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KESAN PEMBOLEHUBAH-PEMBOLEHUBAH SEMBURAN PLASMA 
DALAM MENGHASILKAN SALUTAN SERAMIK 

 
ABSTRAK 

 
 

Semburan plasma adalah salah satu sistem semburan panas yang boleh 

meleburkan sebarang bahan untuk menghasilkan salutan. Suhu yang tinggi yang di 

hasilkan oleh api plasma membenarkan bahan seramik seperti ‘zirconia’ dan ‘alumina’ 

dilebur dan disembur kepada permukaan bahan asas untuk menghasilkan salutan. 

Pada peringkat permulaan, prestasi ciri-ciri mekanikal (kekuatan ikatan dan kekerasan) 

salutan ‘Yttria Stabilised Zirconia’ (Metco 204NS) pada besi bahan asas yang disalut 

dengan salutan ikatan dan tanpa salutan ikatan telah diuji dan disiasat kekuatannya. 

Keputusan menunjukkan penggunaan salutan ikatan (serbuk utama nikel) membantu 

menambah prestasi ciri-ciri mekanikal salutan. Kemudian, Al2O3 3%wt TiO2 (ALO-105) 

disembur kepada besi bahan asas yang disalut dengan Ni 5%wt Al (NI-109) sebagai 

salutan ikatan dengan menggunakan sistem semburan plasma ‘praxair’. Salutan-

salutan itu dihasilkan dengan melaraskan parameter-parameter pembolehubah salutan 

seperti kadar aliran serbuk, karan elektrik dan jarak semburan untuk kegunaan seperti 

tahan haus dan tahan panas. Struktur salutan telah di analisa dengan ‘X-ray 

Diffraction’ (XRD) dan ‘scanning electron microscope’ (SEM). Salutan itu juga telah di 

uji dengan ciri-ciri mekanikal (kekuatan ikatan dan kekerasan), rintangan haus (POD) 

dan rintangan panas (ujikaji kitaran panas).  

 

Keputusan menunjukkan semua salutan ALO-105 membentuk γ-Al2O3 

walaupun serbuk asalnya adalah α-Al2O3. Salutan-salutan yang padat dan  ketebalan 

salutan yang berbeza telah dihasilkan dengan purata poros salutan ialah 7.7%. 

Kekuatan ikatan, kekerasan dan sifat haus salutan akan bertambah dengan 

pertambahan kadar aliran serbuk (22.5 g/min kepada 26 g/min) dan karan elektrik 

(22.5 g/min kepada 26 g/min). Kekuatan ikatan yang tinggi didapati pada jarak 

 xviii



semburan 75mm dan kekerasan yang tinggi pula didapati pada jarak semburan 90mm. 

Di dalam analisa rintangan panas, salutan telah membentuk retak-retak mikro dan 

terkopek daripada permukaan bahan asas selepas melalui beberapa ujikaji kitaran 

panas. Rintangan panas salutan yang paling tinggi diperolehi pada salutan yang 

mempunyai ketebalan yang rendah. 
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THE EFFECT OF PLASMA SPRAY VARIABLES ON THE DEVELOPMENT 
OF CERAMIC COATINGS 

 
ABSTRACT 

 
Plasma spray is one of the thermal spray systems which are able to melt any 

material for coating.  The high temperatures of the plasma flame permit ceramic 

materials such as zirconia and alumina powders to be melted and sprayed toward 

substrate in producing a coating. At the first stage, Yttria Stabilised Zirconia (Metco 

204NS) coating over metal substrate with and without coating bond coat (nickel base 

powder) was investigated for the mechanical properties performance (adhesion 

strength and hardness). The results showed that applying bond coat coating (nickel 

base powder) increased the performance of mechanical properties of ceramic coating. 

Then, Al2O3 3%wt TiO2 (ALO-105) was deposited over metal substrate with Ni 5%wt Al 

(NI-109) as a bond coat by the Praxair Plasma Spray System. The coatings were 

produced and analysed for different variable coating parameters such as powder flow 

rate, electric current and stand-off-distance. The ALO-105 coatings structure were 

analysed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The 

coatings also were tested for the mechanical properties (adhesion strength and 

hardness), wear behaviour (POD) and thermal resistance (thermal cycling test). 

