
Protocol-Based Interaction

Saleh Alhazbi
Computer Science & Engineering Dept.

Qatar University
salhazbi@qu.edu.qa

in Component-Based Software Systems

Aman Jantan
School Of Computer Science,

Univ er s iti Sains M al ays ia
I 1 800, Penang, Malaysia

aman@cs. usrn.my

Abstract
In Component-based development, assembling components hto systems is the major activity. Therefore, Components must
be integrated through well-defined infrastructure. This paper presents a framiwork foi composing component-based
systems based on message-pattern interaction among the components; it also presents p.oto"ol-basid rulis to govern
messages exchanges.

t. Introduction
Nowadays, component-based paradigm for developing software systems is getting more attention as a methodology for
mlnaging complexity in current software systems with more maintainabilitl', aaaptaUitify and reliability. In compinenr
oriented model, the whole software system is built by integrating pre-built, pt!+"rt"l comionents rather tiran implementing
every part from scratch. These pre-built componerts might be developed locally oi purchased from a ittitO prtty
(commercial o$the-shelf components (COTS)).
While.there are many potential benefits of using component-based model to develop software, it also has some diffrculties;
the principal problem is-ho1 to wire compoaents together. It is no longer suffici"nt that components just be integratable.
They must be interoperable. Interoperability can be defined as the abilif of two or more components to communicate and
coo,perate together to provide system functionalities [1]. Interoperability problems are of two kinds: interface mismatches
and protocol mismatches. An interface describes a componint's characteristics, e.g., its functionality, struchre and
performance. A protocol describes the connections the components use for communicatd; t2].In this paper, we present a Protocol-based Interacfion Component-based framewort piC-S;, which is a fiamework for
composing component-based software systems. In PICS, components comrmrnicate by exchanging messages through soft
system bus. A predefined protocol governs the way ofsending and receiving those mejsages. This includer -ess"g"r-typ"r,formats, and rules that speciSt this style of interaction. The main contributioi of our appro-ach includes the followin!:- "o We sepaf,ate computational part (components) from communication (connectors) to increase reusability and

improve system's maintainability. Moreover, such separation supports dynamic changes in system's
"o*""ti1oityt3l.

o Another level of separation is provided, where components only talk to connectors (first level), which
communicate indirectly through soft bus (second level).

' We provide an xml-based description of component interface that describes not only the services provided by the
component but also those are required from other ones during execution [4].o Our framework could be a step toward standardization for components interaction to create fully plug-and-play
software component like that with hardware parts.

This.paper is organized as follows. Section 2 presenti background of components interactions patterns in general and more
specifically on message-based style. Section 3 presents the proposed framework, PICS. Seciion 4 descibes a prototype
example and an experience to investigate performance overhead with PICS. Section 5 provides related work. Conclusions
and future work direetions are given in section 6.

2.Component Interactions
In component-based software systems, the functionalities are not performed within one component; it is done by interacting,
cooperating between system's components. Usually, a group of components depend on each other to perform a complex
functionality of the system [5]. Dependencies between components can be defined as the relianc" of a

"o-pon"ni
on

other(s) to support a specific functionality or configuration.

23

Assembling a system composed of reusable components can be achieved through different patterns to speci& components

communicationi style. These patterns include consumer-produces, component glue, and message-based through component

bus [6]. From architecture prospective, interaction between components can be achieved either implicitly or via connectors

[7]. bonnectors are architeitural building blocks used to model interactions among components and rules that govern those

intiractions. Unlike components, connectors might not correspond to compilation units in implemented systems [8]. Explicit

connectors also make the bindings between components more loosely coupled; as a result, it increases reusability and

reduces dependencies among components which supports faster and better component evolution [9].

2.1 Message-Based Interaction
In message-based interaction style, components communicate

with each other by sending and receiving messages. The

components of the systems are hooked together to one special

component which represents the bus for routing the messages

between the components (Figure l).
Passing messages between systems' components can be either

synchronous or asynchronous. In synchronous style, the

sender is blocked rmtil the message is received by the

receiver. On the other side, in asynchronous style, the sender Figus I
sends a message and continues regardless of whether the

message has beln received or not [0]. From another view, we can distinguish between two approaches of messaging:

r point-to-point where each message is addressed to a specific componenl

r publish-subscribe where each message might have multiple receivers.

