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Abstract

Neural Network Inverse-Model-Based Control (NN-IMBC) and Dual-Mode Control
(DMC) strategies are used to track the optimal reactor temperature profiles and their
performance is evaluated through a few robustness tests. A complex exothermic batch
reaction scheme is used as a case study. The optimal reactor temperature profiles are
obtained by solving optimal control problems off-line using Control Vector
Parameterisation (CVP) and Successive Quadratic Programming (SQP) techniques. Both
strategies are evaluated in tracking both the constant and dynamic optimal set points.
Neural Network estimator is embedded to the strategy as the on-line estimator to estimate
the amount of heat released by the chemical reaction. Both NN-IMBC and DMC are
found to be well performed in tracking both constant and dynamic set points. However
NN-IMBC is more practical and easier to be implemented in term of tuned parameters
needed compared to DMC. No tuned parameter is needed in NN-IMBC while in DMC
seven tuned parameters are needed. NN-IMBC also promises robust controller if it is
trained with a wide range of the reactor temperature covering all possible conditions of

the process. T

Introduction

Batch reactor is the common type of industrial reactor especially used for production of
small volume and expensive products. It is suitable to cater the fluctuations of market
condition of various products due to its flexibility in operation. However it is an
inherently unsteady-state process, where composition and temperature change with time.
Therefore modelling of such reactor results to a system of Differential Algebraic
Equations (DAEs). A batch reactor can be controlled in terms of either the reactor
temperature or coolant flow or jacket temperature (Cott and Macchietto, 1989). The
optimal control profiles can be generated by formulating and solving a dynamic
optimisation problem (Aziz and Mujtaba., 2002; Luus and Okongwu, 1999). However,
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designing controllers to implement and track the optimal control profiles or the set points
is an important area of research especially for inherently dynamic batch processes.

The Neural Network based controllers were applied by previous researchers in
controlling the batch reactor temperature (Galvan et al.,, 1992; Dirion et al.,, 1996 and
Galvan and Zaldivar, 1998, Aziz et al., 2000). However, there is no effort has been made
to compare the performance of Neural Network Inverse-Model-Based Control (NN-
IMBC) strategy with the dual-mode control (DMC) strategy in batch reactors.

In this work, both control strategies i.e. NN-IMBC and DMC are implemented to track
the optimal temperature profiles of exothermic batch reaction and their performances are
evaluated and compared. To further investigate the robustness of both control strategies, a
few robustness tests are carried out. The on-line neural network based estimator is also
embedded in this NN-IMBC strategy to estimate the heat release, Q at any given period
of time. Throughout the work, the multi-layered feed forward neural network has been
used.

A complex exothermic batch reaction is considered in this work. NN-IMBC and DMC
strategies are applied to track the optimal reactor temperature which maximise the
conversion to the desired product in fixed batch time. The optimal temperature profiles
are obtained by solving a maximum conversion problem (optimal control problem) which
become the set points (both constant and dynamic set points) to be tracked by the
controllers (Aziz et al., 2000). Control Vector Parameterisation (CVP) technique is used
to pose the optimal control as Non-linear Programming Problem (NLP) which is solved
using a Successive Quadratic Programming (SQP) based optimisation technique.

Dual-Mode Control (DMC) Strategy

Dual-mode control (DMC) strategy is commonly used strategy in batch reactors that have
initial heat-up (i.e. for exothermic reaction). DMC strategy is combination of on-off and
conventional control type strategy. First, maximum heating (on) is applied until the
reactor temperature is within a specified degree of the set point and then maximum
cooling (off) is applied when the temperature has reached its final desired set point. At
this point, standard feedback controllers are switched on and used to maintain the
temperature (constant or dynamic set points). In the standard DMC strategy, the PID
controller is normally used.

The DM control strategy consists of a sequence of control actions, each one carried out
after the reactor has reached a certain condition. The sequence of operations is as follows:

1. Full heating is applied until the reactor temperature is within a certain percent
(Em) of its set point temperature.

2. Full cooling is then applied for a certain period of time (TD-1).



3. The jacket set point temperature (Tiyp) of controller is then set to the pre-load
temperature (PL) for a certain period of time (TD-2).

