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KAJIAN PENGKOMPUTERAN KE ATAS FLAVONOID SEMULAJADI 

KE ARAH PENEMUAN PERENCAT XANTINA OKSIDASE 

 
ABSTRAK 

 
Xantina oksidase (XO) memangkinkan penukaran hipoxantina kepada 

xantina dan seterusnya xantina kepada asid urik. Peningkatan paras asid urik di 

dalam serum darah dikenali sebagai hiperurisemia boleh menyebabkan 

komplikasi seperti sakit sendi dan batu karang. Allopurinol telah diperkenalkan 

pada tahun 1966, merupakan ubat yang paling berkesan untuk merencatkan 

aktiviti XO, seterusnya mengurangkan kepekatan asid urik dalam darah. Namun 

demikian, allopurinol memberi beberapa kesan sampingan yang serius 

terhadap pesakit, dan kadang-kala boleh membawa maut. Oleh itu, usaha 

pencarian inhibitor baru yang memberikan kesan sampingan yang rendah tetapi 

beraktiviti tinggi amatlah diperlukan dengan segera. Inhibitor yang berpontensi 

mungkin boleh diperolehi daripada sumber semulajadi, seperti flavonoid, di 

mana ia banyak digunakan dan telah menunjukkan aktiviti perencatan terhadap 

XO.  

 

Kajian ini bertujuan untuk menyelidik potensi flavonoid sebagai inhibitor 

XO. Peringkat pertama dalam kajian ini melibatkan penapisan perpustakaan 

flavonoid yang mengandungi sejumlah 125 sebatian, dengan menggunakan 

perisian pendokkan molekular DOCK 6.0. Seterusnya AutoDock 3.0.5 

digunakan untuk mengkaji 35 flavonoid yang menduduki kedudukan teratas 

dalam DOCK 6.0. Likoisoflavone-A yang diekstrak daripada akar Glycyrrhiza 

glabra Leguminosae (liquorice) mempunyai aktiviti yang paling tinggi terhadap 

perencatan XO. 

 xviii



 

Untuk lebih memahami interaksi di antara flavonoid dan XO, simulasi 

dinamik molekular telah dijalankan. Sistem pertama melibatkan inhibitor 

berpotensi yang berada di kedudukan teratas daripada pengiraan pendokkan  

contohnya likoisoflavone-A dan sistem kedua ialah quercetin dimana ia telah 

dikenalpasti mempunyai aktiviti “perencatan bersaing” terhadap XO. Daripada 

trajektori simulasi dinamik, MMPBSA telah digunakan untuk mengira afiniti 

pengikatan untuk dua ligan tersebut terhadap XO. Keputusan yang diperolehi 

menunjukkan korelasi yang baik dengan keputusan daripada AutoDock 3.0.5 

dan DOCK 6.0. Ini menunjukkan likoisoflavone-A mungkin mempunyai potensi 

yang tinggi untuk merencat XO. Kajian juga menunjukkan interaksi hidrofobik 

memainkan peranan penting untuk menghasilkan pengikatan yang lebih baik di 

antara flavonoid dan XO. Peningkatan bilangan karbon alifatik ke atas struktur 

flavonoid dapat meningkatkan tahap kehidrofobikan molekul ini. 

Walaubagaimanapun, kriteria ini tidak semestinya dapat meningkatkan aktiviti 

perencatan kerana rantainya yang panjang mungkin menghalang ligan untuk 

dimuatkan ke dalam tapak aktif seperti dalam kes erysubin-F dan papiriflavonol-

A. 
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 COMPUTATIONAL STUDIES OF NATURAL FLAVONOIDS TOWARDS THE 

DISCOVERY OF A POTENTIAL XANTHINE OXIDASE INHIBITOR 

 
 

ABSTRACT 
 
 

Xanthine oxidase (XO) catalyses the conversion of hypoxanthine to 

xanthine and subsequently xanthine to uric acid. The increase of uric acid level 

in blood serum, which called hyperuricemia, can lead to major complications 

such as gout and kidney stones. Allopurinol that was introduced in 1966 is the 

most effective drug to inhibit xanthine oxidase activity, thus lowering uric acid 

concentration. However, allopurinol exhibits severe side effects that sometimes 

can also lead to death. Therefore, there is an urgent need to discover a new 

inhibitor which has low side effects but high activity. Potential inhibitor may 

comes from natural sources, such as flavonoids which have been consumed in 

abundance that appear to show an inhibitory activity toward XO. 