Generally message-oriented pattern of interaction has the following advantages:

l- All dep-endencies are centralized and no explicit deceacies between components which makes component

integration easier [8].
2- It reduces the architecture complexity of the system which means it's more maintainable and adaptable [11,12]
3- Message-based systems are more upgradeable and reconfigurable as new components can be added for satisfying

new requirements without changing the basic system architecture[cheng].

However, such i style needs to define an interaction protocol that not only speciff interface required for cornponents to

interact, but also specifies all rules, formats, and procedures that have been agreed upon between components [13].

3. Proposed Framework
In this section, we present the architecture of PICS and the

proposed protocol that defines the interaction between the

components. Our framework is based on message interaction style

between components. Componatts send/receive messages tluough

a soft bus to provide the functionalities of the system.

Additionally, each component is hooked to the soft bus th:ough a

connector to facilitate message exchanges. Figure 2 depicts PICS

architecture.

3.1 Components
Generally, in component-based development (CBD), component is defined as "a unit of composition with contactually

specified interfacei and explicitly conte*t dependencies only [4]". In our framewo& components are the locus of

"o61p.rtutiott.
They are rervice providers and consumers. They cooperate to provide system's functionalities. Any tow

components "*
ooly communicate if they are syntactically compatible. Compatibility can be described as the ability of two

objects to work properly together ifconnected, i.e. that all exchanged messages and data between them are understood by

ru"h oth"t tl5]. Ia our iamework, each component has an xml description file that describes its interface; this description

includes servicls provided/required by the component and signature of each service. Figure 3 illustrates an

Component Bus

Flgurc 2

24

fomFoytsmf>
lnamelcotnp2 4rhame>
(prouide}>

{seruice}
lnameladd<,hzame?
lrefurnlinf#return>
carg>int(/arg>
{.arg>int<larg>

#serfice:.
<fprovi&>
{requrred}

{serrice}
4name'p geftrro{fume}
{refurru}inf {rlefurrN}

<frequtred>
4fcomponertb

Figurrc 3

example of xml file to describe a component comp2 that provides a service addwhich returns an integer and has two
parameters of fype integer. This component requires a serwce getNo that retums integer value and has no arguments.
During integration phase, this description file is used by a visual tool (Figure 4) to wire the components.lhis java-based
tool extracts that component meta-data from the xml, and according to that checks the syntai compatibility between
components' interfaces. This visual tool helps generate connectors to hook up the components to the soft bus.

3.2 Connectors
Connectors in our framework are not computation parts of the system, they facilitate components interaction. Each
component in PICS communicates with other components in the system through a connector which hooks the component up
to the bus. Each connector represents the gateway between the component and the bus. We have two types of cbnnectors
Out-port and In-port, Out-port connector masks the services provided by the component, therefore thiJ connector has the
same methods as the component behind it. The task of this type is to interpret incoming messages according to the protocol
and call the service from the component. Those connectors have the ability to buffer inioming rn.siug.r wien tne
cornponent is busy. On the other hand, out-port connector represents the gateway for the service required by G component,
its task is to set-up outgoing messages according to the protocol. Besides those tasks, both types adapt incompatible
messages according to information provided by the designer during integration and supported by our tool "Comviring'
(Figure a).

33 Interaction Protocol
Basically, a protocol is a convention or standard that controls or enables the connection, communication, and data transfer
between two computing endpoints. In its simplest form, a protocol can be defined as the rules goveming the syntax,
semantics, and synchronization of communication [6]. The purpose of PICS protocol is to specifiiommurication style,
format, and rules between system components. Componenti communicate each other asking foi services or providing
results. This interaction in PICS is message-based where 1ve assume there is no duplicated or loses messages.

3.3.1 Messages
Our protocol defines three types of messages: Request message @Q), Response message @S), and Failure message (FM).
Every message contains two parts: a message part (such as service required, service arguments), and a control purt 1r*t u.
message ID, message type).
l) Request message (RQ): this message is sent from a component to another asking for one of its provided services. The
,. message is six fuple < Message t5pe, Receiver, Service, no of arguments, arguments, sender>
2)Response Message(RS): this message is sent as a successful response to a previous request, it carries the result back to the

sender of the request. This message format is five tuple <Message typi, Receiver, Result, Sender>, even thought the

25

service might not returns any result, an RS message

should send back to the r€quester component. RS

considered as acknowledgment message of finishing the

process.

