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PENYINGKIRAN SEBATIAN ORGANIK MERUAP (VOC) DARI UDARA 
MENGGUNAKAN SISTEM PENJERAPAN-PEMBAKARAN BERMANGKIN 

BERASASKAN ZEOLIT 
 

ABSTRAK 
 
 

Pembangunan kaedah termaju dalam proses penyingkiran sebatian organic meruap 

(VOC) yang terdiri daripada unit penjerapan diikuti oleh unit pembakaran bermangkin 

telah dicadangkan dalam kajian ini. Dua zeolit hindar air, bernama HY (SiO2/Al2O3=80) 

dan ZSM-5 (SiO2/Al2O3=240) dipilih sebagai bahan penjerap. Logam perak telah 

dimuatkan ke atas bahan penjerap ini untuk digunakan sebagai mangkin bagi 

pembakaran bermangkin VOC.  Zeolit bermuatan perak telah diuji dengan butil asetat 

(BA) sebagai model sebatian organic meruap bagi system penjerapan dan 

pembakaran bermangkin. 

 

Kaedah penukaran ion (IE) dan impregnasi (IM) telah digunakan untuk 

menyediakan zeolit bermuatan perak. Zeolit bermuatan perak yang disediakan dengan 

kaedah penyediaan impregnasi menunjukkan prestasi yang tidak memuaskan dalam 

proses penjerapan. Keputusan penjerapan menunjukkan muatan-jerap VOC yang 

lemah dan masa bulus yang awal. AgY(IE) menunjukkan muatan-jerap VOC yang 

paling tinggi dan bahan penjerap ini memberikan tempoh khidmat yang paling lama jika 

dibandingkan dengan AgZSM-5(IE). Kehadiran wap air di dalam suapan merendahkan 

muatan-jerap VOC pada AgY(IE) disebabkan oleh persaingan penjerapan dengan wap 

air pada tapak aktif. Namun, muatan-jerap VOC pada AgZSM-5(IE) tidak dipengaruhi 

oleh kehadiran wap air. Rekabentuk komposit berpusat (CCD) telah digunakan untuk 

mengkaji kesan tiga parameter pengendalian yang penting (kepekatan VOC suapan, 

kelembapan nisbi, halaju ruang jaman gas (GHSV)) bagi proses penjerapan. Kaedah 
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sambutan permukaan (RSM) digunakan untuk mendapatkan keadaan pengendalian 

yang optimum bagi proses penjerapan.    

 

AgY(IE) dan AgZSM-5(IE) diuji untuk mendapatkan data muatan-jerap pada 

suhu yang berlainan. Satu model matematik telah digunakan untuk menilai sifat 

termodinamik bersama dengan garis sesuhu Langmuir untuk penjerapan butil asetat ke 

atas AgY(IE) dan AgZSM-5(IE). Parameter-parameter yang diperoleh daripada model 

dinilai dan digunakan untuk meramal penjerapan garis sesuhu dan lengkung bulus di 

bawah pelbagai keadaan yang berlainan.   

 

Prestasi mangkin zeolit bermuatan perak dalam pembakaran VOC telah dikaji 

dengan tujuan untuk membangunkan mangkin yang aktif, berkememilihan terhadap 

hasil pembakaran lengkap serta stabil. Aktiviti mangkin dikaji dengan menggunakan 

reaktor yang dikendalikan pada GHSV = 15,000 h-1, suhu tindakbalas 150o hingga 

500oC, dengan kepekatan VOC suapan pada 1000ppm. AgY(IE) dan AgZSM-5(IE) 

menunjukkan prestasi yang tinggi dalam pembakaran butil asetat di mana penukaran 

menyeluruh butil asetat dicapai pada suhu di bawah 400oC. Rekabentuk komposit 

berpusat (CCD) telah digunakan untuk mengkaji kesan tiga parameter pengendalian 

yang penting (kepekatan VOC, suhu tindakbalas, GHSV) bagi proses pembakaran 

bermangkin. Kaedah sambutan permukaan (RSM) digunakan untuk mendapatkan 

keadaan pengendalian yang optimum bagi proses ini.    

  

Data yang diperoleh daripada pembakaran butil asetat telah dipadankan 

dengan satu model mengikut persamaan hukum kuasa. Tertib tindakbalas, n dan m 

telah dinilai dengan mengubah tekanan separa VOC di antara 0.004 hingga 0.018 atm 

dan tekanan separa oksigen di antara 0.05 hingga 0.20 atm. Tenaga pengaktifan 

pembakaran ialah 26.30 kJ/mol dan 20.65 kJ/mol bagi AgY(IE) dan AgZSM-5(IE) 

masing-masing.      
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REMOVAL OF VOLATILE ORGANIC COMPOUND (VOC) FROM AIR USING 
ZEOLITE BASED ADSORPTION-CATALYTIC COMBUSTION SYSTEM 

 
ABSTRACT 

 
 

The development of an advanced VOC destruction process consists of an adsorption 

unit followed by a catalytic combustion system has been proposed in the current study. 

The two hydrophobic zeolites, namely HY (SiO2/Al2O3=80) and ZSM-5 (SiO2/Al2O3=240) 

were chosen as adsorbents. Silver metal was loaded on these adsorbents to use as a 

catalyst for VOC combustion. The silver-loaded zeolites were tested using butyl acetate 

(BA) as a model VOC compound for the adsorption and catalytic combustion system. 