 

The current study aims to investigate the potency of flavonoids as XO 

inhibitors. The primary stage of the study involved filtering of a library of 

flavonoids containing 125 compounds using molecular docking software, DOCK 

6.0. Subsequently, AutoDock 3.0.5 was used to further investigate the top 35 

ranked flavonoids obtained from DOCK 6.0. Licoisoflavone-A, which is 

extracted from the root of Glycyrrhiza glabra Leguminosae (Liquorice) shows 

the most potent activity toward the inhibition of XO. 

 

 

 

 xx



In order to understand the interaction between flavonoid and XO, 

molecular dynamics simulations were performed. The first system involved 

potential inhibitor that rank first in the docking calculations i.e. licoisoflavone-A, 

and the second system included quercetin as it is known to have competitive 

inhibitory activity on XO. From MD trajectories, MMPBSA was performed to 

calculate the binding affinities for the two ligands toward XO. The results 

correlated well with the findings from AutoDock 3.0.5 and DOCK 6.0. This 

indicates that licoisoflavone-A, might have high potential activity to inhibit XO. It 

has also been observed that the hydrophobic interactions make important 

contributions to improve binding between flavonoids and XO. Increasing the 

aliphatic carbons on the flavonoid structure has increased the hydrophobicity of 

the compound. Nevertheless, this criteria might not necessarily increase the 

inhibitory activity, as the long chain might prevent the ligand to fit into the active 

site, as with the case of erysubin-F and papyriflavonol-A. 
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CHAPTER ONE 
INTRODUCTION 

 
 

1.1 Statement of the problem 
 

Xanthine oxidase (EC 1.17.3.2, XO) plays a key physiological role in the 

metabolism of purines which catalyse the hydroxylation reaction of hypoxanthine to 

xanthine, and subsequently xanthine to uric acid (Borges et al., 2002; Hille, 1996). 

Increase in the production of uric acid or decrease in the excretion will lead to 

increase in the uric acid levels in the body. The increase of uric acid levels in blood 

is called hyperuricemia (Sitori, 2000). Hyperuricemia leads to many complications 

such as gout and kidney stones. It may also be associated with renal insufficiency 

and cardiovascular diseases (Nakagawa et al., 2006). Hyperuricemia is identified 

when uric acid concentration is ≥ 7 mg/dl for men and ≥ 6 mg/dl for women 

(Schlesinger and Schumacher, 2002). 

 

Allopurinol (4-hydroxypyrazolo [3,4-d] pyrimidine), an analogue of 

hypoxanthine, is a specific potent inhibitor and substrate for XO (Fields et al., 

1996). It has been used to treat individuals suffering from hyperuricemia of gout. 

This drug is slowly oxidized to oxypurinol, a xanthine analogue, which is a more 

potent XO inhibitor. The most common adverse effects of allopurinol include 

hypersensitivity reactions, skin rashes and gastrointestinal distress. However, 

these effects always occur in individuals with reduced glomerular filtration. 

Syndromes of allopurinol toxicity including rashes, fever, worsening of renal 

insufficiency, vasculities, easinophilia and death have been reported (Bouloc et al., 
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1996; Horiuchi et al., 2000). These syndromes appear to be more common in the 

elderly patients with renal insufficiency. Moreover, safety in children and during 

pregnancy has not been established (Borges et al., 2002). Thus, there is an urgent 

need to discover compounds with XO inhibitory activities but devoid of the 

undesirable effects of allopurinol. One potential source of such compounds is 

medicinal materials of plant origin which are used to treat conditions similar to 

gouty arthritis. 