 

The results revealed that all ALO-105 coating contained γ-Al2O3 although the 

original powder was α-Al2O3. Dense and different thickness of coating was produced, 

with low porosity level at the average of 7.7%. The adhesion strength, hardness and 

wear behaviour of coating were improved when powder flow rate (22.5 g/min to 26 

g/min) and electric current (550A to 650A) were increased. The high adhesion strength 

(11.4 MPa) and high hardness of coating (772.7 Hv) were identified at stand-off-

distance 75mm and 90mm setting. In thermal resistance analysis, the ALO-105 coating 

developed micro cracks and peeled off from substrate surface after a number of 

 xx



thermal cycles test. The highest thermal resistant of coating was identified at the lowest 

thickness of the coating. 
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CHAPTER 1  
INTRODUCTION  

 
 
1.1 Surface Engineering 

Surface engineering is an enabling technology applicable to a wide range of 

industrial sector activities. It encompasses techniques and process capable of creating 

and/or modifying surface to provide enhanced performance such as wear, corrosion 

and fatigue resistance and biocompatibility [Burnell & Datta, 1996]. Surface 

engineering now recognized as an enabling technology of major importance in the 

successful, most effective and efficient exploitation of material in engineering practice 

[Strafford et al., 1995]. Surface engineering enables the design and manufacture of 

metallic, ceramic, polymeric and composite material. Most metals, alloys, ceramics and 

some intermetallic compounds can be applied as coating either individually or as 

mixtures [Grainger & Blunt, 1998]. Any surface engineering technique and process has 

an advantage and limitation, which must be evaluated for a specific application. In 

general surface technology is used to reduce the cost of component in service by 

providing such as: 

 

• Acceptable service life/ reduce downtime costs 

• Wear and corrosion resistance on selected surface 

• Repair a worn part surface  

  

1.2 Thermal Spray Coating 

Thermal Spraying is one of the advance hard facing technologies for surface 

preparation and protection [Knotek, 2001]. The technology has been used seriously as 

a remedy to combat wear, corrosion, heat, oxidation and other problems occurring 

across the whole spectrum of the manufacturing and engineering industries [Harrison, 

1996]. The diversity of thermal spraying processes used for hard coating is due to the 

 1



variety of applications and the required properties, as well as consideration of 

economic aspects [Grainger & Blunt, 1998]. Basically, thermal spray coatings are 

produced by melting and projecting a powder material and building up a surface 

coating at the substrate [Berndt, 1980]. The different coating microstructures and 

properties are dependent on the spray technique, powder properties and spray 

parameters of the coating [Li et al., 2004]. Microstructure and properties of coating 

should be examined in order to obtain good coating bonding. The coating condition 

such as porosity, closed pores and un-melted particles are always the cause of defects 

in coatings. There are advanced tests or performance tests techniques of plasma 

sprayed ceramic coatings in order to determine the coating properties such as 

mechanical tests, chemical tests and thermal tests [Herman et al., 1993]. 

 

1.3 Ceramic Coating and Application 

Plasma spray technique is currently the primary method used commercially to 

produce thick coating for ceramic materials. The ceramic coating basically is used to 

extend product life, increase performance and reduce production maintenance costs. 

The applications involve wear, heat and corrosion resistance, surface restoration and 

others basically required in aircraft, automobile, power plant and oil and gas industries 

[Reeve, 2001]. 

 

Alumina and zirconia ceramics are the most popular material used in plasma 

spray coating. The selection of the material depends on the application of coating. 

Alumina is mostly used on mating surface to resist abrasive wear, adhesive wear and 

corrosion resistant. Zirconia is being increasingly used as thermal barrier coating 

especially for gas turbine and diesel engine [Sulzer Metco Inc., 1998]. Effective 

ceramic coating should exhibit low thermal diffusivity, strong adherent to the substrate, 

phase stability and thermal shock resistance during thermal cycling and provide 

oxidation wear and corrosion protection to the substrate [Herman et al., 1993]. 
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1.4 Objective of The Study 

In this study air plasma spray system is used for the ceramic coating. Ceramic 

and bond coating (Nickel base) powders and three variables parameters (current, 

powder flow rate and stand off distance) are investigated in order to develop a coating 

surface onto low carbon steel substrate. To achieve high-quality coating, it is necessary 

to understand the plasma system variables such as plasma spraying process and 

coating parameters.  The study is focused on the new machine, Praxair Plasma Spray 

System with SG-100 gun.  Mainly, there are two objectives: 

 

1. To produce ceramic (Al2O3 3%wt TiO2) coatings onto metal substrate with selected 

three variables parameters (current, powder flow rate and stand-off-distance) using 

Praxair Plasma Spray System.  

2. To analyse the relationship of current, powder flow rate and stand-off-distance 

parameters of the coated samples for wear and thermal resistance performance. 