 

The ion exchange (IE) and incipient wetness impregnation (IM) methods were 

used to prepare silver-loaded zeolites. The silver-loaded zeolites by impregnation 

method did not perform well in the adsorption process. The results showed poor VOC 

uptake capacity and early breakthrough time. AgY(IE) showed the highest VOC uptake 

capacity and the adsorbent service time was much longer compared to AgZSM-5(IE). 

The presence of water vapour in the feed suppressed the VOC adsorption capacity of 

AgY(IE) due to the competitive adsorption of water vapour on the active sites. However, 

VOC adsorption capacity of AgZSM-5(IE) was not affected in the presence of water 

vapour.  A central composite design (CCD) was used to study the effect of three 

important operating parameters (VOC concentration, relative humidity, GHSV) for 

adsorption process. The response surface methodology (RSM) was used to obtain the 

optimum operating conditions for the adsorption process. 

 

AgY(IE) and AgZSM-5(IE) were tested for VOC uptake data at different 

temperatures. A mathematical model was used to evaluate the thermodynamic 
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behaviour in conjunction with the Langmuir isotherm for the adsorption of butyl acetate 

over AgY(IE) and AgZSM-5(IE). The model parameters were evaluated and used to 

predict the adsorption isotherms and breakthrough curves under various process 

conditions.  

 

The performance of silver loaded zeolite catalysts in combustion of VOC was 

studied with the objective of developing a catalyst with superior activity, selectivity 

towards deep oxidation product and stability. The catalyst activity was measured in the 

reactor operated at GHSV = 15,000 h-1, reaction temperature between 150oC - 500oC 

and VOC inlet concentration of 1000ppm. AgY(IE) and AgZSM-5(IE) exhibited high 

activity in the combustion of butyl acetate where total conversion of butyl acetate was 

achieved at temperature below 400oC. A central composite design was used to study 

the effect of three important operating parameters (VOC concentration, reaction 

temperature, GHSV) for combustion process. The response surface methodology was 

used to obtain the optimum operating conditions for the combustion process. 

 

The combustion data of butyl acetate were fitted to a simple model following 

power-law rate equation. The reaction orders, n and m were evaluated by varying the 

VOC partial pressure between 0.004 to 0.018 atm and partial pressure of oxygen 

between 0.05 to 0.20 atm. The activation energies were 26.30 kJ/mol and 20.65 kJ/mol 

for AgY(IE) and AgZSM-5(IE), respectively.   
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.0 ENVIRONMENTAL CATALYSIS 
 

Environmental catalysis has been defined as the development of catalysts to 

either decompose environmentally unacceptable compounds or provide alternative 

catalytic synthesis of important compounds without the formation of environmentally 

unacceptable by-products. It is not enough to simply make an active material but it is 

also necessary to make it in a form that is thermally and mechanically stable enough to 

survive in a reactor for the time it is used. Catalyst lifetimes could vary from few 

seconds to years, depending upon the process. Catalysts are determined by number of 

factors including reaction rate, selectivity and its usage in the type of process or reactor. 

The catalyst is normally preferred to have a large surface area in order to maximise the 

number of sites. All the sites on the surface might not be active – some merely act as 

an adsorbent site not the centres of reactivity. The reactive sites are known as active 

sites. The physical shape and size of the catalyst is governed by its application. 

Powder catalysts are not prepared because of high pressure drop in the reactor. The 

catalyst shape is selected in order to maximise the catalyst utilization whilst reducing 

the pressure needed to move the gas through the reactor bed. The catalysts play an 

important role in environmental pollution control, especially in the removal of organic 

pollutants from waste water as well as air. 

 

1.1 VOLATILE ORGANIC COMPOUNDS (VOCS) 
 
1.1.1 Definition 
 

One of the most common terms used in the solvent industry is volatile organic 

compound and is abbreviated as VOC. VOCs are a large group of organic chemicals 

that readily evaporate at room temperature. The original definition of VOC made 

reference to the vapour pressure of the any compounds which is greater than 133.3 Pa 
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at room temperature as a determinant of volatility. However effective as of December 

29, 2004, the definition relies solely on any compounds of carbon, excluding carbon 

monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates and 

ammonium carbonate, which participates in atmospheric photochemical reactions (The 

United State Environmental Protection Agency, U.S. EPA, Definition of VOC: Code of 

Federal Regulations: Title 40, Part 51 Section 51.100).  

 

Volatile organic chemicals (VOCs) are emitted as gases from certain solids or 

liquids which contain organic compounds. In many household products, VOCs are one 

of the common ingredients. Paints, varnishes, and wax all contain organic solvents, as 

do many cleaning, disinfecting, cosmetic and degreasing products. Fuels are made up 

of organic chemicals. All of these products can release organic compounds while using 

them, and, to some degree, when they are stored. When these organic compounds 

released to atmosphere, they become a key contributor of smog formation. 

 

1.1.2 Health and Environmental Impacts 
 
Emissions of VOCs do not necessarily give rise to health or environmental 

concern. Ground-level ozone, the primary component of smog is formed when oxides 

of nitrogen (NOx) and VOCs react in the presence of sunlight. Ozone is not usually 

emitted directly into the air, but at ground level, it is created by a chemical reaction 

between NOx and VOC in the presence of sunlight. Motor vehicle exhaust and 

industrial emissions, gasoline vapours, and chemical solvents as well as natural 

sources emit NOx and VOC that help to form ozone. Sunlight and hot weather cause 

ground-level ozone to form in harmful concentrations in the air. 