4. A temperature controller (PID) is cascaded to the jacket temperature controller
and its set point is set to Tsp,.

There are two steps applied in order to tune the DM control strategy. First, PID tuning
parameters were tuned by performing an open-loop step response test. The Cohen and
Coon method was then applied to estimate the value of the tuning parameters (K, 71 and
Tp). However the tuning parameters have been fine-tuned to make the control less drastic
(through a few simulation runs with small changes on the estimated tuning parameters
value). Second, the remaining four constants (Ey,, TD-1, TD-2 and PL) were determined
by running a series of simulation runs. The details of DMC control strategy and its tuning
can be found in Liptak (1986).

Neural Network Inverse-Model-Based Control (NN-IMBC) Strategy

Internal model control (IMC) strategy is one of the many control strategies that can be
applied to various chemical process plants. It promises to offer better control and
reliability compared to other control strategies (Hussain, 1999). In this scheme, both the
forward and inverse models are used directly as elements within the feedback loop. Here
we named it as NN-IMBC strategy.
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Figure 1: Neural Network Inverse-Model-Based Control (NN-IMBC) Strategy

The NN inverse model is utilised in control strategy by simply cascading it with the
controlled system or plant. In this case the neural network acting as the controller, has to
learn to supply at its output, the appropriate control parameters, u(k) for the desired
targets, ysp at its input. In addition, the forward model is placed in parallel with the plant,
to cater for plant model mismatches and the error between the plant output and NN
forward model is subtracted from the set point before being feedback into the inverse
model. The inverse and forward models obtained a priory will be incorporated in this
NN-IMBC strategy. In figure 1 the plant/process is represented by a first principle based
batch reactor model.



Forward Model

In this NN-IMBC strategy, forward modelling approach is used to predict the future value
of the reactor temperature, T, which is known as NN forward model. The input/output
pattern for this forward model is shown in figure 2. There are two sets of data have been
used for training and one set is used for validation.
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Figure 2: Input/output patterns for forward model in NN-IMBC strategy

Inverse Model

Inverse model is basically the neural network structure representing the inverse of the
system dynamics at the region of the training or identification. During training the
network is fed with the required future or reference output together with the past inputs
and past outputs to predict the current input or control action, u(k) (figure 3). Here,
~ control action, u(k) is jacket temperature, Ty(k). This trained network represents the
inverse model of the system. The assignment of the input nodes is same as that of
forward model but with the prediction of y(k+1) replaced by the control input, u(%) as the
network input.
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Figure 3: Method for the training of the inverse model for control



The input/output pattern for this inverse model (for the batch reactor under consideration)
is shown in figure 4. It is to be noted that at any k, T, (k+1) and T, (k+2) are also known
in advance. There are two sets of data have been used for training and one set is used for
validation.
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Figure 4: Input/output patterns for inverse model

Case Study

Figure 5 shows the jacketed batch reactor of our interest. Here the reaction scheme is the
same as that used by Cott and Macchietto (1989), which is:

A+B>C
A+C=>D

where A, B are raw materials, C is the desired product and D is the waste product.
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Figure 5: Jacketed batch reactor system



Model Equations
The model equations for the batch reactor can be written as:
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All the parameter and constant values used in the model and control equation are given in
Table 1.

Here, an off-line dynamic optimisation problem is solved to find the optimum
temperature profile that will maximise the product “C” and minimise the by-product “D”.
Two runs were carried out; RUN1 uses one control interval (time) and RUN2 uses three
fixed control intervals. The batch time is 120 minutes and the initial values of [Ma, M,
Mc, Mp, T;, Tj] are [12.0, 12.0, 0.0, 0.0, 20.0, 20.0] respectively. The reactor temperature
is used as the controlled variable and is bounded between 20 and 100°C. The manipulated
variable, Tj is bounded between 20 and 120°C.

The results (optimal temperature profiles) for both runs are then used as the set points to
be tracked by NN-IMBC and DMC. The results are summarised in Table 2.