 
 
1.5 Significance of The Research 
 

Plasma spray coating is a unique process. It uses high direct current (DC) and 

voltage according to power range to produce plasma flame for melting high 

temperature of material [Dobler, 2003] such as ceramics. During process, the molten 

powder accelerates towards the substrate, cools and anchors together to form a 

strongly adhered coating with the principle technique of mechanical bonding adhesion. 

Understanding the plasma system and coating process are the most important to 

develop and improve the adherent bonding and quality of coating. Selected ceramic 

coating material for specific application such as for wear and thermal resistance 

application, type of metal substrate to reduce the constraint to manufacture 

components from very high cost bulk material, surface preparation for the strong 

adherence bonding between coating material and metal substrate and processing 

plasma spraying parameters are related to each other in achieving the high 
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performance and high quality of coating. Selection and application of bond coating 

layered between ceramic and metal substrate are also important in order to improve 

high adherence coating bonding.  

 

 The analysis of phases exist and microstructures of coated samples are 

important in order to determine the coating behaviour, coating structure and condition 

of powder particles after plasma spray coating process. Measurement of mechanical 

properties (hardness and adhesion strength) thickness and porosity of coating relates 

to the coating performance such as in wear resistance and thermal resistance 

application.  

 

1.6 Scope of The Study 

In developing high quality plasma spray ceramic coating, the first important 

consideration is the selection of spraying process parameters and different type of 

coating materials. In addition, substrate preparation and application of bond coating are 

also considered in order to produce high strength and dense coating. In this study, the 

coating samples were produced based on three variables which are current, stand-off-

distance and powder flow rate in order to obtain the best processing parameters in 

term of coating performance in the wear resistance and thermal resistance application. 

The coated samples were analysed for the phase, microstructure and the mechanical 

properties (adhesion strength and hardness) and porosity.  Finally the coated sample 

were tested and analysed for the wear and thermal resistance application.   

 

Overview and literature review of the plasma, thermal spraying, spraying 

process and plasma spray system, coating materials and properties, substrate and 

surface preparation, coating structure and properties and coating application are 

highlighted in Chapter 2. This chapter emphasises more on plasma spray system and 

ceramic coating.  
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Chapter 3 emphasises on air plasma spray system, Praxair Technology with 

SG-100 Gun which is used in the study. The system such as plasma gun, system 

controller, powder feeder, gasses system, cooling system and power system are 

highlighted. The important parameters and some initial parameters setting related to 

robotic arm (transverse speed, step distance and stand of distance) and powder flow 

rate are discussed. Chapter 3 also discusses the selection of ceramic and bond coat 

powders, bonding mechanism and the stressed of coating. 

 

The analysis of the selected ceramic and bond coating powders such as 

chemical compositions, particle sizes, phase present and microstructure are 

highlighted in Chapter 4. The metal substrate preparation, experimental of coating 

samples, coating methodology (parameters setting) and testing methodology (adhesion 

strength, hardness, bending, thermal resistance, wear resistance and porosity) which 

were carried out in this study are presented in Chapter 4.  

 

Result and discussion are presented in Chapter 5.  Phases present in the 

ceramic coating powders and coated samples were analysed by X-Ray Diffraction 

(XRD) equipment. Profile and cross section of the ceramic coated samples were 

analysed and examined by Scanning Electron Microscopy (SEM). Results of the test 

such as mechanical test (adhesion strength, hardness), wear resistance, thermal 

resistance and porosity are investigated. Chapter 5 emphasises the relation of coating 

performances (adhesion strength, hardness, wear and thermal resistance) and the 

thickness of coating according to the selected variable parameters (current, powder 

flow rate and stand-off-distance). 

 

Conclusions and future recommendation of the overall study are discussed in 

Chapter 6. 

 5



CHAPTER 2  
 LITERATURE REVIEW 

 
2.1 Introduction 
 

Plasma is an ionised gas. When gas is heated enough, the atoms collide with 

each other and knocking their electrons off in the process and this will form a plasma 

flame. In other definition, plasma is also known as ‘fourth state of matter [Seoul 

National University, 2002]. Figure 2.1 shows the state of matters how plasma deforms 

from solid, liquid and gas state when heat is added.  Plasma is an electrically 

conductive gas containing charged particles. When atoms of a gas are excited to high 

energy levels, the atoms loose hold of some of their electrons and become ionised thus 

producing a plasma containing electrically charged particles (ions and electrons) 

[Matejka & Benko, 1989]. 

 

 

Figure 2.1:  Plasma flame or ‘fourth state of matter’ was formed when heat added 
[Seoul National University, 2002]. 