 

Smog is sometimes called photochemical smog or photochemical air pollution. 

One of smog's key ingredients is formed when VOCs react with ozone in the presence 

of sunlight. A simple chemical reaction for this process is represented as:  
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Ozone + VOC + light  oxidized organic compounds   (1.1)  

The oxidized organic compounds are then mixed with many other compounds and 

small particles in the air to create photochemical smog. 

 

Humans feel the effects of smog most often by experiencing respiratory trouble. 

Although the exact degree of health effects of smog is unknown, lung function and 

breathing can certainly be affected. Smog is also hazardous because it decreases 

visibility. 

 

1.1.3 Industrial VOC Emission 
 

Emissions of VOCs have been associated with various atmospheric effects. 

There are 80% of the emissions of volatile organic compounds (VOCs) come from 

natural sources (e.g. biogenic sources, vegetation, biomass, volcanoes eruption), with 

only 20% being man-made (for instance, domestic and industrial activities, road, 

marine and air transport). Before man-made pollution become prevalent, some natural 

phenomena can lead to air pollution as well. Large natural forest fire and volcanic 

eruptions are sources of VOC with possible large scale adverse impacts. However, 

those natural air pollutants phenomena tend to be localized in space and time that is 

generally uncontrollable (Seigneur, 2005).  

 

Man-made air pollution, on the other hand has become widespread and 

controllable. Consequently, the study of air pollution has become an important scientific 

discipline that involves sophisticated experimental techniques and advanced modelling 

tools. Figure 1.1 shows man-made VOC emissions by four source categories: 1) “fuel 

combustion” which includes emissions from power plants, industrial, commercial and 

institutional sources as well as residential heaters and boilers, 2) “industrial and other 

processes” which includes large point sources such as refineries and smelters as well 

as smaller sources such as drycleaners and service stations, 3) “on road vehicles” 
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which includes cars, trucks, buses, and motorcycles and 4) “non-road vehicles and 

engines” such as farm and construction equipment, lawnmowers, chainsaws, 

boats/ships, snowmobiles, aircraft. 

 

 
 

Figure 1.1: VOC emissions in USA during 1990 and 1996 to 2002 (The United State 
National Emissions Inventory (NEI)) 

 

1.2 VOC CONTROL TECHNOLOGIES 
 

The main selection criteria for VOC abatement technologies are costs, VOC 

inlet concentration, gas flow rate and the required control level. In addition, pre-

treatment of the vent gas may require some control device and could affect project cost. 

Pre-treatment refers to the methods and practices used to condition a VOC stream 

prior to its entry into an abatement unit. Table 1.1 summarizes the typical pre-treatment 

considerations for selected VOC abatement technologies. Particulate removal is an 

important pre-treatment consideration for thermal and catalytic combustion, adsorption, 

biofiltration and membrane systems. Particulates can clog catalyst beds or membranes 

resulting in reduction of VOC removal capacity of the equipment.  
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Table 1.1: Typical pre-treatment considerations (Moretti, 2001) 

VOC abatement technology Typical pre-treatment considerations 

Thermal oxidation  Dilution 
 Preheating 

Catalytic combustion  Dilution 
 Particulate removal 
 Preheating 

Adsorption  Cooling 
 Dehumidification 
 Dilution 
 Particulate removal 

Condensation  Dehumidification 
Flaring  Liquid knockout 
Biofiltration   Humidification 

 Cooling 
 Particulate removal 

Membrane separation  Particulate removal 
 

The cooling of a VOC gas stream is an important pre-treatment consideration 

for adsorption and biofiltration systems. For adsorption system, the pre-cooler may be 

needed to saturate the gas stream or to reduce the inlet air temperature to acceptable 

levels to avoid solvent evaporation or reduce the adsorption rate. High temperature in 

biofiltration beds may destroy the micro organisms that convert VOC into carbon 

dioxide, water and mineral salts. 

   

Dehumidification is an important pre-treatment consideration for adsorption and 

condensation systems, while humidification is important for biofiltration system. Water 

vapour competes with VOC for adsorption sites; hence reducing the water vapour in 

the adsorption inlet stream will subsequently increase the adsorption capacity for VOC. 

In condenser, water vapour can condense in the condenser tubes, thereby reducing 

the heat transfer capacity of the system (Dwivedi et al., 2004). On the other hand, 

biofiltration system requires moisture to prevent the filter bed from drying and cracking, 

which would permit escape of unreacted VOC to the atmosphere. 
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Gas flow rate and VOC concentration are the two most important design 

parameters for VOC control devices and selecting an appropriate VOC control device. 

Table 1.2 presents an applicability data range among the most popular technology 

applied in VOC abatement. The table shows the range of flow rate and concentration in 

which the device operate most efficiently.  

