
system Development: what, why, when and How GASE
Tools should support Novice software Engineers

Shahida Sulaiman, Ahamad Tajudin Khader,
Zurinahni Zainol

School of Computer Sciences
Universiti Sains Malaysia

11800 USM, penang

{shahida,tajudin,zuri}@cs. usm. my

ABSTRACT
Novice software engineen particularly computer science students
need to be ftained with theoretical knowledge and practical skillsin system developments. The knowledge ani skills may
encompass the activities involve in all phases of system
development including analysis, design, coding, testing and
maintenance. Computer Aided Software Engineering (CnSp)
tools can be introduced to novices as a supporting .l"..rrt to
understand software engineering aspects and principles, which are
supposed to enhance the activities. Thus, this paper will discuss
problems faced by novice software engineers mainly computer
science students during the process of gaining the theoretical
knowledge and practicing it while developing Joftware systems
for their projects. The analysis of the study will be baseO on four
types of elements, which are characteristics, behavior, belief and
attitude. The findings will highlighr what, why, when and how
CASE tools should support novice software enqineers from
analysis to implementation phases of system levelopment
compared to that ofexpert software engineers.

Keywords
Irt:q development, computer aided software engineering
(CASE) tools, novice software engineers.

I. INTRODUCTION
In order to produce competitive computer science graduates
particularly those specialized in software engineering, higher
learning institutions should have a curriculum that tras the balance
between theories delivered via lectures and practical aspects
trained during lab hours. In addition, computer science students
will gain more exposure ofpractical aspects when they undergo
industrial training for three to five months. For hands-on t aining,
our principals generally attempt to avoid teaching students who
are novice software engineers to know specific technolory but to
equip them with the knowledge of problem solving. For instance
in a database class, we do not want to train them h-ow to model a
database using the computer aided software engineering (CASE)

Pernission to make digiral or hard copies of all or part of this work for
personal or classnoom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and firll citation on the first pag-. To copy
otherwise, or republish, to post on servers or to redistribute to lists.
requires prior specific permission and./or fee.
3_*.Malayliyy Software Engineering Confermce '07, Dx 34, 2007,
Selangor, Malaysia.
Copyright 2007 ISBN 97&962-502623-2

Sarina Sulaiman
Faculty of Computer Science & lnformation Systems

Universiti Teknologi Malaysia
81310 Skudai

Johor

sarina@utm.my

tool such as Rational Rose [3] but how to solve the p,roblems of
modeling a database system using the current modeling notation
such as Unified Modeling Language (IJML).

A number of CASE tools are available that can support the
activities in system developments. They are mostly useful for
large software projects but they might be quite complex to be
used by novices such as computer science students. There is a
challenge to educate and ensure novice software engineers
equipped with both theoretical and practical knowledge in
implementing best practices in system development by using
proper CASE tools.

Nevertheless we believe the introduction of an appropriate CASE
tools to novice software engineers could support their
understanding in theoretical aspects of system development life
cycle (SDLC) that includes the common phases: planning
analysis, design, coding, testing and maintenance.

The work of van Vliet [7] classifies CASE products according to
the parts ofthe lifecycle they support: CASE rools - support one
task (e.g. programming using Visual Basic), CASE workbench -
limited set of activities (e.g. analysis and design using Rational
Rose [3], CASE environment - entire software process (e.g.
Rational Suite [3]).

Section 2 will discuss some related work in CASE toots that
motivates this study, The survey and its questionnaire are
described in Section 3. The analysis and findings ofthe survey are
illustrated and explained in Section 4 and 5 respectively. Finally
we conclude the work and outline some possible future work in
Section 6.

2. RELATED WORK
There are a lot of studies regarding CASE tools from various
perspectives such as in the work of Sulaiman et al. [4] and
Finnigan et al. []. The study conducted by Sulaiman et al.
focuses on the use of CASE tools to support system
documentation. In contrast, the research by Finnigan et al. [t]
investigated factors affecting the acceptance of CASE tools
within New Zealand,. The questionnaire rezults suggested that
there was a poor uptake of CASE within New Z*alarrd. The two
main reasons were high cost and lack of education regarding
CASE tools.