 

Basically in plasma spray process, an electrical arc is struck between cathode 

and anode of the plasma torch. When the plasma gas flows through the arc it gets 

ignited. The plasma is initiated when electrons are accelerated from the cathode to the 

anode. As the electrons speed towards the anode they collide with, excite and ionise 

the atoms or molecules in the gas. The additional electrons freed by the ionisation are 

also accelerated causing further ionisation. These collisions transfer the kinetic energy 

of the electrons to the other species and raise the temperature of the gas. The ignited 
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gases come out of the nozzle in the form of a plasma jet of temperature above 15,000 

K [Alex et al., 2000]. Figure 2.2 shows the temperature distribution and geometry of 

plasma jet during ignition.  

 

 

Figure 2.2:  Temperature distribution and geometry of plasma jet [Knotek, 2001]. 

 

2.2 Thermal Spraying System 

According to the literature, thermal spraying started in early 1900s by Swiss 

engineer, M.U. At the time, lead and tin wires were melted using welding torch by the 

energy of an acetylene/ oxygen flame. The wire-arc spraying process was patented in 

1908 by Schoop for various metals feedstock [Knotek, 2001]. Development of spraying 

techniques and equipment progressed slowly during 20s and 30s. Late 50s and early 

60s the thermal spraying technology was expanded due to the increasing demand of 

high temperature and wear resistant materials and coating systems [Burnell & Datta, 

1996]. At present time, thermal spray processing is highly demanding in surface 

engineering technology. Thermal spray coatings for ceramic, metallic and carbide help 

to improve surface properties of parts such as in wear and corrosion resistance [Reeve, 

2001].  The principle characteristics of thermal spraying coating process are as follows 

[Grainger & Blunt, 1998]: 
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• The strength of the bond between coating and substrate is dependent on the 

materials and process used. 

• Able to apply any coating materials to the substrate that are unsuited compared to 

welding process. 

• Able to deposit coating material from thinner to thicker layer of coating. 

• Almost all material compositions may be deposited such as metals, ceramics, 

carbides, polymers or any combination. 

• Most processes are cold compared to welding process. 

• The process can be operated in air with great flexibility. 

 

Thermal spraying is a generic term used to describe a group of processes. 

Thermal spraying is an attractive coating technique as it offers a wide choice of 

materials and processes that have a reduced impact on the environment when 

compared to conventional plating processes. Figure 2.3 shows the group of thermal 

spraying coating in various applications. 

 

Basically there are 4 types of thermal spraying system, including flame spraying, 

high velocity oxy-fuel, arc spraying and plasma spraying. All thermal spraying 

processes rely on the same principle of heating a feedstock, (powder or wire) and 

accelerating it to a high velocity and then allowing the particles to strike the substrate. 

The particles will then form and freeze onto the substrate. The coating is formed when 

millions of particles are deposited on top of each other. These particles are bonded by 

the substrate by either mechanical or metallurgical bonding [Dobler, 2003].  
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Figure 2.3: Group of thermal spraying process [Knotek, 2001]. 

 

2.2.1 Flame Spraying 

Flame spraying is a low cost process compared to other thermal spraying 

processes. Flame spraying does not produce distortion or effect of heat treated on the 

part during spraying process due to the temperature of flame produced at the nozzle tip 

which is only 3,000oC.  The flame spraying can be used for any metal, ceramic and 

plastic substrate for coating process. The process produces thicker, contains high 

levels of oxides and porous coating together with the option of achieving a rough 

surface finish than other thermal spraying process [Knotek, 2001]. The process relies 

on carefully control of chemical reaction between oxygen and a fuel (acetylene) to 

produce heat with temperatures varying up to 3,000oC. In flame spraying process, 

feedstock material is fed onto the flame in the form of wire or powder and compressed 

air is used to atomise the molten metal and accelerate the particles onto the substrate 

to produce a coating [Dobler, 2003]. Mostly spray coating is used for corrosion 
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resistance applications. Figure 2.4 shows a typically gun design and flame spraying 

coating process. 

 

Figure 2.4:  Gun design and flame spraying coating was sprayed onto substrate 
[Plasma & Thermal Coatings Applied Surface Technology Ltd, 2005]. 
 

2.2.2 High Velocity Oxy-Fuel (HVOF) 

The high velocity oxy-fuel (HVOF) has extended the range of thermal spray 

applications. HVOF utilizes the combustion of gases, such as hydrogen or a liquid fuel 

such as kerosene. A mixture of process gases is injected into the combustion chamber 

of a torch at high pressure and ignited to produce the flame. The process creates a 

very high velocity which is used to propel the particles at near supersonic speeds 

before impacting onto the substrate and producing a coating. HVOF is designed to give 

high levels of coating density and adhesion to a substrate [Grainger & Blunt, 1998]. 

