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PENGAWALATURAN PEMBEZAAN RESEPTOR AKTIVASI PEMBIAKAN 
PEROKSISOM GAMMA (PPARγ) OLEH SITOKINA DI DALAM SEL 

TURUNAN MAKROFAJ MURIN J774.2: PENGENALPASTIAN LALUAN 
ISYARAT TRANSDUKSI FAKTOR NEKROSIS TUMOR ALFA (TNFα) DI 

DALAM PENGAWALATURAN PENGEKSPRESAN GEN PPARγ 
 

ABSTRAK 
 

Aterosklerosis merupakan punca kematian utama di negara-negara 

maju. Peranan PPARγ dalam makrofaj yang diaktifkan oleh sitokina adalah 

penting di dalam patogenesis aterosklerosis. Namun, mekanisme molekul yang 

tepat yang mana sitokina mengawalatur pengekspresan gen PPARγ masih 

kurang difahami. Di dalam kajian ini, kami mengkaji kesan empat sitokina iaitu 

TNFα, IFNγ, IL-1α dan IL-1β ke atas pengekspresan mRNA, protein dan aktiviti 

pengikatan DNA PPARγ di dalam sel turunan makrofaj murin J774.2, model 

yang paling lazim digunakan untuk aterosklerosis. TNFα dan IFNγ didapati 

merencat pengekspresan mRNA dan protein PPARγ serta aktiviti pengikatan 

DNA. Sebaliknya, IL-1β merangsangkan peningkatan pengekspresan PPARγ 

pada peringkat mRNA, protein dan aktiviti pengikatan DNA. IL-1α pula tidak 

mempunyai kesan ke atas pengekspresan PPARγ dan aktiviti pengikatan DNA. 

Memandangkan perubahan dalam kandungan protein dan aktiviti pengikatan 

DNA di dalam makrofaj yang dirawat dengan sitokina selaras dengan 

perubahan dalam mRNA PPARγ, keputusan ini mencadangkan dengan kukuh 

bahawa pengekspresan PPARγ dan aktiviti pengikatan DNA dikawalatur pada 

peringkat metabolisme mRNA. Di antara empat sitokina yang digunakan, TNFα 

didapati paling berkesan di dalam merencat pengekspresan mRNA PPARγ. 

Ujian aktinomisin D menunjukkan bahawa paras ekspresi mRNA PPARγ 

dikawalatur pada peringkat kadar transkripsi gen, dan bukannya pada peringkat 
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kestabilan mRNA dalam sel J774.2 yang dirawat dengan TNFα. Penggunaan 

perencat-perencat spesifik terhadap laluan isyarat transduksi MAP kinas 

(PD98095, U0126, SB202190 dan SP600125) menunjukkan TNFα merencat 

paras mRNA PPARγ melalui laluan p42 ERK dan p46/54 JNK, yang kemudian 

mengaktifkan dan merangsang pengikatan c-Jun dan ATF2 ke elemen 

rangsangan cAMP (CRE) pada promoter mPPARγ1. Oleh itu, kajian ini 

menyediakan pandangan baru untuk laluan berpotensi yang mungkin terlibat di 

dalam pengawalaturan pengekspresan PPARγ oleh TNFα di dalam sel turunan 

makrofaj J774.2, dan mencadangkan satu sasaran berpotensi untuk halangan 

terapeutik terhadap aterosklerosis.      
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DIFFERENTIAL REGULATION OF PEROXISOME PROLIFERATOR 
ACTIVATED RECEPTOR GAMMA (PPARγ) BY CYTOKINES IN MURINE 

MACROPHAGE J774.2 CELL LINE: ELUCIDATION OF SIGNAL 
TRANSDUCTION PATHWAYS OF TUMOUR NECROSIS FACTOR ALPHA 

(TNFα) IN REGULATING MACROPHAGE PPARγ GENE EXPRESSION 
 

ABSTRACT 
 

Atherosclerosis is the leading cause of death in developed countries. The 

role of the PPARγ in cytokine-activated macrophages is of crucial importance in 

the pathogenesis of atherosclerosis. However, the precise molecular 

mechanisms by which cytokines regulate PPARγ gene expression are poorly 

understood. In the present study, we evaluated the effects of four cytokines i.e. 

