
Determining The Black-Box Component's Failure

Ibrahim Hilal
abehelal@go.comjo

Aman Jantan
manj70@tm.net.mv

School of Computer Sciences
University Sains Malaysia
11800 Penang, Malaysia

Abstract

Many papers propose different approaches to evaluate the reliabilify of black-box
components based on component's success. This paper determines or evaluates component's
reliability based on its failure. Since even reliable components might fail, we argue that
component's acquirer should evaluate the component's reliability based on its failure and not
on its success- In this paper we propose a new approach towards determining the
component's failure. Both the operational profile and the appropriate test cases are needed to
support our approach.

Subject Indexing

Software Engineering, Reusable Software, reliability

l. Introduction

Software reliability is defined as "the probability of failure-free software operation in a
specified environment for a specified period of time" [2]. Also it is defined as the ability of
the software systems or components to perform their required functions under stated
conditions for a specific period of time [l].

The software component is a piece of software that is used to build a more complex software
system. Integrating Software components in a software system can reduce the time and the
development's cost of the software systems. The reliability of a Software component can
determine the reliability of the software system. Unlike hardware (where hardware can fail
by time due to usage) , software components do not fail due to wear out or age. Hardware
failure is time dependent, while software component is not. When the source code of the
component is supplied or available then it is called White-box component. Black-box
component is called so because the source code is neither supplied nor available; only the
object code is. The internal implementation of the black-bo* iompooent is usually hidden
from the component's acquirer. The component's acquirer ne-eds only to know the
functionality, and how it interfaces with its environmenf [4]. Lyu's handbook contains a
survey of many software reliability models This work presents our approach to determine the
reliability of the black-box components.

29

Iig. I shows the steps that are required to determine the failure of the black box components.

Fig. 1: The processes to determine the component's failure

This paper is organized as follows: section 2 contains related worko section 3 contains two
steps that are needed prior to evaluate the component, section 4 contains our approach, and
section 5 contains future work.

2. Related Work

The models that are available to compute the reliability of components use complex
mathematical formulas. They required the user or who performs the testing strong

background knowledge in mathematics and statistics. In addition, it requires time to generate

the necessary parameters. Lyu's handbook contains a survey of many software reliability
models

3. Operational Profile and Generating test cases

Woit defines the Operational profile as follows:" is a description of the distribution of inputs
that is expected to occur in actual software operation" [9]. Operational profile is the set of
operations and their probability of the occunence [8].

Operational profile is an essential part for generating test cases that we need to determine the
failure probability of the component. After we identi$r all the component's functions (or
operation) and determine their specifications we can build their operational profile. An
operational profile has to be made for each function of the component before we generate the

test cases for this function.

We are concern with the test cases that make the component fail and not the test cases that
make the component pass. So our testing goal would be, to make the component fail by
running as many tests as possible.

Testing requires to place the software in an environment similar to its real usage environment

[7]. We should try as much as possible to make the test cases that we generate closer to the

actual use of the functions that the component performs. The closer the test, the higher the
accuracy of the evaluation is. Test cases should cover all possible functions invocation
orderings. After we generate those test cases, we execute those tests, and then we evaluate the
result of those tests.

30

Generating different test cases will be based on the operational profile that we make or create.

Many operational profiles should be made for each user in a multi-user system. Also we
should make many profiles for every user that uses a multi- mode system.

How to make an operational profile and how to generate test cases are beyond the scope of
this literature.

4. Our approach: Determining the Component's Failure

Software reliability is defined as'othe probability of failure-free software operation in a
specified environment for a specified period of time" [2]. "software failurqoccurs when the
behavior of the software departs from its specification...during its execution' [3].

Many literatures determine the software system reliability by determining the reliability of its
constifuent pieces of software or components. Likewise we can determine the software
system failure probability by determining its constituent components failure probability;
consequently we can determine the component failure if we identiff its functions (or
operations) first, and then determine the failure probability of each one of those functions that
the component can perform.

The component's supplier should indicate to the component's acquirer all of the functions (or
operations) that the component can perform with no exclusion. (i.e. calling another
component, perform database access, establish internet connection, transfer data or file,
...etc.).Once we identiff those functions, we can mn several tests for each one of those
firnctions based on the operational profile we imply from each function's specification or
definition. By doing so, the failure probability of a particular frrnction is equaf to the number
of the recorded tests that executed and failed divided by the total numbei of executed tests
whether failed or succeeded (terminated successfully or not) for that particular function.

Two values are obtained as a result of executing test cases. The first one is the component's
function failure probability (as shown above) and the second one is the relative occurrence of
this function within the other component's fuactions. Once we obtain both the failure
probability and the relative occurrence for every function (or operation) that the component
performs, then we can determine the component over all failure probability by using the total
Probability theorem I I 0] :-

g
P(F):)P(Function, n F)

r=t

P(F) : P(Functionl n F) + P(Function2 n F) + p(Function n n F)

P(F) :P(Functionl) * p (F I Functionl) + + p(Functionn) * p (F I Function")

31

Example:-

A certain component performs 3 functions: Insert, Update, and Delete from a certain date

base file system. The probability of failure and the relative occunences of each of those

functions is shown in table l.

Function
name

Failure
Probability

Relative
Occurrence

lnsert 0.1 0.5

Update 0.15 0.3

Delete 0.20 0.20

Table I

To compute the failure of this component will base on the above equation:-

p(F): (0.1 * 0.5) + (0.15 * 0.3) + (0.20 * 0.2)

P(0:0.135 is the failure probability

How to create an operational profile, how to generate test cases, how to execute those test

cases, and how to evaluate the test's results are beyond the scope of this literature.

5. Conclusion and Future Work

In this paper we have presented an approach to determine the reliability of the black-box

components. Since even reliable software components can fail, determining the reliability of
the Components based on its failure is more important than determining the reliability of the

components based on its success. Also we have showed the importance of the component's

operational profile and generating test cases to support this approach. Our work enables the

component acquirer to determine the reliability of the black-box. using simple and quick

method. Our future work would be toward how to generate more accurate test cases to obtain

more accgrate evaluation; also how to develop an algorithm that is used to obtain an

operational profile of the component.

32

References

tll IEEE, IEEE Standard 610.12-1990 IEEE Stqndard glossary of Sofh,vare Engineering
Terminologt, February 1991.

t2J Lyu, M. R., Handbook of Software Reliability Engineering, IEEE Computer Society
Press. 1996.

t3l Pai, G. J., A Survey of Software Reliabilify Models, A
Dependable Computing, 2A02.

Project Report. CS 651:

t4) Ravichandran, T., Rothenberger, M., Software Reuse Strategies and Component
Markets, Communication of ACM46, 8,2003.

t5l Alzatil, 2., Application of the Operational Profile in Software Performance Analysis,
wosp 04, January 14-16 Redwood Shores, CA,2004.

t6l Hamlet, D., Mason, D., Woit, D., Theory of Software Reliability based on components
In proceeding oJ23rd International Conference on Software Engineering, pp.36l-370,
Toronto, Canada 20A1.

17) Musa, John D. More Reliable Software Faster and Cheape4 Authorhoase, September
2004.

t8l Musa, John D. Software reliability Engineering. McGraw-Hill,New York 1999.

t9l Woit, Denise M.o A Framework For Reliability Estimation, Proc. 5th IEEE
International Symposium on Software Reliabitity Engineering QSSRE'l4), November 6-
9, 1994. pp. t8-24.

[10] Montgoffiery, D., Runger, G., Applied Statistics and Probability for Engineerc, John
l(il ey, September 2002.

33