 

Since the temperature of the flame is about 3,000oC, HVOF thermal spraying is 

preferred for spraying tungsten carbide and/or corrosion-resistant carbides, alloy of 

hastelloy, triballoy and inconel [Knotek, 2001]. Due to high kinetic energy and low 

thermal energy of hydrogen, HVOF can produce high bond strengths, extremely high 

coating density (less than 1% porosity) and low oxide content (less time speed of 

particle spending within the heat source) [Grainger & Blunt, 1998; Knotek, 2001]. 

Figure 2.5 shows a typical gun design and HVOF coating onto substrate. 
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Figure 2.5: Gun design and HVOF coating was sprayed onto substrate [Plasma & 
Thermal Coatings Applied Surface Technology Ltd, 2005]. 
 

2.2.3 Arc Spraying 

In arc spraying process, feedstock in the form of two wires is simultaneously 

brought into contact with each other at a nozzle. The two wires with electric arc are 

used to provide the heat source. As the wires are fed towards each other at a nozzle, 

as it is touched, the electrical load placed on the wires causes the tips of the wires to 

melt and to create a flame temperature around 4,000oC. An atomizing gas such as air 

or nitrogen is used to strip the molten material from the wires and transport it to the 

substrate [Dobler, 2003].  

 

Arc spraying is among the lowest cost running process compared to the other 

thermal spray systems. The materials applied by arc spraying are only for electrically 

conductive wires such as stainless steel, hattelloy, nickel aluminides, zinc, aluminium, 

and bronze. Arc spraying has the highest deposition rate of thermal spraying process. 

It can be used to spray large areas or large numbers of components on repetitive 

production line operation such as bridges and offshore fabrication with zinc and 

aluminium coating to give corrosion protection on the structure. Other coating 

applications are worn engineering components such as bearing and shaft with steel 

and bronze alloys coating.  [Knotek, 2001; Grainger & Blunt, 1998]. Figure 2.6 shows a 

typical gun and coating process of wire arc system onto substrate. 
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Figure 2.6: Gun design and wire arc spraying coating was sprayed onto substrate 
[Plasma & Thermal Coatings Applied Surface Technology Ltd, 2005]. 

 

2.2.4 Plasma Spray 

Plasma spray is regarded as the most versatile of all the thermal spray 

processes e.g. flame spraying, arc spraying and HVOF. The plasma spraying process 

involves the latent heat of ionised inert gas being used to create the heat source. The 

most common gas used to create the plasma is argon as the primary gas and 

hydrogen or helium as the secondary gas [Knotek, 2001]. However the gas usage 

depends on the type of material to be sprayed and coating application.  

 

Plasma spray is able to use and melt any variety of ceramic materials [Gansert, 

2002]. The plasma spray system consists of an electronically controlled power supply, 

a PLC-based operator control station, a gas mass flow system, a closed-loop water 

chilling system, a powder feeder and a plasma gun. A primary inert gas, such as argon 

is injected between two water-cooled electrodes (anode and cathode) in the gun, 

where it is ionised to form a plasma jet when ignited. Any powders is injected into the 

plasma flame will melt and subsequently deposited onto the component to form a 

coating [Berndt et al. 1979]. 

 

Most of the ceramic materials used in plasma spray coatings are chromium 

oxide, zirconium oxide and aluminium oxide [Knotek, 2001]. The particle velocities of 
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plasma spraying are higher than for those flame and arc spraying which produce 

denser coatings and finer surface roughness [Dobler, 2003 & Fazan, 1997]. Figure 2.7 

shows a typical gun and plasma spray coating process. 

 

 

Figure 2.7:  Gun design and plasma spray coating was sprayed onto substrate [Plasma 
& Thermal Coatings Applied Surface Technology Ltd, 2005]. 
 
 

The versatility of plasma spray has been widely recognised in many numbers of 

industries. The unique features that characterise plasma spray processing are listed 

below [Herman et al., 1993]: 

 

• It can be used to deposit a wide range of ceramics and metals and any 

combinations of the materials. 

• It is able to develop homogeneous coating without composition change with coating 

thickness. 

• High deposition rates are possible without extreme investments in capital 

equipment. 

• Plasma spray can be applied at any environment conditions (air, vacuum and 

underwater). 