TNFα, IFNγ, IL-1α and IL-1β on the expression of PPARγ mRNA, protein and 

DNA binding activity in the murine macrophage J774.2 cell line, the widely used 

model for atherosclerosis. It was demonstrated that TNFα and IFNγ inhibited the 

PPARγ mRNA and protein expressions as well as DNA binding activity. By 

contrast, IL-1β induced a marginal increase at the levels of PPARγ mRNA, 

protein content and DNA binding activity. IL-1α, however, had no significant 

effects on the PPARγ gene expression and DNA binding activity. Since the 

changes observed in the PPARγ protein content and DNA binding activity in 

cytokine-treated macrophages followed closely the corresponding changes in 

PPARγ mRNA expression, the results strongly suggest that the PPARγ 

expression and binding activity were mainly regulated at the levels of mRNA 

metabolism.  Amongst four cytokines used, TNFα was found to produce the 

most significant inhibition of PPARγ mRNA expression. Actinomycin D 

experiment showed that the level of PPARγ mRNA expression was mainly 

regulated at the level of rate of gene transcription and not at the level of mRNA 



 xxiii

stability in TNFα-treated J774.2 cells. The use of specific inhibitors against MAP 

kinase signal transduction pathways (PD98095, U0126, SB202190 and 

SP600125) demonstrated that TNFα inhibited the mRNA levels of PPARγ via 

p42 ERK and p46/54 JNKs pathways, which in turn, activated and induced the 

binding of c-Jun and ATF2 to cAMP-responsive elements (CRE) in mPPARγ1 

promoter. Thus, this study provides novel insights into the potential pathways 

that may be responsible for the molecular regulation of macrophage PPARγ 

gene expression by TNFα in macrophage J774.2 cell line, and suggests a 

potential target for therapeutic intervention against atherosclerosis. 
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1.1 Background 

Atherosclerosis is the leading cause of death in the United States and 

the cause of more than half of all mortality in the developed countries. It is a 

long-term chronic disease characterized by the accumulation of lipids and 

fibrous connective tissue in the large arteries, accompanied by a local 

inflammatory response (Lusis, 2000). As the cholesterol plaque, or lesions, 

build up in the arteries over time, the risk for disease increases. 

Atherosclerotic coronary heart disease is the underlying cause for most heart 

attacks, and one of the most common causes for congestive heart failure, 

cardiac arrhythmias and sudden death (Lusis, 2000). 

Epidemiological studies have revealed several genetic and 

environmental risk factors predisposing to atherosclerosis. Smoking, 

metabolic disorders clustering with insulin resistance, such as dyslipidemia, 

hypertension, diabetes, high cholesterol, and family history of heart disease, 

are particularly important risk factors. Predisposing symptoms of the disease 

include high blood pressure and elevated cholesterol, especially elevated 

LDL-cholesterol.  

Research conducted during the past decade has led to an 

understanding of a relationship between the role of nuclear receptor 

peroxisome proliferator activated receptor γ (PPARγ) in macrophage and the 

biological basis for arthrosclerosis (Tontonoz et al., 1998; Marx, 1998b; 

Chinetti, 1998; Ricote, 1999). For instance, PPARγ, upon activation, has been 

demonstrated to promote monocyte differentiation to macrophage and 

increase the uptake of oxidized LDL by macrophages to be transformed into 

foam cells (Tontonoz et al., 1998). It has also been shown to be highly 
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expressed in macrophage-derived foam cells and atherosclerotic plaque 

(Marx, 1998b). By contrast, PPARγ has also been demonstrated to have an 

anti-atherogenic effect. For example, it was reported that PPARγ is a potent 

negative regulator in the development of atherosclerosis (Ricote, 1999) and 

has the ability to induce apoptosis of human monocyte-derived macrophages 

(Chinetti, 1998).  

 

1.2 Peroxisome proliferators activated receptors (PPARs) 

Peroxisome proliferators activated receptors (PPARs) are a family of 

transcription factors that belong to the superfamily of nuclear receptors. The 

PPAR family consists of three distinct subtypes, termed α (NR1C1), β/δ 

(NR1C2) and γ (NR1C3), all of which display tissue-specific expression 

patterns reflecting their biological functions (Pineda-Torra et al., 2001).  

All three PPAR isoforms possess similar structural and functional 

features. Principally, four functional domains have been identified, called A/B, 

C, D and E/F (Figure 1.1). The N-terminal A/B domain contains a ligand-

independent activation function 1 (AF-1) (Werman et al., 1997) responsible for 

the phosphorylation of PPAR. The DNA binding domain (DBD) or C domain 

promotes the binding of PPAR to the peroxisome proliferator response 

element (PPRE) in the promoter region of target genes (Kliewer et al., 1992). 