 

Flavonoids belong to a group of natural substances with variable phenolic 

structures and are found in fruit, vegetables, grains, bark, roots, stems and flowers. 

Researches on flavonoids have suggested these compounds might act as active 

inhibitors for XO (Cos et al., 1998).  Thus, the aim of this study is to investigate the 

potency of natural flavonoids, as XO inhibitors, using molecular modelling 

techniques.  

 

Molecular modelling approach has become a major part of rational drug 

design. Traditional drug design cycle to introduce active compounds is considered 

too slow and costly. Recently, new methods of processing very large libraries of 

potentially bioactive small molecules through molecular modelling methods have 

constantly played an important role in drug discovery. It is hoped that new 

inhibitors of XO will be discovered by using molecular modelling techniques such 

as molecular docking and molecular dynamics simulations.  
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1.2 Hyperuricemia 
 

Hyperuricemia is defined when serum uric acid levels exceed 7 mg/dl for 

men and 6 mg/dl for women. Uric acid is the final product of purine metabolism and 

these catabolic steps are catalysed mainly by XO enzyme as shown in Figure 1.1. 

During catabolism, hypoxanthine will be oxidized to xanthine and furher to uric 

acid, which cannot be further metabolised and will be eliminated through the gut 

and the kidneys (Mandell, 2002; Luk and Simkin, 2005). 

 

Hyperuricemia can be caused by overproduction of uric acid or insufficient 

excretion by kidneys. Some of the causes that increase the uric acid productions 

are: 

i- High purine diet (e.g. meat, seafood, alcohol) 

ii- Cytotoxic therapy (i.e. drugs and radiotherapy) 

iii- Myocardial infarction 

iv- Specific enzyme defects 

 

Insufficient uric acid excretion from kidneys can arise from different reasons 

such as, alcohol intake, drugs (e.g. diuretics) and renal failure. In addition, 

estrogen is another factor which is believed to promote uric acid excretion in the 

urine, which explains why men have high risk of developing hyperuricemia 

compared to women. However, involvement of more than one factor has been 

reported such as a combination of overproduction and low excretion of uric acid, 

high alcohol consumption and Glucose-6-phosphatase deficiency, indicating that 
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hyperuricemia is a multifactorial disorder leading to a complicated diseases like 

gout urolithiasis (Dincer et al., 2002). As these factors are suspected in high 

percentage in adults, 10% of adults are documented to have hyperuricemia at least 

once in their life. Therefore, it is worth to look for an agent/s which participates in 

alleviating or preventing this common disorder (Hayden and Tyagi, 2004). In the 

following paragraphs an overview on complications caused by hyperuricemia in 

order to understand the principal factors behind these disorders and then looking 

for the possible treatment targets will be presented. 
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Figure 1.1: Schematic diagram for purine catabolism pathway. XO is xanthine 
oxidase, GMP is guanosine monophosphate, AMP is adenosine 
monophosphate, ADP is adenosine diphosphate, ATP is adenosine 
triphosphate and IMP is inosine 5'-monophosphate 
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1.2.1 Complications of Hyperuricemia 

 

The major complications of hyperuricemia are gout, urolithiasis, reactive 

oxygens production and acute uric acid nephropathy. In addition to that, some 

diseases are frequently seen with elevated uric acid concentration such as 

cardiovascular disease, although no direct role has yet been confirmed (Pascual 

and Pedraz, 2004). 

 

1- Gout 

 

Gout is a metabolic disorder characterised by high levels of uric acid 

in the blood (hyperuricemia). This hyperuricemia results in the deposition of 

crystals of sodium urate in tissues, especially in kidneys and joints. 