Some studies explicitly focus on the approaches to support novice
software engineers. For instance in the early work of Honda et al.
[8] the novices are supported by a training progam that assist
them in building client-server systems in three phases:
understanding, programming and debugging. The work shows that

256

433

by having a proper training mechanism, novice software

engineers can be trained theoretically and practically to develop

required systems efficiently. This study highlights the other

peispective in supporting novices besides CASE tools. On the

ottr"r tt-O Werth [9] highlights the importance of teaching and

applying software process concepts in the beginning of an

undergraduate project. The work concludes that the

empowerment, shared learning and more stable environment

promote better understanding and learning of software process

improvement among novices. More recent work of Reza and

Grant [0] proposed a method that supports novice software

engineers in selecting the most suitable softwarc architecture for

the system being developed. The method is based on the

universally accepted design principles and tactics to satisfr non-

functional requirements of the concemed system. In this work no

specific CASE tools or workbenches were Proposed to support the

method but the researchers had planned to work on the tool to

recommend architectural styles based on non-functional

reguirements.

As we discussed earlier in the introduction, CASE products of
type environment provide a comprehensive system development

environment for software engineers or computer science students'

Such tools aid them to draw diagrams during analysis and desigrt

stage and then transform the design into coresponding source

codes. Rational Suite [3] is a ubiquitous commercial tool that can

assist both fonrard and reverse engineering so-called roundtrip

engineering. The suite can support the whole phases of SDLC'

However the tool is very expensive causing the academic

institutions or small software departments opt to employ open

source tools available or do not even use such tools at all. In this

case novice software engineers will use drawing tool to desigrt

their software and then transform manually into source codes

using any available Integrated Development Environments (IDEs)

for the software languages they use. For instance they migltt

draw a class diagram using Microsoft Word and then implement

the coding using Borland JBuilder to develop a Java-based

software system.

Besides. commercial tools like Rational Rose [3] are quite

complicated to be used by novice software engineers particularly

students. Such tools are more appropriate to be used by

experienced or expert software engineers if they are fully

equipped with best practices in software engineering in particular

softtra.e desigrr and coding. Users of the tools will be able to

generate diagrams such as use case diagrams for analysis and then

create the respective sequence diagrams during the design stage'

The tool allows generation of source codes' skeleton from the

sequence diagram. However the tool does not check whether the

diagrams in both analysis and design stage are conect or conform

to software engineering discipline or best practices. They do not

provide direct guidance or tutoring tool to suggest to novice

ioftware engineers or computer science students how to analyze,

desigr and write source codes conform to the best practices in

order to produce high quality software as what they learn

theoretically.

Thus, the gaps exist between CASE tools for expert and novice

software engineers have motivated us to conduct this survey to

gauge the expectations of novice software engineers towards

bASg tools in the aspects of characteristic, behavior, attitude and

belief.

3. THE SURVEY
The survey was conducted among 17[Bachelor of Computer

Science (Hons.) final year students at the School of Computer

Sciences, USM, Penang, Malaysia. They had studied the courses

needed in system development such as Programming, Data

Structure, Database Design, System Analysis and Design, and

Software Engineering. They also had undergone industrial

trainings for five months. Hence, such criteria could fulfill the

objectives ofthe survey that are:

(i) To study what are the level of understanding and skills in
software engineering among the respondents.

(ii) To investigate why the required knowledge and skills
required are difficult to be captured by novice software

engineers.
(iii) To determine when is the best time to introduce Computer-

Aided Software Engineering (CASE) tools to novice

software engineers.

(iv) To indicate how CASE tools will be able to support novice

software engineers.

The questionnaire as shown in Tablel was developed using four
elements that are characteristics, behavior, beliefand attitudes [2].
The columns show the value of each code (CD) given to the data'

its description, and question number (Q#).

Table l. Llst of questions

CD Oescriotion -l Q#-
Characteristic
Crl
Cr2
Cr3
Cr4

C15

Cr6

Highest academic level.

Level of software engineering expertise.

Types ofsoftware projects ever involved.
Frequency of projects that follow software
engineering disciplines.
Frequency of CASE tools used in projects

conducted.
Types ofCASE tools ever used'

AI
la
A3
A4

A5

A6

Behavior
Bvl
Bv2
Bv3

Level of understanding in software engineering.

Level of skills in software engineering.

Difficulties in applying theories in project

conducted.