 

Table 1.2: Applicability of VOC abatement systems (Moretti, 2001) 

VOC abatement 
technology 

Waste gas flow rate 
(scfm) 

VOC concentration 
(ppm) 

Thermal oxidation  0 – 10,000  
(thermal afterburner) 

 250 – 100,000 
(recuperative) 

 2,000 – 500,000 
(regenerative) 

 60% of LEL  
(thermal afterburner) 

 25% of LEL 
(recuperative) 

 10% of LEL 
(regenerative) 

Catalytic combustion  0 – 75,000  25% of LEL 
Adsorption  No practical limit  100 – 5,000 
Condensation  < 3,000  > 1,000 
Flaring  No practical limit  No practical limit 
Biofiltration   > 1,000  < 1,000 
Membrane separation  < 500  > 5,000 

Note: LEL: lower explosive limit 

 

As shown in the table, thermal oxidation and catalytic combustion can be used 

over a fairly wide range of VOC concentrations, provided adequate safety precautions 

are implemented for VOC loading greater than 25 percent of the lower explosive limit 

(LEL).  

  

Adsorption systems operate best at medium concentration range and flow rate. 

VOC concentration as low as 20 ppm are treatable with adsorption but concentration 

above 10,000 ppm may lead to excessive rising of bed temperature. The flow rate must 

be high enough to allow time for both diffusion and adsorption. At lower flow rates, the 

required bed volume is large and its cost becomes prohibitive. Flow rates between 

1,000 to 50,000 scfm are ideal for adsorption system. 
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 Condenser can process waste gas stream or high VOC concentration but 

relatively low flow rate. Flow rate above than 3,000 scfm may require significantly large 

heat transfer areas. Flaring can be used to control almost any of the VOC stream and 

can handle fluctuation in VOC concentration, flow rate, heat content and inert gas 

content. Biofiltration is cost-competitive for flow rates above than 1,000 scfm and VOC 

concentration below 300 to 500 ppm. Membrane separation systems are suited for low 

flow rate and high concentration of VOC in the waste gas streams. 

 

1.3 COMBINED ADSORPTION-CATALYTIC COMBUSTION OF VOC 
 

The choice of technique for VOC abatement system depends on the type and 

concentration of VOC. Adsorption of VOCs is normally carried out on activated carbon 

or zeolites. Activated carbon is cheaper but zeolites have the advantages of being non-

flammable, thermally stable and hydrophobic. Therefore, zeolites are preferred for the 

treatment of waste gases containing large amount of water and for the processes with 

repeated adsorbent regeneration by heating (Thomas and Crittenden, 1998).  

 

Catalytic combustion is the method of choice if the concentration of VOC allows 

performing the process adiabatically. For low VOC concentrations, a two-step 

adsorption-combustion process is suitable. In this process the VOC are first 

concentrated by adsorption at low temperature until the breakthrough occurs. The 

adsorbent is regenerated by desorption by passing a heated inert gas through the 

catalyst bed. The desorbed concentrated VOC is then passed through a catalytic 

combustion chamber and converted to harmless compounds in the presence of 

suitable catalyst.  
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1.4 PROBLEM STATEMENT 
 

1.4.1 Model VOC 
 

Butyl acetate is produced commercially by esterification of acetic acid with butyl 

alcohol. It is generally used as a solvent for a variety of coating resins including 

epoxies, urethanes, cellulosics, acrylics and vinyls. The major applications for these 

surface coatings are wood furniture and fixtures, containers and closures, automotive 

refinishing and maintenance, and marine coatings. Figure 1.2 shows the usage of butyl 

acetate as solvent in various industries. During the 1990s, n-butyl acetate was 

substituted for solvents such as toluene, xylene, MIBK and MEK, which are classified 

as hazardous air pollutants (HAPs). Although this substitution has largely completed, 

consumption of butyl acetate is expected to continue growing modestly in concern with 

the various coating applications.  

 

Lacquer solvent
86%

Process & 
extraction 

solvent
11%

Adhesive & 
sealant

3%

 

Figure 1.2: Butyl acetate usage in industry (American Chemistry Council: Market 
Intelligence for the Chemical Process Industry) 

 

In future market, with a modest growth of 1.7 percent annually through year 

2007, BA demand is still potential and continued if there is no development of coatings 

technologies that use little solvent or zero solvent. Table 1.3 tabulates the historical 
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data of butyl acetate demand from year 1998 to 2003. With the increase in global 

demand in painting and coating industries, butyl acetate was chosen as the VOC 

model compound for the present study.    

 

Table 1.3: The historical data of butyl acetate world demand (American Chemistry 
Council: Market Intelligence for the Chemical Process Industry) 

 

Year Demand List Price 
(Millions of Pounds) (US $ per pound) 

1998 235 0.45 
1999 230 0.42 
2000 225 0.51 
2001 205 0.51 
2002 195 0.49 
2003 210 0.54 

 

1.4.2 Selection of Adsorbent/catalyst 
 

Selection of an effective and economical catalyst component is as important as 

the selection of good adsorbent material to embody the best dual functional 

adsorbent/catalyst media. The adsorbent acts as a separation medium for the process. 

The primary requirements of an adsorbent are: 

⇒ Selectivity: The preferential adsorption of one or more component based 

upon equilibrium and/or kinetic mechanisms. 

⇒ Capacity: The maximum possible loading of adsorbate on the adsorbent. 

⇒ Stability: Chemical and physical stability of the adsorbent under the 

operating conditions. 

 

Activated carbons are generally used in many adsorption processes due to their 

higher adsorption capacity and lower price. However, their regeneration is very difficult 

because of their thermal and chemical instabilities that may cause significant safety 

problem (Baek et al., 2004). Recently, the use of hydrophobic zeolites is attracting 

more and more attention due to their resistance to humidity and their non-flammability. 
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The use of hydrophobic zeolite for the dual function adsorbent/catalyst medium is 

justified in two aspects. One is safety concern for the operation of catalytic oxidation at 

high temperature and secondly is high adsorption affinity for VOC in humid condition 

(Baek et al., 2004; Thomas and Crittenden, 1998). 