 

 

 

 

 13



2.3 Plasma Spray System 

Plasma system can be classified into RF plasma and DC Plasma. The 

processes are described as below:- 

 

• RF plasma – The gas is passed through a radio frequency field so that electrical 

coupling occurs and energy is transferred to the gas. 

• DC plasma – The gas is used as a medium in which a direct current arc is 

established between two or more electrodes. 

 

In RF plasma, no electrode is necessary to produce the flame, no contamination 

of the working gas or materials injected into plasma occur during coating process 

[Berndt, 1980].  

 

Air plasma spray system used for the study is classified as DC plasma.  The air 

plasma spray consist of several principle components to form a complete system in 

order to generate plasma flame, bring coating material to the plasma flame and 

produce a coating onto a substrate. In general, the air plasma system consists of: 

 

• Plasma torch 

• DC power supply 

• Control and instrumentation system 

• Cooling water system 

• Gas supply system 

• Material feeder system 
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The principle components of the plasma spray system are arranged and linked 

together in an optimum way in order to ensure maximum efficiency at minimum power, 

pressure and space. Figure 2.8 shows a flow diagram of plasma spray operation.  

 
 
 

 
 
Figure 2.8:  Basic system (gases, power, cooling, controller, feeder and plasma torch) 
of the plasma spray equipment [Gordon England, 2004]. 
 

2.3.1 Plasma Torch System 

Plasma torch is one of the most important systems of the plasma spray 

technology [Matejka & Benko, 1989]. Plasma torch is designed purposely to produce 

plasma flame jet at high velocity, high temperature, able to melt any coating material 

and stable in operation [Herman & et al., 1993]. Basically plasma torch components of 

the DC plasma torch are summarised as below: 

 

• The cathode is usually made of tungsten enriched by 2% ThO2 (Thorium Oxide). 

Basically tungsten serves to lower electron emission threshold from 4.52 eV to 2.63 
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eV, allowing an arc to be established at a lower voltage gradient [Herman et al., 

1993] and hindering cathode wear due to impurities in the plasma gases. The 

oxygen and humidity present in the impurities gases will oxidise cathode rapidly at 

high temperatures and reduce the electrode life. 

• The nozzle which acts as anode is subjected to considerable heat effect and must 

transfer several kW of output per each square centimetre. Basically anode is made 

from high purity copper with high thermal conductivity and water cooled directly 

[Matejka & Benko, 1989]. Normally the anode incorporates the nozzle or anode 

throat [Herman et al., 1993]. 

• An insulating medium between cathode and anode – normally Teflon or ceramic 

are used as insulating medium. 

• A torch body is used to join and align the cathode, anode and insulating medium 

into an integral assembly. 

• Attachments for water lines and power cables. 

 

Nowadays, there are two types of cathode design use in the plasma torch. 

These are solid cathode tip and hollow cathode tip. Matjeka [1989] had pointed that the 

use of solid cathode tip is much more better instead of the use of hollow cathode tip 

due to cooling water could approach the tip surface. The tip shapes (e.g. acute, blunt or 

hemispherical) depend on the loading and the plasma gas used. The nozzle profile 

normally designed in cylindrical and conical shape [Berndt et al., 1979]].  A simplified 

diagram of the plasma torch configuration for a DC plasma torch is shown in Figure 2.9.  

 

The plasma arc is produced between two electrodes (i.e. cathode and anode) 

when the gas flowed through the electric arc, ignited and transformed into ions of high 

temperature. The anode and cathode have a limited life from 20 to 200 hours 

depending on the operating power level of plasma torch. The anode and cathode have 

to be replaced when it wears. Water leakages have to be avoided within cooling circuit 
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at plasma torch where it will lead to rapid erosion of the anode and cathode [Herman et 

al., 1993].   

 

Recently, the modern plasma torch design uses different combination of plasma 

gases (Ar, N2, Ar + H2, N2 + H2, Ar + He) such as Torches 7 MB or 9 MB from Metco 

cooperation. The principle of plasma torch designed is similar compared to the oldest 

design. The different mainly are the shape of electrodes, the supply of plasma gas 

between electrodes, the method of powder injection into plasma beam and geometry 

design of the torch [Berndt, 1980].  

 

Figure 2.9:  Schematic of plasma torch type F4 produced by Plasmatechnik Co. 