BI
B2
B3

Belief
Bfl

Bf2

How CASE tools will help to understand and

practice software engineering better
When novices think CASE tools should be

introduced

cl

c2

Attitude
Atl Features of CASE tools should be provided to

novices

c3

4. THE ANALYSIS
The analysis will be based on the four categories of data:

characteristic, behavior, beliefs and attitude as in Table l. The

quantitative data is analyzed using Statistical Package Software

System (SPSS) 9.0. The questions without any response were

considered missing.

257

4U

4.1 Characteristic
All the respondents were final year students who had started their
final year projects after undergoing five months industrial
attachments. Two of the students had their Diploma in
Information Technology before joining the BSc (Hons.)
programme (refer Crl in Table l). For Cr2: level of software
engineering expertise, 108 (63.5%) of the students described
themselves as 'novice/beginners' while 62 (36.5%) students stated
'intermediate'. One student did not respond to the question. None
were'expert'.

Regarding the types of projects they ever involved during the
study and industrial attachments are revealed in Table 2. Besides
undergraduate projects for final year students, quite a number of
them have or are involved in industrial project for instance
sgftware to support manufacturing process (35), research project
(32), organizational project for example information system to
support businesses or seryices (31), commercial (g) and others
(2).

Tabfe 3 shows that most of the respondents (126 or 73.7%)
"sometimes" follow the software engineering disciplines they
have leamed. Thirty of them (17.5%o) ..atways" foilow while
fourteen (8.2%o) "never" follow the disciplines liamed. There was
one missing value for this question.

Table 3: Frequency ofprojects following software engineering
disciplines (Cr4)

Table 4 shows the frequency of projects that use CASE tools
(Cr5). Most of them (124 or 72.5Vo) ,,sometimes" used CASE
tools. In addition 35 (20.5%)..always" nd 12 (7Yo)..neveflused
CASE tools.

Table 4: Frequency ofCASE tools used (Cr5)

Jhe 1os1 common type of CASE tool used is IDE (86), followed
by visual modeling (43), and round-trip engineering tool such as
Rational Rose (7). Surprisingly 42 students *er" noisure whether

they ever used CASE tools and I I students stated as never used
any (Refer Table 5).

Table 5: Types of CASE tools used (Cr6)

4.2 Behavior
The behavior element @vl, Bv2, Bv3) of the survey (see Table l)
attempted to identifr the knowledge and skills for software
development among the students. Both theoretical knowledge and
practical skills were rated using Likert scales: l:Very low,2:Low,
3 :Normal, 4:High, 5:Very High.

The null hypothesis that should be rejected is stated as ..There
is

no significance difference of means for each pair of theoretical
knowledge (T) and practical skills (p)" that is l{.: Fr = }rp. We
believe some pairs would reject the null hypothesis because the
students might have good theoretical knowledge but not practical
skills.

The results in Table 6 reflect that there are significant mean
differences (pr * ttp) between the seven pairs of software
engineering body ofknowledge for both theoretical and practical
skills (less than 0.025): software design (0.006), software
constructior/coding (0), software testing (0.006), software
configuration management (0.009), software engineering
management (0.005), software engineering tools and methods
(0.018), and software quality (0.003).

Table 6: Paired-sample test for Bvl and Bv2

258

435

Table 2. Types of prdects (Cr3)

"e"JfigffInurvelef6ij
r .:.;Diffiltnea.

? .'i*-j.

Lower UpE€r
Software
requirementVanalvsis

1.3745E-0t 8.3928-0 l.4lt .158

Software desisn 2.41sE-Oi ,1 39(2.801 .006
Software
construction/codins

9.682E-Ot .230',, 4.83(.000

Software testine 2.4t58-0t .1 39(2.801 .006
Software maintenance -6.5096E-0i .100: .4rl .676
Software
configuration
manasement

2.2558-0, .r521 2.6s',, .009

Software engineerinl
management

3.062E-0t .168 2.853 .005

Software engineerinl
Drocess

-8.0214E-0t 8.021E-oi .001 1.000

Software engineerinl
tools and methods

r.633E-0 .170{ 2.39 .01E

Software quality 4.489E-04 .224 2.e6j .003

Table 7 shows the descriptive statistics of mean values of the

Likert scales (l:Strongly disagree, 2:Disgaree, 3:Normal,

4:Agree, S:Strongly agree) and the respective standard deviations

for Bv3 that is the difficulties in applying theories in the practical

aspects during software development or maintenance. All the

diiTrculties except for 'others' range between the scales of 2

(disagree) to 4 (agree), which are mostly almost to "normal"
scale.