 

Zeolites can be used as supports or even as catalyst for combustion of VOC. In 

order to minimize the energy consumption and to cut down the operating cost, it is 

required that the reaction temperature is as low as possible, and the catalyst can be 

recycled and regenerated many times. However, at low temperature, water vapor 

generated from VOC combustion can be easily condensed in the micro/mesopores of 

metal oxide support, drastically reducing the catalyst activity. Hence, the advantage of 

using a hydrophobic support is that moisture, both from the atmosphere and formed as 

a reaction product, will not adsorb on the catalyst. It is therefore, of great interest to use 

the hydrophobic catalyst having high VOC adsorption capacity and oxidation activity.  

 

There have been a number of reports and patents on catalytic processes for the 

oxidation of VOC (Everaert and Baeyens, 2004; Wu and Chang, 1998) mostly related 

to the development of catalysts based on noble metals or transition metal oxides (Law 

et al., 2003). Noble metal-based catalysts such as supported platinum and palladium 

are known to be active catalysts for complete combustion of VOC. Though these 

catalysts are very active, they are not favoured due to very high cost and susceptibility 

to poisoning (Zuhairi, 2004). As a result, extensive work has been performed to 

establish the replacement for these metals especially from transition metals. Silver has 

been well-known for its epoxidation activity and the reaction most often studied on 

silver was ethylene oxidation. Silver is the only metal that selectively catalyzes the 

epoxidation to ethylene oxide (Cordi and Falconer, 1997). There are some reports on 

deep oxidation of NO, CO and methane using supported silver catalyst 

(Müslehiddinoglu and Vannice, 2003; Müslehiddinoglu and Vannice, 2004). However, 
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there are very few reports on their application to the adsorption and complete 

combustion of VOC. Hence, silver catalyst with zeolite as support has gained much 

interest on dual functional adsorbent/catalyst media for adsorption and complete 

combustion of VOC. 

 

1.5 OBJECTIVES 
 
1.5.1 Previous Related Work at USM 
 

Catalytic combustion of VOC studies at USM commenced under the 

supervision of Professor Subhash Bhatia in 2000. Zuhairi and Bhatia jointly coordinated 

a theoretical and experimental programme for the study of the catalytic combustion of 

single and binary VOC systems in a packed bed reactor. The performance of zeolite 

catalysts in the combustion of VOC was studied with the objective of developing a 

catalyst with superior activity, selectivity towards deep combustion products and 

catalyst stability. In his studies, the catalyst support is limited to three types of zeolite 

which were beta (Si/Al=25 and 50), mordenite (Si/Al=40 and 90) and ZSM-5 (Si/Al=90 

and 240). The selection of zeolite catalyst was carried out through metal exchange or 

impregnation from the active metal species among the elements in the first and second 

row of transition metal series. Chromium was loaded as first metal by ion exchange 

method over zeolite support and followed by bimetallic impregnation method with 

different metal solutions such as cadmium, cobalt, copper, iron, lanthanum, 

molybdenum and zinc as second metal.  

 

Results showed that chromium exchanged ZSM-5 with Si/Al=240 (Cr-ZSM-

5(240)) exhibited high activity and stability among the transition metal catalyst studied. 

Bimetallic catalyst containing 1.0 wt. % chromium and 0.5 wt. % copper impregnated 

over H-ZSM-5(240) gave higher carbon dioxide yield and also lower coke. The 

experimental data for combustion of single VOC over Cr-ZSM-5 (240) were fitted with 

Mars-van Krevelen model. The model was successfully extended to humid feed and 
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binary mixture of ethyl acetate and benzene by considering competitive adsorption. 

The results and findings were useful in the extended work for current project. 

 

1.5.2 Present Research 
 

The principle objective of this research work is to carry out kinetics of VOC 

combustion and transient adsorption studies on the VOC removal process. It involves 

modelling of the adsorption process using the Matlab 7.0 simulation program and the 

kinetics of VOC catalytic combustion using the Polymath 5.0 program. The catalysts, 

which comprised of silver loaded on zeolites HY (SiO2/Al2O3 = 80) and hydrophobic 

MFI, ZSM-5 (SiO2/Al2O3=280) were used in the experiment. Butyl acetate was chosen 

as the VOC model compound in present studies. The measurable objectives of this 

research are: 

1) To obtain concentration breakthrough curves of the proposed VOC on a fixed 

bed of silver-loaded zeolite at different operating conditions. 

2) To propose a suitable model for adsorption process and evaluate process 

parameters from the experimental breakthrough data. 

3)  To demonstrate the catalytic performance of silver loaded zeolite in 

decomposition of the proposed VOC.  

4) To propose a suitable kinetic model to represent the combustion of the model 

VOC over silver loaded zeolite. 

5) To determine the optimum process conditions for adsorption as well as catalytic 

combustion of VOC. 