Hyperuricemia does not always lead to gout but gout is always preceded by 

hyperuricemia. The deposition of urate crystals initiates an inflammatory 

process involving the infiltration of granulocytes that phagocytize the urate 

crystals (Figure 1.2). This process generates oxygen metabolites, which 

damage tissue, resulting in the release of lysosomal enzymes that induce an 

inflammatory response. In addition, lactate production in the synovial tissue 

also increases. This will lead to local decrease of pH which further cause 

more deposition of urate crystals (Mycek et al., 2000). 
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Figure 1.2: Role of uric acid in the inflammation of gout 
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The diagnosis of gout is based on the presence of monosodium urate 

crystals in the synovial fluid or tophi (Weselman and Agudelo, 2001). This 

deposition will exacerbate leading to recurrent episodes of acute arthritis, the 

classic manifestation of gout. It should be noted that different factors are 

participating in the development and progress of this diseases as well. The 

incidence of gout rises dramatically with age. It has been hypothesized that 

estrogen will act as a protecting agent against urate deposition, by promoting renal 

excretion of uric acid. Therefore the overall men:women ratio ranged between 7:1 

and 9:1. Factors like inherited enzyme deficiencies, obesity, decrease renal 

function, hypertension and alcohol also play a role (Wright and Pinto, 2003). It has 

been identified that 20% of gouty patients make renal stones (Foye, 1995). 

 

Understanding all the above mentioned factors and the complicated 

mechanism will help us in identifying what type of gout we are targeting for the 

treatment as the treatment of gout depends on the type of attack.  Acute gouty 

attacks therapies mainly include nonsteroidal ant-inflammatory drugs (NSAIDs) or 

colchicine. Meanwhile, controlling the uric acid level in the blood is still the main 

target particularly in the management of the chronic attacks. Examples of such 

drugs are allpurinol, probenecid and sulfinpyrazone (Mandell, 2002; Weselman and 

Agudelo, 2001). 
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2- Urolithiasis 

 

Urolithiasis is the process of stone formation in kidneys and other urinary 

ailments. Stone formation is not itself a specific diseases, it is much more 

complicated than that. Urolithiasis is a multifactorial disease and presents a final 

stage of a complication of many different diseases (Foye, 1995). For stone to be 

formed, many factors have to be involved however supersaturation of urine with 

regards to the crystal components from time to time is prerequisite for the 

crystallization process to be initiated leading to crystal formation and precipitation. 

Crystals are of different types and one of them is uric acid crystals. There are two 

types of deposits, one that composed of uric acid and other composed of urate. pH 

of the urine has been found to influence the availability and solubility of 

substances. Studies showed that pH will determine the type of deposition, in which 

acidic media (pH 3.7) is suitable for uric acid deposition while at higher pH (pH 7.4) 

is suitable for urate deposition (De Vries and Sperling, 1977). 

 

Uric acid stones account for 5-10% of all renal stones in the United States. 

Not all stones in hyperuricemic patients are composed primarily of uric acid, but 

uric acid acts as a nidus for the formation of different stones mainly calcium stones 

(Dincer et al., 2002). 
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3- Reactive Oxygen Species (ROS) Free Radical Production induced by XO 
 

Reactive oxygen species (ROS) include oxygen ions, free radicals and 

peroxides. ROS are generally very small molecules and are highly reactive due to 

the presence of unpaired valence shell electrons. During uric acid production 

pathway, hypoxanthine will be hydroxylised to xanthine and then to uric acid via an 

enzyme called xanthine oxidase (XO). Enzyme xanthine oxidase produces ROS 

during the oxidative half reaction, which takes place in the binding of FAD of the 

reduced form of XO with oxygen molecule. This reaction will lead to transfer of 

electrons from the reduced form of XO to the oxygen according to following 

reaction in the Scheme 1.1 (Mondal et al., 2000): 

 

(XO)reduced + O2   (XO)reduced•O2 (XO)oxidized + O2•-  

 

Scheme 1.1 

 