Table 1: The constant parameter values of the model and control equation

C =167.3kJkmol°C  C = 1.8828 kJ/kg°C V =0.6921m’ kT=20.9057
Cpc=217.6 kJ/kmol°C ~ Cp;= 1.8828 kJ/kg°C A=624m’ ki = 10000
Cpp=334.7 kJ/kmol°C U = 40.84 kJimin.m>.°C At = 0.2 min k' = 38.9057
AH = -41840.0 kJ/kmol ~ p = 1000.0 kg/m’ 7= 3.0 min k= 17000
AH = -25104.0 kJ/kmol W, = 1560.0 kg

Results and Discussion

Table 2: Summary of the results

Run Off-line Optimum Temperature Profile Off-line product
Temperature,®C I 92.46 l
| 6.5126
Switching time,min t = 0 120.0
Temperature,°C 92.83 91.17 9341
2 | } { . 6.5171
Switching time, min t=0 400 80.0 120.0
DMC Tuning Parameters
En=5.0% K¢ =26.54 min
PL=46°C Tr = 2.87 min
TD-1=2.8 min ' Tp = 0.43 min
TD-2 = 2.4 min

In Table 2, it can be seen that by using three control intervals, the amount of product
achieved is slightly higher than that obtained using one control interval. The responses of
the NN-IMBC and DMC for RUNI and RUN2 are shown in figure 6 and 7 respectively.
It can be seen that both the NN-IMBC and DMC were able to track the constant and
dynamic set points very well. This fact was supported by the small amount of offset
produced by both controllers and the amount of desired product obtained on-line (after
implementing NN-IMBC and DMC). For both runs, the products were within 3% of that
obtained by off-line dynamic optimisation (amount of product is about 6.34 for both
runs). However in tracking the dynamic set points, the NN-IMBC was less sluggish in
control action as compared to the DMC. Despite of less sluggish in control action, the
NN-IMBC shows a bit drastic changes in the controller action. This is due to the use of
piecewise constant (constant over a time interval) value of Ty in the training of NN-
IMBC. Tj values were obtained by solving the following optimisation problem:

N
Min z (T r Trsp ) j
=1
T;
Subject to: constraints (model equations etc.)

N is the number of intervals within the batch time of interest.



The drastic changes in control action can be overcome if smaller time intervals for
calculating Tj are used. Despite this shortcoming, implementation of the NN-IMBC is
still practical and easy because it does not require any tuned parameters compared to

DMC which need seven tuning parameters.
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Figure 6: DMC and NN-IMBC responses for constant set point (RUN1)
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Figure 7: DMC and NN-IMBC responses for dynamic set points (RUN2)

Robustness Test

120

The robustness of the NN-IMBC and DMC applied in this case study has been tested.
Three tests were carried out by changing the process parameters. In all tests the
controllers were used to control an operation where some of the conditions have been
changed from their true values. In the first test (TEST1), the heat of reactions was
increased by 25%. In the second test (TEST2) the heat transfer coefficient is reduced by
40% of its original value. The third test (TEST3) involves 30% reduction in the molar (or



mass) of reactants. In all tests, a constant reactor temperature set point (RUN1, Table 2)
is to be tracked.

In TEST! and TEST2, both NN-IMBC and DMC strategies were found unable to
accommodate the changes (result to great overshoot response). In fact, the response of
NN-IMBC is worst (greater overshoot) than the DMC. It is due to the inherent property
of neural networks i.e. it is good in interpolation but not in extrapolation. The capability
of the NN-IMBC is solely dependent on the range of the parameter values used for
training and in this work, it was trained between the reactor temperature range of 90 and
95°C only. However in TEST3 the changes were within the limit of the training therefore
the NN-IMBC performed better than DMC in accommodating the changes.

Both NN-IMBC and DMC have shown very similar responses in tracking the constant
and dynamic set points. However, NN-IMBC is more practical and easier in term of
tuning parameters needed. It has very high potential to be applied as a robust control
strategy but must be trained very well and the training range should cover all possible
conditions that can happen to the system or process.

Conclusions

Neural Network Inverse-Model-Based Control (NN-IMBC) and dual-mode control
(DMC) strategy were designed and implemented to track the optimal reactor temperature
profiles using a complex reaction scheme in a batch reactor. The optimal control problem
has been formulated and solved to obtain the optimum temperature profiles (both
constant and dynamic set points for both strategies) to maximise the amount of the
desired product. The amount of the desired product obtained on-line by using the NN-
IMBC and DMC is within 3% of the target values. Robustness of both strategies was
tested by changing process parameters like heat transfer coefficient, heats of reactions
and mass/molar rate of reactants. The NN-IMBC and DMC were found to perform well
in tracking both set points. NN-IMBC promises robust controller if it is trained with a
wide range of the reactor temperature covering all possible conditions of the process and
is much easier to implement compared to other controllers because no tuned parameter is
needed while the DMC needed seven tuned parameters.
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