 

1.6 SCOPE OF THE STUDY 
 

In this study, the selection of catalyst support is limited to only two types of 

zeolite namely faujasite, Y (SiO2/Al2O3 = 80) and MFI, ZSM-5 (SiO2/Al2O3=280). This 

selection is based on the hydrophobicity and the type of pore system present in the 

zeolite and their application in many chemical processes.  
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The overview flow chart of the research activities carried out throughout the 

present study is presented in Figure 1.3. This project involved interrelated work in the 

sequence as shown in the figure. The preparation of the zeolite adsorbent and catalyst 

involved formulation and preparation of the adsorbent/catalyst by two different methods, 

namely ion exchange and impregnation method. The effect of various preparatory 

conditions and procedures were studied and carried out during the adsorbent/catalyst 

preparation. The prepared adsorbent/catalyst was also characterised to examine the 

surface of the promising adsorbent/catalyst for a better understanding on the changes 

in structural integrity after metal loading. 

 

The adsorption process study was carried out at a pre-determined set of 

variables such as VOC concentration, gas hourly space velocity (GHSV) and the 

presence of water vapour in the feed for determination of the adsorption capacity (mg/g) 

of the samples. The experimental data are crucial for determination of the adsorption 

isotherm of the samples and to study the occurrence of breakthrough and the necessity 

to start desorption process.  

 

In catalytic combustion process studies, the experimental work was carried out 

with a set of most affecting variables such as reaction temperature, GHSV and VOC 

concentration. The kinetic parameters obtained from experimental data were studied to 

evaluate the performance of catalytic combustion system. The viability of overall 

process was assessed based on reactor performance and practicality of the reactor 

operation.  

 

After adsorption and catalytic combustion studies, the combined operation 

(adsorption-catalytic combustion) was carried out to study the overall removal 

efficiency of VOC.  
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Figure 1.3: Research activities flow chart 
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1.7 ORGANISATION OF THE THESIS 
 

This thesis describes the research work to investigate the application of dual 

functional adsorbent/catalyst system for the removal of VOC. This work investigates 

the fundamental aspects of adsorption and catalytic combustion of butyl acetate in a 

fixed bed adsorption column and fixed bed reactor respectively. 

 

Chapter 1 (Introduction) includes a brief introduction on what is VOCs, their 

related environmental significance and current VOC control technologies. This chapter 

also enclose with problem statement that provide some basis and rationale to justify 

the research direction to be followed in the current studies. The objectives of the 

present study are elaborated in detail together with the scope of the study. 

 

Chapter 2 (Literature Review) reviews the related theories of zeolite-based 

catalyst for the two processes, adsorption and catalytic combustion that are relevant to 

the present study. Criteria for favourable operating conditions are proposed. Some 

background information about specific problems to be addressed in this research are 

also presented in this chapter.  

 

Chapter 3 (Materials and Methods) starts by listing all the materials and 

chemicals used together with their respective supplier name and purity. Then, all the 

catalyst preparation procedures and the equipment used during the preparation of 

catalyst are given. The experimental setup and other experimental procedures are then 

elaborated in the following section of this chapter. The experimental methods used in 

the study of adsorption process and catalytic combustion processes are given. Lastly, 

this chapter presents a description on the design of experiment and process 

parameters optimisation to determine the most important process variables and their 

optimum values. 
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Chapter 4 (Modelling) is divided into two main section: (a) the equilibrium and 

kinetic model of adsorption process and (b) the kinetic modelling of VOC combustion 

process. This chapter also presents the theoretical basis, in particular the background 

of modelling and simulation of the proposed process. Some assumptions to perform 

the proposed model are discussed. 

 

Chapter 5 (Results and Discussion) is the core of this thesis and is divided into 

two different parts covering first the adsorption process studies and second covering 

the catalytic combustion process studies. The experimental data are presented and 

discussed to address the specific objectives proposed. In the modelling studies, 

models are presented and simulated results are compared with the experimental data. 

The adsorption and kinetics parameters obtained from experimental data are also 

presented and discussed. 

 

Chapter 6 (Conclusions and Recommendations) presents the main conclusions 

based on the current studies. This chapter ends with recommendations for future 

studies in the related field. These recommendations are given based on their 

significance and importance, taking into account the conclusions obtained in the 

present study.  

  



 17

CHAPTER 2 
 

LITERATURE REVIEW 
 
 
2.0 INTRODUCTION 
 

Up to now, only about 10% of the industrial abatement units are based on 

adsorption. This percentage will increase in the near future given the strict control over 

VOC releases set by the legislation. This explains the current growing interest in 

development of highly efficient adsorbents for the treatment of VOC-loaded waste 

gases. As developments in VOC abatement technology to suit the characteristics of the 

effluent to be treated, the advanced adsorption-catalytic combustion system offers a 

promising solution. This chapter reviews the development of metal loaded zeolite as 

dual functional adsorbent/catalyst role on removal of volatile organic component. Using 

past accounts of VOC catalytic combustion system, criteria for favourable operating 

conditions for reaction enhancement are proposed. 