The presence of high quantity of these radicals have been strongly 

responsible for disturbing  cell physiology associated to oxidative stress such as 

cancer inflammation and arterioscleroses (Da Silva et al., 2004; Van Hoorn et al., 

2002) 
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1.2.2 Therapeutic strategies for preventing the complications 
 

 

Most of the therapeutic strategies for hyperuricemia focus on lowering uric 

acid level in the blood below the saturation point, thus preventing the deposition of 

urate crystals. This can be achieved by interfering with uric acid synthesis via 

inhibiting XO enzyme e.g. by using allopurinol or by increasing uric acid excretion 

e.g.  using probenecid or sulfinpyrazone (Mycek et al., 2000). 

 

Prevention of conversion of XO to the reduced form will lead to inhibition of 

ROS formation (Cotelle et al., 1996a). Thus, in this study, the strategy is to inhibit 

XO as a measure for the management of hyperuricemia. By inhibiting XO activity, 

uric acid and superoxides production will be ceased. 

 

1.3 Xanthine Oxidase (EC 1.17.3.2) 
 

Xanthine oxidase (XO) is a molybdoflavoenzyme which can be found in 

almost all species. The human enzyme is widely distributed with the highest levels 

are in liver and intestine (Parks and Granger, 1986). XO from human breast milk 

has been purified and characterised successfully in 1986 (Krenitsky et al., 1986). 

Bovine milk XO is widely available, thus it has been known for 100 years and 

studied in its pure form for over 60 years, therefore it has been used in most of the 

studies (Patton and Keenan, 1975). XO has high amino acids sequence homology 

among the mouse, rat, bovine and human enzymes with about 90% identity, and 

consisting of about 1,330 amino acids (Nishino, 1994; Borges et al., 2002; Godber 
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et al., 2005). Studies showed the existence of similar physicochemical properties of 

XO between human and bovine milk, but it has only approximately 5% of the 

activity of the bovine milk enzyme towards xanthine and related substrates  

proposing that the low activity is due to grossly deficient of molybdenum (Abdeh et 

al., 1992). XO is distributed in most of the tissues, with high levels in liver and 

intestine. Microscopic studies of cultured human endothelial cells showed that XO 

is present in cytoplasm and also on the outer surface of the cell membrane 

(Harrison, 2002).  

 

The X-ray crystal structure of bovine milk XO has been released in the 

Protein Data Bank (www.pdb.org) in August 2000 with a PDB code entry of (1FIQ) 

(Enroth et al., 2000). The structure has been used in this study due to X-ray 

structure availability and similar physicochemical properties with human XO. While 

the X-ray crystal structure for human XO has been released on May 2007 with a 

PDB code entry of (2CKJ) (Pearson et al., 2007).  

 

Bovine milk XO enzyme obtained from the protein data bank (PDB entry 

1FIQ). The crystal structure  is a homodimer of 145 kDa subunits, which consists of 

a 20-kDa N-terminal domain containing two iron-sulfur centers, a 40-kDa middle 

domain containing flavine adenine dinucleotide (FAD), and an 85-kDa C-terminal 

containing the molybdopterin cofactor (Kisker et al., 1998; Mondal et al., 2000; 

Borges et al., 2002). The monomer can be divided into three domains, the small N-

domain starts from residue 1 to 165, and contains both iron/sulfur cofactors that is 

connected to the second domain (FAD-binding domain) residues 226 to 531 by 

http://www.pdb.org/
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segment of residues 166 to 225. FAD also connected to the third domain by 

another linker composed of residues 532 to 589.  The large third domain (residues 

590 to 1,332) is the molybdopterin cofactor (Figure1.3) (Enroth et al., 2000). 
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Figure 1.3: Crystal structure of bovine milk XO (1FIQ) from Protein Data Bank 
(entry code: 1FIQ) 
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1.3.1 Active site of XO 
 

 