[Matejka & Benko, 1989] 

 

The plasma beam temperature of plasma torch depends mainly on the 

ionisation degree, type of plasma gas and working parameters.  Figure 2.10 shows the 

temperature comparison of argon (a) and nitrogen (b) gasses of plasma beams which 

has been done by Jehn [1992]. The experiment used similar type of plasma torch 

(6mm diameter of nozzle) and gas flow rate setting.  The figure illustrates that the 

temperatures measured in the nitrogen gas is substantially lower than argon gas.  The 
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temperature of plasma beam e.g. 10,500 K of nitrogen and argon gasses are archived 

at distance of 15mm and 20mm from the tip of plasma torch [Matjeka & Benko, 1989].   

 

 

D
is

ta
nc

e 
fro

m
 n

oz
zl

e 
(c

m
) 

D
is

ta
nc

e 
fro

m
 n

oz
zl

e 
(c

m
) 

Figure 2.10:  Temperature distribution of plasma beam (a) for argon gas and (b) for 
nitrogen gas [Matejka & Benko, 1989]. 

 

 

Figure 2.11 show how the change in gas flow rate, current, nozzle diameter and 

arc length affect the temperature and output of plasma beam. If the current is 

increased, the arc temperature and output of beam is increased. If the gas flow rate 

increased, the arc temperature decreased and beam output increased [Matjeka & 

Benko, 1989].  
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Main parameters of plasma torch 

Figure 2.11:  Effect of plasma torch parameters on temperature characteristics of 
plasma beam (temperature and output of plasma beam) [Matjeka & Benko, 1998]. 

 

Plasma beam velocity also plays an important role in plasma spray coating. The 

velocity of a plasma beam can be calculated in terms of the plasma beam output, gas 

volume and its properties and the nozzle diameter based on the relationship below 

[Matjeka & Benko, 1989]: 

 

V = A. (Qo/ d2) . (T/M)                                                                 (1) 

 

Where; 

V - Plasma beam velocity (m.s-1) 

Qo - Volume of gas flow rate (m3.s-1) 

T - Gas temperature (K) 

d - Nozzle diameter (m) 

A - Constant 

M - Molecular weight of gas 

 

Referring to equation (1), plasma beam velocity is directly proportional to the 

gas flow rate and indirectly proportional to the square of nozzle diameter. This indicates 
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that increasing gas flow rate will decrease the plasma temperature [Matjeka & Benko, 

1989]. 

 

2.3.2 DC Power Supply System 

Power Supply is the main important component in plasma spraying system. It is 

designed to suit the specific voltage and current characteristic of the plasma torch. In 

order to produce superb plasma sprayed coatings using wide variety of materials, 

plasma equipment must perform consistently, whether the energy level is as low as 15 

kW or over 200kW [Praxair Surface Technology Inc., 2001]. Basically thermal plasma 

spray technology used energy less than 100 kW [Herman et al., 1993]. An example in 

Praxair Technology Inc. [2001], the energy used for the plasma torches SG-100 and 

SG-200 is up to 80 kW and 40 kW.  The power of DC circuit can be calculated from 

Joule relation (voltage x current). The operating characteristic of a torch are given by 

the voltage-current relationship and indicates the power level of the torch [Herman etc, 

1993].  The arc characteristics and the power supply determine the stability of voltage 

and operating current. The plasma arc is produced steadily when the arc voltage 

equals to the voltage across the sources terminals at point A and B which is shown in 

Figure 2.12.  

 

At point B, any decrease in the current will extinguish the arc since the voltage 

requirement of the torch cannot be supplied by the generator. If current increases then 

the arc voltage decreases and equilibrium point is reached at A. At this point any 

current change causes a voltage change which returns the current to point A. The torch 

resistance is given by the slope (V/I) of the straight line as shown in Figure 2.12. The 

maximum operating resistance of the torch is given by the tangent to the source 

characteristics at point C. 
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Figure 2.12: Voltage-current characteristics of a torch and power supply [Berndt, 1980]. 

 

2.3.3 Control and Instrumentation System 
 

The control and instrumentation system is used for controlling the overall 

system efficiently during the operation of the system. All the switch systems such as 

gasses, ignition and feedstock feeding are contained in one control box. However the 

robotic arm control is separately from the control box system mentioned above. Figure 

2.13 shows a typical example of a control unit which is used in a plasma spray system. 

 

 

Figure 2.13: Control system 3710 of Praxair Technology [Praxair Surface 
Technologies, 2001] 
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2.3.4 Cooling Water System 

Cooling system in plasma spray technology is used to cool the plasma torch. 

Many problems associated with the running of torch can be attributed to a poor cooling 

system and may result in overheating of anode, cathode and seals [Herman et al., 

1993]. Normally water is used as the agent of the cooling system. The cool water is 

pumped to the torch in closed loop process from the cooling tower. The cool water flow 

rate is very important in order to ensure the plasma torch cooled sufficiently during 

spraying process. Otherwise, it may result wear of plasma torch component and need 

to be replaced frequently especially for the tungsten electrode.   