 

2.1 ZEOLITES  
 
2.1.1 Introduction and Pore Structure 
 

Zeolites are porous crystalline aluminosilicates with the general formula 

M2/nO.Al2O3.ySiO2 where n is the valence of the cation M and y may vary from 2 to 

infinite (Guisnet and Gilson, 2000). Structurally, zeolites comprise the assemblies of 

SiO4 and AlO4 tetrahedra joined together through the sharing of oxygen atoms with an 

open structure that can accommodate a wide variety of cations, such as Na+, K+, Ca2+ 

and others as shown in Figure 2.1. These cations can readily be exchanged for others 

in a contact solution.  
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Figure 2.1: SiO4 and AlO4 units linked through shared oxygen (Guth and Kessler, 1999) 

 

Zeolites are usually synthesized under hydrothermal conditions, from solutions 

of sodium aluminate, sodium silicate, or sodium hydroxide (Szostak, 1998). The 

tetrahedral formula of SiO2 and AlO2
- with one negative charge resides at each 

tetrahedron in the framework containing aluminium in its centre. Silicon and aluminium 

in aluminosilicate zeolites are referred to as the T-atoms (Weitkamp, 2000). The 

framework of a zeolite contains channels. Inside these voids are water molecules and 

small cations which compensate the negative framework charge. Water will desorbs 

upon heating without destruction of the crystalline structure. 

 

Since adsorption and catalytic processes involve diffusion of molecules in the 

zeolite pores, only those with a minimum of 8 tetrahedral atoms apertures allowing the 

diffusion are generally considered. Most of the zeolites can be classified into three 

categories (Guisnet and Gilson, 2000): 

• Small pore zeolites with eight membered-ring pore apertures having free 

diameters of 0.30 – 0.45 nm 

• Medium pore zeolites with ten membered-ring apertures, 0.45 – 0.60 nm in free 

diameter 

• Large pore zeolites with 12 membered-ring apertures with 0.6 – 0.8 nm 
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In general, zeolites pore sizes fall into the microporous size and with ring size 

between 8 – 20 (Guth and Kessler, 1999). Zeolite has the ability to selectively sort 

molecules based primarily on a size exclusion process. This is due to a very regular 

pore structure of molecular dimensions. The maximum size of the molecular or ionic 

species that can enter the pores of a zeolite is controlled by the diameters of the 

tunnels. These are conventionally defined by the ring size of the aperture, where the 

term "8 ring" refers to a closed loop that is built from 8 tetrahedrally coordinated silicon 

(or aluminium) atoms and 8 oxygen atoms. These rings are not always perfectly flat 

and symmetrical due to a variety of effects, including strain induced by the bonding 

between units that are needed to produce the overall structure, or coordination of some 

of the oxygen atoms of the rings to cations within the structure. Therefore, the pore 

openings for all rings of one size are not identical.  

 

Figure 2.2 shows the structures of four selected zeolites along with their 

respective void systems and pore dimensions. In general, the T-atoms are located at 

the vertices and lines connecting them stand for T-O-T bonds. Since the accessibility of 

the unique features of zeolite is controlled by the pore diameter and pore width in the 

order of molecular dimension as shown in Figure 2.2, International Union of Pure and 

Applied Chemistry (IUPAC) has classified the molecular sieve materials based on their 

pore size into three categories (Weitkamp, 2000): 

Microporous material   pore diameter < 2.0 nm 

Mesoporous material   2.0 nm ≤ pore diameter ≤ 50.0 nm 

Macroporous material  pore diameter > 50. 0 nm 
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Figure 2.2: Structure of four selected zeolites (from top to bottom: faujasite, 
zeolite ZSM-12, zeolite ZSM-5, zeolite Theta-1) and their micropore 

systems and dimensions (Weitkamp, 2000) 
 

2.1.1(a) Faujasite (Y) 

Zeolite faujasite, Y (nSi/nAl > 1.5) is of utmost importance in heterogeneous 

catalysis and it is recognised as an active component in catalysts for fluid catalytic 

cracking (Guisnet and Gilson, 2002). Its pore system is relatively spacious and consists 

of spherical cages, referred as supercages, with a diameter of 1.2 nm connected 

tetrahedrally with four neighbouring cages through windows with a diameter of 0.74 nm 

formed by 12 TO4-tetrahedra (Weitkamp, 2000) as shown in Figure 2.2. Zeolite Y is 

therefore classified to possess a three-dimensional, 12-membered-ring pore system.     

 

The most important use of zeolite Y is as a cracking catalyst. It is used in acidic 

form in petroleum refinery catalytic cracking units to increase the yield of gasoline and 

diesel fuel from crude oil feedstock by cracking heavy paraffins into gasoline grade 

napthas (Wang et al., 2005b). Zeolite Y has superseded zeolite X in this use because it 

is both more active and more stable at high temperatures due to the higher Si/Al ratio. 
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It is also used in the hydrocracking units as a platinum/palladium support to increase 

aromatic content of reformulated refinery products (Thomas and Crittenden, 1998).  

 

2.1.1(b) Zeolite Socony Mobil 5 (ZSM-5) 

Zeolite Socony Mobil 5, ZSM-5 is a zeolite with unidimensional pores and its all-

sillica analogue silicalite-1 (nSi/nAl = ∞) built from the pentasil unit. ZSM-5, with its 

aluminosilicate framework contains considerably less aluminium than a Y-zeolite 

specimen (Rachapudi et al., 1999). ZSM-5 is a zeolite with high silica to alumina ratio. 

The substitution of an aluminum ion (charge 3+) for a silicon ion (charge 4+) requires 

the additional presence of a proton. This additional proton gives the zeolite a high level 

of acidity. ZSM-5 is a highly porous material and throughout its structure it has an 

intersecting two-dimensional pore structure. ZSM-5 has two types of pores, both 

formed by 10-membered oxygen rings. The first of these pores is straight and elliptical 

in cross section; the second pores intersect the straight pores at right angles, in a zig-

zag pattern and are circular in cross section (Weitkamp, 2000) as shown in Figure 2.2.  