The crystal structures of bovine milk XO suggests that hypoxanthine and 

xanthine bind to the C-terminal domain of the XO, close to the molybdopterin 

cofactor. During substrate oxidation, the Mo centre is first reduced by electron 

received from the substrate and subsequently re-oxidized, as the electron passes 

first to the iron- sulfur centres and then to the FAD centre, and are finally donated 

to NAD+ or O2 (Hille and Nishino, 1995; Kisker et al., 1998; MacMaster and 

Enemark:, 1998). The mechanism of uric acid production will be discussed in 

Section 1.3.3. Salicylate was crystallised with XO as a competitive inhibitor, which 

binds to the binding site of the enzyme inhibiting xanthine or hypoxanthine to bind 

and be metabolised by XO. The amino acid that plays an important role in the 

catalytic reaction specified by Hille et al. (2004) is Glu 1261 (Figure 1.4) (Hille et 

al., 2004). The enzyme complex with salicylate shows that both the carboxylate 

atoms are close to the guanidinium group of Arg 880 (3.0 Å and 3.1 Å). An 

interaction with Glu 1261 can be involved via water 230. Hydrogen bond can be 

formed between the hydroxyl group of salicylic acid with both amide and hydroxyl 

side chain of Thr 1010. The aromatic ring of Phe 914 slightly overlaps with salicylic 

acid ring, on the other hand,  salicylate ring forms a T-shape aromatic interaction 

with Phe 1009 ring (Enroth et al., 2000).  
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Figure 1.4: Amino acid residues that contribute in the catalytic reaction in the 
active site 
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1.3.2 Mechanism of action of XO 
 
 

The reaction of XO composed of two catalytic reactions, reductive half and 

the oxidative half reaction. The reductive half reaction is the conversion of xanthine 

to uric acid, which takes place in the molybdenum centre of the enzyme. In this 

reaction, Mo(VI) is converted to its reduced form Mo(IV). While the oxidative half 

reaction takes place at the FAD centre, and  oxidize Mo(IV) to Mo(VI) by molecular 

oxygen with the formation of ( •
2O -

 ) or H2O2  (Olson et al., 1974; Huber et al., 

1996). 

 

The oxidative part of the reaction involves the binding of molecular oxygen 

to the FAD centre of the reduced form of XO. This will lead to the transfer of 

electrons from the reduced form, to achieve enzyme oxidation (Hille and Massey, 

1981) as shown in Scheme 1.2. Slow and fast phase in this reaction have been 

observed, and six electrons are transferred throughout the reaction (Hille and 

Massey, 1981; Mondal et al., 2000) as shown in Scheme 1.3. The fast phase 

involves in the transfer of five electrons and the formation of hydrogen peroxide 

(H2O2) and superoxide ( •
2O -

 ). Whereas the slow phase includes the oxidation of 

one electron and the formation of superoxide only (Mondal and Mitra, 1996) as 

given in Scheme 1.4. The mechanism of the formation of xanthine and uric acid is 

considered as the reductive half reaction (Scheme 1.5) (Kim et al., 1996). Further 

discussion will be presented in the next section. 
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Scheme 1.2 
 

 

Scheme 1.3 
 

 

Scheme 1.4 
 

 

Scheme 1.5 
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1.3.3 Mechanism of uric acid production 
 

Many researchers studied the catalytic reaction of XO proposing different 

mechanisms on the source and the way to incorporate the oxygen atom that is 

used to oxidize the substrate. But they all share the same concept, which is the 

hydroxylation to C-8 of xanthine. 