4.3 Attitude
The analysis is illustrated as in Table 8' Likert scales (l;Strongly

disagree, 2:Disgaree, 3:Normal, 4:Agree, 5:Strongly agree) were

ur"d to evaluate the expected features. Most mean values are

between the scales 3 (Normal) to 4 (Agree).

Table 8: Expected features of CASE tools for novlces (Atl)

(32 or t8.7%) stated "l'{ot sure". Five students (2.9%) said that it
would not help.

In addition, most of them (105 or 61.4%o) believed that CASE

tools should be introduced while leaming the theories followed by

45 (26.3%) of them believed that it should be introduced while
doing the practical or software development/maintenance.

Besides, eleven students (6.40/o) suggested CASE tools to be used

after leaming the theories. There were eight students (4.7Yo) who
were not sure.

5. THE FII\DINGS
From the analysis, we managed to gauge the level of
understanding and skills in software engineering among the

respondents. They mostly perceived themselves as beginners

despite of undergoing industrial attachments for five months and

had started their final year projects' This would indirectly answer

why most graduates are not ready for industty.

On the other hand, the types of projects they involved during

industrial attachments were quite diverse. Despite of the theories

learned regarding software engineering disciplines, the students

mostly did not always follow the disciplines learned such as using

proper models, techniques and tools throughout software

development or maintenance phases. The distribution of
frequencies for this question is almost the same for the issue

regarding the use of CASE tools. The type of CASE tool mostly

used was IDE. This is probably because they can write source

codes faster using the selected IDEs both for their programming

assignments or Projects.

The analysis on theoretical versus practical skills shows that there

was a significant gap particularly for software construction/coding
that yields zero value. This implies that even though the novice

software engineers have very high level oftheory understanding

in how to code programs, they have very low practical skills.

Another skill that had significant difference was software quality.

This result was probably due to the aspects of quality that was

highlighted or taught in the related undergraduate courses but the

students might be not very sure how to check the quality of the

software written. Despite of taking the course System Analysis

and Design, the students seemed to be balance in both theories

and practical ofanalysis aspect but not in design. The same trend

was observed in software testing and software engineering

management that were not balance in both theoretical and

practical skills, which were incorporated in the same course of
System Analysis and Design.

The study also managed to investigate why the required

knowledge and skills were difficult to be captured by novice

software engineers like our students. One of the main teasons

included that too many diagrams used in modeling their software
projects. Among other reasons include theories learned are not

enough and diffrcult, CASE tools are complex to use and no

guidance from instructors. However the scale given were around

3.0 to 3.2. which is between normal to agree. This indirectly

reveals that the students were not very sure about the reasons.

The study also managed to derive the expected features ofCASE
tools. Among the highest scale chosen were between 3.756 to

3.857 that is almost towards the scale of agree (4). The famous

features include CASE tools should: explain the use and the link
of diagrams, relate the theories learned, make theories easy to

259

436

4.4 Belief
Regarding the students' belief towards how CASE tools will aid

to understand and practice software engineering better (Bfl)'
majority of them (132 or 77.2%o) stated"'Yes". On the other hand

Table 7: Mean values for Bv3

".'-l'r :'r,flt

Not interested to follow 2.72s1 2.5019

Cannot see the importance 2.63t6 .9387

Too manv diaerams 3.1520 .8333

Cannot see the link of diagrams 2.7368 .9241

Theories leamed are not enough 3.0643 .9831

Theories learned are difficult 3.0585 .9t21

CASE tools are not available 2.6959 .9707

CASE tools are comPlex to use 3.0117 .9330

No euidance from CASE tools 3.0117 r.0232

No suidance from instructors 3.0936 1.0304

Books have lack ofguidance 2.9766 .920r

Books are difficult to understand 2.9t23 1.0563

Others .t287 .6286

;FG .
Det/i{iol-'

Make software engineering (SE)

interesting

3.7041 .7988

Highlight the importance of SE 3.7160 .7574

Explain the use of diagrams 3.8155 .644r

Explain the link of diagrams 3.7988 .7036

Relate the theories learned 3.7857 .7353

Make theories easy to understand 3.857r .7525

Available easily 3.77'M .8243

Easy to use 3.7278 .8573

Provide an on-going guidance 3.7s60 .7777

Guide as instructors 3.6607 .7879

Complement guide from books 3.6450 .7665

Easier to understand compared books J.6627 .8721

Others 3.4615 .5818

understand, available easily and the tools that provide an on_going
guidance. These features reflect how CASE tools will support
novices.