 

ZSM-5 is another example of a zeolite which has achieved importance in 

heterogeneous catalysis. It is used industrially in the synthesis of ethyl benzene, the 

isomerization of xylenes and recently gained attention in environment catalysis such as 

the adsorption and destruction of pollutants from water and air (Delahay and Coq, 

2001).  

 

2.1.2 Zeolite Acidity 
 

Zeolite surface acidity is among the most important properties in the use as 

catalysts. In natural zeolites, the excess negative charge is balanced by whatever ions 

that presents in the surrounding environment such as K+, Na+, Ca2+ and Mg2+. The type 

of counter ion used to balance the charge plays an important part because it constitute 
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to acid site to zeolite, where the majority of which are Brønsted and Lewis acid sites 

(Canizares et al., 1998). This cannot be on replacement of the cation with a proton by 

hydrothermal treatment to form a hydroxyl group at the oxygen bridge (Simon-

Masseron et al., 2007). Brønsted acid site presents in the form of bridging hydroxyl and 

function through its ability to release and accept proton as shown in Figure 2.3 

(Thomas and Thomas, 1997).  

 

 

Figure 2.3: Brønsted acid site formation due to Si/Al substitution in a zeolite framework 

 

Several industrial applications of zeolites are based upon technology adapted 

from the acid silica/alumina catalysts originally developed for the catalytic cracking 

reaction. This means that the activity requested is based on the formation of Brønsted 

acid sites arising from the creation of ‘‘bridging hydroxyl groups’’ within the pore 

structure of the zeolites. These ‘‘bridging hydroxyl groups’’ are usually formed either by 

ammonium or polyvalent cation exchange followed by a calcinations step. The 

‘‘bridging hydroxyl groups’’, which are protons associated with negatively charged 

framework oxygen linked into alumina tetrahedra, are the Brønsted acid sites, as 

demonstrated in Figure 2.3. The protons are quite mobile at higher temperatures, and 

at 550oC they are lost as water molecules followed by the formation of Lewis acid sites, 

as shown in Figure 2.4. 
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Figure 2.4: Formation of Lewis acid sites in zeolites (simplified version with no taking 
into account the model of ‘‘true Lewis acid sites’’) (Stöcker, 2005) 

 

Lewis acid site occurs as threefold-coordinated aluminium or silicon (≡ Al or ≡ 

Si+), or extra framework aluminium-containing species such as AlO+. Lewis site form 

upon dehydroxylation and dealumination of zeolites (Karge et al., 1999). For zeolites, it 

can be stated that the concentration of aluminium in the lattice is directly proportional to 

the concentration of acid sites. However, for other microporous solids, corresponding 

correlations are not significant (Weitkamp, 2000).  

 

Catalytic activity in zeolites is essentially governed by electronic transport 

between reactive components and local sites within the zeolite framework. In acid-

based zeolite catalysts, these sites are typically Brønsted acid sites, containing an H+ 

ion localized near a bridging Si-O-Al cluster. The highly acidic sites, combined with the 

high selectivity arising from shape selectivity and large internal surface area makes the 

zeolite an ideal industrial catalyst (Weitkamp, 2000). The significance of this acidic 

proton can be shown quite easily by comparisons of experiments in H exchanged 

zeolites and their equivalent cation form zeolite. The zeolitic proton has been used as 

an efficient solid acid catalyst in several industrial reactions.  
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2.1.3 Modification of Zeolites 
 
2.1.3(a) Ion Exchange 

With the negative charge of the zeolite porous framework and the small and 

mobile cations sitting in the pores, zeolites are typical ion exchangers. Since aluminium 

is trivalent, every AlO2 unit carries a negative charge, which is compensated by a 

positive charge associated with a cation. Therefore, the ion exchange capacity of a 

zeolite depends on the chemical composition. A higher ion-exchange capacity is 

observed in zeolites of low SiO2/Al2O3 ratio (Weitkamp and Puppe, 1999). In the 

manufacture of zeolite catalysts, ion exchange plays an outstanding role. For many 

catalytic applications, a Brønsted acid form of a zeolite is required. Brønsted acid sites 

in zeolite can be readily generated by introducing ammonium ions followed by a heat 

treatment or by introducing multivalent metal cations. Ion exchange is always applied to 

incorporate the frequently studied metals like Cu, Co, Pt or Pd into the zeolites 

(Canizares et al., 1998; Tsou et al., 2005).   

 

The ion exchange is performed using a simple technique where the zeolite is 

suspended in an aqueous solution of a soluble salt containing the desired cation at 

ambient temperature under stirring. The exchange reaction, in which one type of cation 

is replaced with another, assumes an equilibrium state that is unique for the particular 

zeolite and the particular cations. Exchange between ion Aa+, initially in solution and ion 

Bb+, initially in the zeolite may be expressed as: 

 bAs
a+ + aBz

b+   bAz
a+ + aBs

b+     (2.1) 

where a and b are the valencies of the exchanging cations Aa+ and Bb+, s and 

designate the solution and zeolite phases. 

 

The rate of ion exchange depends on the concentration of ions of a size 

capable of penetrating the pores of the zeolite. At ambient temperature, a solution of a 

large hydrated ion may contain very few partially hydrated ions of a size smaller than 


	Title,Ack,TOC,List,Abstract
	CHAPTER 1
	CHAPTER 2