3)Failure Message (FM): this message is sent as a

unsuccessful response to a previous request. Mainly this

message is sent back to a component because of runtime
error. This message is four tuple <Message type,

Receiver, Error, Sender>.

3.3.2 Procedure Rules
The procedure rules ofour protocol are described as

follows:
a. During runtime, each component has two states:

busy, or ready.
b. The message interaction in PICS is synchronous,

which means when a component sends a request
message, it enters to busy state waiting for RS or
FM.

c. When a component receives an RM while it is in
busy state, the message is buffered-

d. RM messages are buffered during component is

busy as first-in first-ou(FlFo).
The flowchart in Figure 5 shows how a component responses

to RQ messages.

4.Case Study
In this section we present an example as a prototype of PICS framework
4.1 Implementation
We have prototyped our framework in java language where the main component is a class. Figure 6(a) illustrates the

implementation oiBos concept in java. Figure 6(b) shows a fragment of the code for MessageEvent which is the super class

foiUttr RequestMessage andResponseMessage classes. Each time a component sends a message, it notifies all components

there is a mestage on the bus, then each compotent check if it's the destination for that message according to rec-id.

public class Bus {
private ArrayList components :new Arraylist) ;
public synchronized void connectComponent(Reciever I)
{ eomponents.add(l); }
public synchronized void disConnectComponent(Reciever I)
{ components.remove(I): }

ptblic syrchronized void sendMessageEvent(MessageEvent m) {
Iterator listeners : components. iteratorQ ;

whil e (I isteners. has Next Q)
((Reciever) listeners.nextQ).messageRecieved(m);]{

,J
)

Figure 6

public class MessageEvent extends Eventobiect {
public MessageEvent(Object arg|,int rec-id,int
send-id) {

super(argO);
receiverld:rec-id;
senderld:send-id:

I

(b)(a)

Send RS orFM back to

Fignre 5

26

4.2 Performance Issues
As an example application, we have built a simple application that generates random numbers and use binary search
algorithm to look for a specific element in that array. our example composed of three components: Gen_Com to generate an
array of random integers, Sort-Com to sort the array, and Search-Com to search the sorted array. To investigatJ if there is
any overhead performance which may result of using message-based interaction, we built two versions of this application,
one using procedure-call as usual in object-oriented mode, and the second version is built based on our framework. In order
Jo get an average time, we run an experiment 50,000 times to generate 10,000 integers each time, and calculate the average
time. To keep the time for search algorithm fixed, we always search for the first number in the array. This experiment was
nrn on 3 GHz P4 system with Java version 1.5.0-05. The result shows that there is no difference between the-trro versions'
performance.

6. Related Work
Message-based comrnunication in component-based system offers clear separation and more loosely coupling comparing to
other interaction styles such as procedure call, or shared memory. In this section we compare our approach witn so-e
relevant approaches. Simitar to our approach, C2 arehitecture itZ, tS1 uses also message-based interaction between
components. On the contrary to ours, C2 uses connectors tbemselves to facilitate components communication. Therefore,
our framework has one more level of separation which decouples rules of interaction from the bus that is only represents the
channel to deliver the message. Moreover, in our framework, components send and receive messages synchronously which
is simpler style for system designers and integrators as they do not need to worry about deadlockcase. [n our fiamework,
deadlock case is easy to be found out like the infinite recursive in procedure call style.
Regar{iry the description of component interface, while the Interface Definition Languages (IDLs) mostly describe only the
provided services of a component, our xml-based description here provides description for both provided and required
services which is necessary for auto-integration of the components supported by our tool ,'ComWirin!'.

7. Conclusion and Future Work
In this paper, we present a framework GiCS) for component integration based on pre-defined protocol that governs
mjssage exchange among system's components. The concept presented here through plCS is preliminary step toward firlly
pluggable components for building component-based systems with more maintainability. Moreover this framework supports
run-time updating as components can be plug in and out easily to the bus that routs -"ssager among the component.. Fut 11"
work is needed to enhance our tool "ComWiring" to ease integration of components. Regarding p"tfot-*"i issues, maybe
more cases with more components is needed to investigate the impact of the number of components on system performance.
Another needed direction for future work is to extend PICS to support transfer state between components during run-time
updating.

