetable 

origin, such as wood, coal, peat, fruit stones, and shell or synthetic polymer followed by 

activation of the chars obtained from them (Manocha,2003). The pyrolysis of any 

carbonaceous material in absence of air involves decomposition of organic molecules, 

evolution of tarry and gaseous products, and finally in a solid porous carbon mass.  An 

adsorbent with highly developed porosity and correspondingly large surface area is 

obtained only by activating the carbonized material either by physical or chemical 

activation. The processing of AC basically involves selection of parameters that 

effecting the activated carbon production, carbonization process and types of 

activation. 

 

2.5.1 Factors Affecting Activated Carbon Production 

(1) Raw material 

 Most organic materials rich in carbon that do not fuse upon carbonization can 

be used as raw material for the manufacture of AC (Rodriguez-Reinoso,2002). The 

selection of raw material for preparation of porous carbon, several factors are taken 

into consideration.   

 

The factors are: 

i. High carbon content 

ii. Low in inorganic content (i.e low ash) 

iii. High density and sufficient volatile content 

iv. The stability of supply in the countries 

v. Potential extent of activation 

vi. Inexpensive material  
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vii. Low degradation upon storage 

 Lignocellulosic materials constitute the more commonly used precursor and 

account for around 45% of the total raw materials used for the manufacture of activated 

carbon. Low content in organic materials is important to produce AC with low ash 

content, but relatively high volatile content is also needed for the control of the 

manufacturing process.   

 Raw material such as coconut shell and fruit stones are very popular for 

many types of AC, because their relatively high density, hardness and volatile content 

are ideal for manufacture of hard granular AC. Coconut shells, together with peach and 

olive stones are used commercially for the production of microporous activated 

carbons, useful for a very wide range of applications. Further details about the 

characteristic of raw materials used for making activated carbon are listed in Table 2.2. 

 

Table 2.2 Characteristics of various conventional raw materials used for making AC 
(Manocha, 2003) 

 

Raw materials Carbon 
(%) 

Volatile 
(%) 

Density 
(Kg/m3) Ash (%) Texture of AC

Softwood 40-45 55-60 0.4-0.5 0.3-1.1 Soft, large pore 
volume 

Hardwood 40-42 55-60 0.55-0.8 0.3-1.2 Soft, large pore 
volume 

Lignin 35-40 58-60 0.3-0.4 - Soft, large pore 
volume 

Nut shells 40-45 55-60 1.4 0.5-0.6 
Hard, large 
multi pore 

volume 

Lignite 55-70 25-40 1.0-1.35 5-6 Hard small 
pore volume 

Soft coal 65-80 25-30 1.25-1.50 2.12 

Medium hard, 
medium 

micropore 
volume 

Petroleum coke 70-85 15-20 1.35 0.5-0.7 

Medium 
hard,medium 

micropore 
volume 

Semi hard coal 70-75 1-15 1.45 5-15 Hard large pore 
volume 

Hard coal 85-95 5-10 1.5-2.0 2.15 Hard large 
volume 
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(2) Temperature 

 Temperature, particularly the final activation temperature, affects the 

characteristic of the activated carbon produced. Generally, for commercial activated 

carbon usually conducted at temperature above 800˚C in a mixture of steam and CO2  

(San Miguel, et al.,2003). Recently, the researches have been working out on 

optimizing the final activation temperature to economize the cost of production and 

time. As reported by several authors, activation temperature significantly affects the 

production yield of activated carbon and also the surface area of activated carbon. The 

temperature used as low as 200˚C(Haimour and Emeish,2005) and up high to 1100˚C 

(San Miguel, et al.,2003).  

 

The optimum temperatures have been reported to be between 400˚C to 500˚C 

by most the earlier researchers irrespective of the time of activation and impregnation 

ratio for different raw material (Srinivasakannan and Zailani, 2003). The increasing of 

activation temperature reduces the yield of the activated carbon continuously. 

According to Guo and Lua(2003), this is expected since an increasing amount of 

volatiles is released at increasing temperature from 500˚C to 900˚C. The decreasing 

trend in yield is paralleled by the increasing activation temperature due to the activation 

reaction. These phenomena are also manifested in the decreasing volatile content and 

increasing fixed carbon for increasing activation temperature.  Previously, Haimour and 

Emeish(2005) suggested that the percentage of volatile matter decreased with an 

increased of carbonization temperature and the variation of this parameter was 

maximum between 200˚C and 800˚C due to rapid carbonization occurring in this 

region. It is also unsuitable to prepare activated carbon when carbonization 

temperature was more than 800˚C since the successive decreased in volatile matter is 

minimal above this range. 
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This was accompanied with an increased of fixed carbon and ash content which 

may be attributed to the removal of volatile matter in the material during carbonization 

process. Thus, leaving behind the more stable carbon and ash-forming minerals 

(Haimour and Emeish, 2005).  Another notable feature that showed the effect of 

activation temperature on the activated carbon properties is the BET surface area. As 

the activation temperature increased, the BET surface area also increased (Haimour 

and Emeish, 2005). This may be attributed to the development of new pores as a result 

of volatile matter released and the widening of existing ones as the activation 

temperature become higher.  

 

(3) Activation time 

 Besides activation temperature, the activation time also affects the 

carbonization process and properties of activated carbon. From previous study, the 

activation times normally used were from 1 hour to 3 hour for palm shell and coconut 

shell (Srinivasakannan and Zailani, 2003). As the time increased, the percentage of 

yield decreased gradually and the BET surface area also increased. This result is 

possibly due to the volatilization of organic materials from raw material, which results in 

formation of activated carbon. The extent of decrease in product yield is observed to be 

reducing when excessive activation occurs (Kim et al., 2001). 

 

2.5.2 Carbonization 

 During carbonization, most of the non-carbon elements, hydrogen and 

oxygen are first removed in gaseous form by pyrolytic decomposition of the starting 

materials, and the free atoms of elementary carbon are grouped into organized 

crystallographic formations known as elementary graphite crystallites (Manocha, 2003).  

The original organic substance may be split into fragments which regroup to form the 

thermo-stable aromatic structure existing in the hexagon.  
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