 

In the early days of identifying the mechanism, it was proposed that the 

oxygen source is derived from water (Murray et al., 1966). However, it has been 

shown later that the oxygen atom incorporated into product is derived from the 

catalytically labile site of the enzyme, which must then be regenerated with oxygen 

from water. In addition, it has been suggested that the catalytically labile site of XO 

is in fact the Mo=O of the enzyme. A mechanism of action has been proposed in 

which the catalysis proceeds via deprotonation of C-8 position of xanthine, or 

hypoxanthine, followed by nucleophilic attack of the resultant carbanion on the 

Mo(VI)=O group to give Mo(IV)-O-R species (Hille and Sprecher, 1987), as shown 

in  Scheme 1.6. The abstraction of C-8 hydrogen by Mo=S group is compatible 

with the known acidity of this position of xanthine (pKa ~14) and the Mo=S is 

sufficiently basic to protonate upon reduction of the enzyme. Furthermore, it 

appears that the reaction initiated by hydrogen abstraction followed by carbanion 

attack on Mo=O is the more likely reaction rather than a hydride attack on Mo=S, 

which was proposed by Bray and co-workers (Bray et al., 1979). 
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A mechanism involving the metal-coordinate hydroxyl has been proposed 

for XO mechanism of action (Huber et al., 1996). The reaction is initiated by 

nucleophilic attack on C-8 of xanthine by the hydroxyl group to give a transient 

tetrahedral intermediate. This breaks down by hydride transfer to Mo=S group, with 

resultant reduction of the molybdenum to Mo(IV) valence state. It should be noted 

that the pKa for the C-8 position is also to be relatively low, to be suitable for 

nucleophilic attack, as specified in Scheme 1.7. 
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As shown in Scheme 1.8, this mechanism involves the reducing the Mo=S 

group to Mo-SH by abstracting the hydrogen from C8-H of xanthine, then the 

formation of molybdenum–C8 bond. This will incorporate hydroxide from solvent to 

yield the same intermediate as in the previous proposed mechanisms 

(Coucouvanis et al., 1991). 
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Pilato and Stiefel (1993) proposed that N-7/C-8 double bond adds across 

the Mo=O directly in a cyclo-addition, to give an intermediate that can be broken by 

hydride transfer to give a species different from that proposed previously. The 

Mo=O group must regenerated immediately in the catalytic sequence, and the 

water molecules can serve such purpose, as given in Scheme 1.9 (Pilato and 

Stiefel, 1993). 

 

 

N NH

H

N
H

NH

O

O

Mo O

S

OH

Mo

S
O

N NH

H

OH

N
H

NH

O

O

N
H

N

Mo
O

SH

OH NH

N
H

O
O

Mo

SH

O
OH

+
N
H

N
H

O N
H

NH

O

O

H2O

H
+

Xanthine

Uric acid

VI
IVVI

IV

 
Scheme 1.9 

 
 

 

 

 
 

 



 24

1.4 Flavonoids 
 

In nature, flavonoid compounds are products extracted from plants and they 

are found in several parts of the plants: leaves, fruits, etc. Flavonoids are used by 

the vegetables for their growth and defence against plagues (Havsteen, 2002). 

They are a class of low molecular weight phenolic compounds that are widely 

distributed in the plant kingdom. They constitute one of the most characteristic 

classes of compounds in higher plants. Many flavonoids are easily recognized as 

flower pigments in most angiosperm families. However, their occurrence is not 

restricted to flowers but includes all parts of plant (Dewick, 2001). The chemical 

structure of flavonoids is based on a C15 skeleton with two phenolic rings 

connected together by three carbon units as shown in Figure 1.5. Flavonoids are 

grouped according to the presence of different substituents on the rings and the 

degree of ring saturation. They are frequently attached with sugars moiety to 

increase their water solubility (Stumph and Conn, 1981). Flavonoids have several 

subgroups, which include chalcones, flavones, flavonols and isoflavones. Table 1.1 

shows the main subgroups of flavonoids. 

 

A novel Laureate, Albert Szent-Gyorgyi, Ph.D., who discovered vitamin C, 

had isolated the flavonoids (proanthocyanidins) in 1930’s. He found that flavonoids 

could strengthen capillary walls that vitamin C cannot. At the beginning, the 

flavonoids were recognized as vitamin P. Besides that, some chemist also 

classified flavonoids as a single vitamin. Nowadays, there are about 4,000 

flavonoids compounds that contribute to the colorful pigments of fruits, herbs and 
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