It is also notified that CASE tools should be introduced to novices
while learning the theories, thus students can directly relate the
theories and how the tools will support the activities in their
software projects. This could be possible since the students
mostly believed that CASE tools would help them to understand
and practice software engineering better.

!.1 What, Why, When and How Aspects
From the findings we can summarize what, why, when and how
CASE tools "should" support novice software engineers.

(i) What tools should support: Both theoretical and practical
aspects of software engineering should be supported. By
supporting both elements, we anticipate the gap among
novices in theoretical knowledge and practical skills will bi
reduced.

(ii) Why tools should supporr: The difficulries faced by
novices in applying theories in system development derived
in this study reflect the need of appropriate tools that should
support them. Besides such tools will make them
appreciating the importance of applying the theories leamed
in the practical aspects ofsystem development.

(iii) When tools should support: From the findings in the study,
CASE tools should be introduced while learning the theoriei.
By introducing earlier, students will be abte to grasp the idea
of CASE tools much better and acknowledge how such tools
are useful to support the practical aspects of software
engineering.

(iv) How tools should support: provide the features required by
novices that can balance between theories and practical
aspects of software engineering principles in such tools.
Appropriate features should be incorporated in the tools to
promote a fast leaming curve among novices.

We anticipate the aspects above will provide an insight of the
most suitable and effective CASE tools that support an
encouraging environment to leam and practice software
engineering principles among beginners or novices.

6. CONCLUSION AND FT'TURE WORK
The results of the survey imply that proper-designed CASE tools
that suit novice software engineers' needs, will probably be able
to support the novices to balance both theoretical knowledge and
practical skills in software engineering disciplines. The aspects of
what, why, when and how tools should support novice software
engineers are also discussed.

Our future work will be to realize the aspects of CASE tools
derived in this study in order to produce a CASE tool that can
meet the requirements of novice software engineers.

7. ACKNOWLEDGMENTS
This research is supported by MOSTI e-science Fund, grant
number: 0 I -0 l -05-SF0075 (305/PKOMP/6 I 3 l I 9).

8. REFERENCES
[] Finnigan, D., Kemp, E. A. and Mehandjiska, D. Towards an

Ideal CASE Tools. In Proceedings of International
Conference on Sofrware Methods and Tools (SMT 2000).
IEEE Computer Society Press, USA, 2000, lg9-197.

[2] Kendall, K. E. and Kendall, J. E. System Analysis and
Design * 4^ Edition. Prentice Hdl, USA, 1998.

[3] Rational, IBM Rational Software, http:llwww-
306.ibm.com/software/rationaV, 2007 .

[a] Rigi, Rigi Group Home Page, http://wwwrigi.csc.uvic.cal,
2007.

[5] Sulaiman, S., Idris, N. B. and Sahibuddin, S. production and
Maintenance of System Documentation: Whal Why, When
and How Tools Should Support the Practice. In proceedings
of lh Asia Pacific Software Engineering Conference (ApSiC
2002).IEEE Computer Society Press, USA, 2002,558-567.

[6] Sulaiman, S., Idris, N. 8., Sahibuddin, S. and Sulaiman, S.
Re-documenting, Visualizing and Understanding Software
Systems Using DocLike Viewer. In proceedings of ldh Asia
Pacific Sofiware Engineering Conference. IEEE Computer
Society Press, USA, 2003,154-163.

l7l van Vliet, H. Sofiware Engineering Principles and practice.
John Wiley, England, 2000.

[8] Honda, S., Hiramatsu, A., Yamamatsu, H., Morihisa, H.,
Ikkai, Y. A. Training Program for Building Client Server
Systems and Its Evaluation Using WWW Browser. In
Proceedings of Systems, Man, and Cybernetics. y ol. 3, 1 99g,
28662871.

[9] Werth, L. H. Software Process Improvement for Student
Projects. ln Proceedings of Frontiers in Education
Conference. Vol. l, 1995, }bl.l-Zbl.4.

[0] Reza H., Grant, E. Quality-Oriented Software Architecflre.
ln Proceedings of International Conference on Information
Technologt: Coding and Computing (TTC200\. Vol. l,
2005, r40-14s.

260

437