Reference:
[] Wegner, P., Interoperablity , ACM Computing Surveys 21(l):2g5-2g7.
[2]Vernon M', Lazowska E., and Personic S, editors , R &D for the NII: Technical Challenges. lnteruliversity

Communications Counicl, Inc. (EDICOM), 1994.
[3] Smeda A., Khammaci T., and Oussalah M., Improving Component-Based Software Architecture by Separating

Computations from Interactions, in proceeding of first Internationl Workshop on Coordination and AOuptution
-

Techniques for Softwar Entities (WCAT04), June 2004, Morway.
[4] Olafsson A., and Bryan D., On the need for "required interfaces" of components. In Special Issues in Object-Oriented

Programming. workshop Reader of ECoop'96, pages ls9-165. Dpunkt Verlag, 1996
[5] Vieira M' , et al. "Describing Dependency at Component Access Foint", Proc. of Work-shop on Component-based

Software Engineering (at ICSE 2001), Toronto, Canada, May 2001.
[6] P.Eskelin, "Component Interaction Pattems", on line Proc,6fr Annual Conference on the pattern lang',agsr a1

programs@lop99) 1999.

[7] Balek, D., and Plasil, F. Software connectors and their role in component deployment. In Proceedings of the IFIp TC6 /
wG6.1 Third International Working Conference on New Developments in DiJtributed Applications aid Interoperable
Systems (2001), Kluwer, 8.V., pp. 69{84}.

[8] Nenad Medvidovic and Richard N. Taylor. A framework for ctassifting and comparing architecture description

!g-qqej.. In M. Jazayeri and H. Schauer, editors, Proceedings of the Siith European Software Engineering Conference
(ESECiFSE 97), pages 60-76. Springer-Verlag, t997.

)

27

[9] Tansalarak N. and Claypool K., CoCo: Composition Model and Composition Model Implementation In the 7th

International Conference on Enterprise Information Systems. (May 24'28,2005)

[10] Shangzhu W*g, George S. Avrunin, and Lori A. Clarke. In Ian Gorton, George T. Heineman, Ivica Cmkovic, Heinz

W. Schmidt, Judirh A. Stafford, Clemens A. Szyperski, and Kurt Wallnau, editors, Architectural building blocks

for plug-and-play system design, Proceedings of the 9th International SIGSOFT Symposium on Component-Based

Softwari fngneering (CBSE 2006),number 4063 in LNCS, pages 98-l13, Viisteris, Sweden, June 2fi)6.

[1] j Ahazbi, S., M"usoring the complexity of component-based system architecture. in: heeedings. 2004 International
-

Conference on Information and Communication Technologies: From Theory to Applications, 2004., 593-594

[12] Cheng J., "Soft System Bus as a Future Software Technology," Proc. 8th International Symposium on Future Software

Techaology, Xi'an, China, SEA, October 2004.

[13] Holzmann G. , Desigrr and Validation of Computer Protocols, Prentice Hall in Novernber 1990

If+j C.S"yp".ski, Component Software: Beyond Object-Oriented Programming, Addison-Wesley,1999

[f Sj Vutt""itto A, Herandez J, and Troya J., Component Interoperability, Tech. Rep. ITI-2@0-37, Dept. de lenguajes

Ciencias de la computaci6n, University of M6laga, July 2000.

I I 6] http//en.wikipedia.org
[tZj fuy1gr R. , Midvidovic N., Anderson K., E. J. Whitehea4 Jr., J. E. Robbins, K. A. Nies, P. Oreizy, and D.L' Dubrow.-

A Component- and Message-Based Architectural Style for GUI Software. IEEE Transactions on Software Engineering,

vol. 22,no. 6, pages 390-4A6 (June 1996)

[18] MedvidoviCN. , Oreizy P., and Taylor R., "Reuse of O$the-Shelf Components in C2-Style Architectures." In-
Proceedings of the 1997 Symposium oa Software Reusability (SSR'97), pages 190-198, Boston, MA, May 17-19,1997

6

28