 

2.3.5 Gas Supply System 

Gas supply system is linked with ignition system in order to ignite the plasma 

arc. The gas will be injected to the plasma torch in order to produce plasma flame. The 

gas also supplied to material feeder unit in order to seal coating powder from any 

oxidation and assisted coating powder to be fed to the plasma torch. Basically plasma 

spray gasses are divided into primary and secondary, i.e. gases such as Ar and N2 are 

normally used as primary gas whereas gasses such as He and H2 are used as 

secondary gas. The plasma forming gas is selected on the basic of the desired 

temperature and velocity of plasma beam and the degree of inertness gas [Matejka & 

Benko, 1989]. 

 

Application of gas mixture such as Ar + He and Ar + H2 with different properties 

normally is used in order to increase the enthalpy and velocity of the plasma arc. The 

temperature and enthalpy of gases can be controlled over a wide range by variation in 

electrical input, flow rate and composition of plasma gases in the plasma arc.  
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2.3.6 Material Feeder System 

The material feeder system is used for feeding an adjustable, uniform and 

reproducible amount of powder to the plasma flame. Basically the feeder system is 

designed and developed suitable for any coating powders and provided maximum 

accuracy of the volume of powder fed to the plasma flame. The conventional feeder 

system was upgraded and designed to modern feeder system which employs inert 

carrying gas by which the powder supplied through a tube to the plasma gun. The 

modern material feeder system was designed with automatic system to feed the 

powder to plasma flame. The system normally includes powder container (in vacuum 

condition), heater (attached to the container to heat the powders) and controller unit (to 

feed powder to plasma gun). The velocity of the carrying gas is set in such a way that 

powder remains suspended during the transfer and injected to the plasma gun at the 

optimum kinetic energy [Matejka & Benko, 1989 & Praxair Technologies Inc, 1999]. 

 

2.4 Coating Material 

Coating material is the main agent in order to develop a coating. The selection 

of coating material is dependent on application of the coating such as wear, thermal 

barrier, friction and the type of substrate material to be coated. In general most 

powders used in advance thermal spray depositions have particle sizes in the range of 

5 to 60 microns [Tucker, 2001]. Coating materials require quality control during storage 

and handling to avoid outside contamination which will affect the coating quality 

[Herman et al., 1993]. 

 

2.4.1 Coating Material Properties 

Basically in thermal spray coating, available coating materials in market are a 

spray-able form. The feedstock used in the thermal spray coating have to meet further 

requirement such as chemical homogeneity, density, flow behaviour, size and shape 
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distribution of powders [Knotek, 2001].  For example, size and shape are particularly 

significant for meltability considerations, and the shape of the particles will determine 

the flowability of powder into the flame. Flake-shape powder will not flow smoothly, 

resulting in a discontinuous, pulsing feed of powder into the flame, leading to a non-

uniform stream of molten particles and produce a poor coating. Spherical shape of the 

coating powder enables smooth flow, uniform feeding and deposit with continuous flow 

[Herman et al., 1993]. The techniques for producing powder materials are water and 

gas atomization, crushing and milling and chemical techniques such as sol-gel, 

agglomeration and spray drying [Knotek, 2001]. Now almost all material is available for 

spraying application such as metals and alloys, hard compound or hard metals and 

ceramics. 

 

According to Herman [1993], the optimal particle size distribution of coating 

powders is between 10 and 44 micrometers. Most of the powder used for advanced 

thermal spray deposition falls between 5 and 60 microns in size [Tucker, 1994]. The 

specific coating powders size range is related to torch or detonation gun design and the 

heating characteristics of powder. To achieve uniform heating and acceleration of a 

single component powder, it is advisable to have the size distribution as narrow as 

possible [Tucker, 1994]. The coating sprayed using coarse powder produces very 

porous and laced with cracks [Herman et al., 1993]. Fine powders are accelerated and 

heated more rapidly, but they also tend to lose momentum more rapidly when spraying 

at longer stand off distance.  The coating results are dense and highly stressed 

coatings [Tucker, 1994]. Coating powder specification such as chemical analysis, 

shape characterisation, size distribution and flowability should be identified for better 

coating produced. A wide variety of equipment is available for coating powder 

analyses, and selection of a specific technique or type of test will vary with the type of 

powder.  The coating powder should be kept clean and dry. Contamination and moist 
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