The D site is a docking domain for cofactors. The E/F domain or ligand-

binding domain (LBD) is responsible for ligand specificity and activation of 

PPAR binding to the PPRE, which increases the expression of targeted 

genes.  
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Figure 1.1 Schematic representation of the structural domains of PPAR. 
PPAR consists of four distinct functional domains. The A/B domain locates at 

the N-terminal with AF-1 is responsible for phosphorylation, the domain C is 

implicated in DNA binding, domain D is the docking region for cofactors and 

domain E/F is the ligand binding domain, containing AF-2, which promotes the 

recruitment of cofactors required for gene transcription.  
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 Recruitment of PPAR co-factors to assist the gene transcription 

processes is carried out by the ligand-dependent activation function 2 (AF-2), 

which is located in the E/F domain (Berger & Moller, 2002). 

Like other members of the nuclear receptor gene family, the PPAR 

subtypes possess a common domain structure which contains DNA-binding 

domains (DBD) and ligand-binding domains (LBD). Amino acid sequence 

comparison of DBD amongst PPAR subtypes shows they are highly 

conserved indicating that they share similar DNA binding site presence on the 

promoter region of the target genes, while the LBD have a slightly lower level 

of conservation across the subtypes (Figure 1.2) suggesting that they are 

ligand-specific. The NH2-terminal domain of the subtypes shows low 

sequence identity which is responsible for differences in the biological function 

of the subtypes (Castillo et al., 1999). 

 

1.3 Peroxisome proliferator-activated receptor γ (PPARγ) 

PPARγ was first identified as a component of an adipocyte 

differentiation-dependent regulatory factor (ARF6) that binds to the well-

characterized, fat cell-specific enhancer of the adipocyte fatty acid-binding 

protein (aP2) gene (Tontonoz et al., 1994a; Tontonoz et al., 1994b).  

PPARγ, like the other PPARs, is an obligate heterodimer with another 

member of the nuclear receptor subfamily, the retinoic X receptors (RXR), the 

receptor for 9-cis-retinoic acid. Upon heterodimerization with RXR, PPARγ 

binds to peroxisome proliferator response element (PPRE) which in turn 

regulates downstream target genes (Figure 1.3) (Kliewer et al., 1992).  
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Figure 1.2 Comparison of amino acid identities of the DBD and LBD of 
human and mouse PPAR isoforms. Amino acid sequences are represented 

by open bars and numbers in the bars show the percentage of amino acid 

identity between human and mouse isoforms relative to PPARα. N, N-

terminus; DBD, DNA-binding domain; LBD, ligand-bindind domain and C, C-

terminus (Murphy & Holder, 2000). 
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Figure 1.3 Gene transcription mechanisms of PPARγ. PPAR/RXR 

heterodimer binds to a PPRE in the regulatory regions of target genes, 

thereby governing the expression of the downstream target genes. 
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Structurally, PPRE consists of direct repeat of the nuclear receptor 

hexameric DNA core recognition motif AGGTCA separated by one nucleotide, 

known as DR-1 response elements (Lemberger et al., 1996; Juge-Aubry et 

al., 1997). 

 

1.3.1 The structural organization of PPARγ gene 

PPARγ has been cloned from a number of species, including mouse 

(Zhu et al., 1993; Kliewer et al., 1994), hamster (Aperlo et al., 1995), cattle 

(Sundvold et al., 1997), pig (Houseknecht et al., 1998) and human (Greene et 

al., 1995; Elbrecht et al., 1996).  

The PPARγ gene, which has 9 exons (Figure 1.4) and extends over 

more than 100kb of genomic DNA for human (Fajas et al., 1997) and 105kb 

for mouse (Zhu et al., 1995), is mapped to chromosome 6 E3-F1 by in situ 

hybridization (Zhu et al., 1995). 

In contrast to human, in which four PPARγ mRNA isoforms have been 

identified so far, i.e., PPARγ1, γ2 (Fajas et al., 1997), γ3 (Fajas et al., 1998) 

and γ4 (Sunvold & Lien, 2001), in mouse, only two PPARγ mRNA isoforms 

have been detected, termed PPARγ1 and γ2 (Zhu et al., 1995). The two 

mRNA isoforms of PPARγ arise as products of different promoter usage and 

alternative splicing from a single PPARγ gene, which differ only at their 5’ 

ends (Figure 1.4). 
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Figure 1.4 Structural organization of mPPARγ gene. The eight exons (A1, 

A2, and 1-6) encoding the mPPARγ1 and the seven exons (B and 1-6) 

encoding the mPPARγ2 are shown in the genomic DNA. γ1P and γ2P 

represent the promoter of mPPARγ1 and mPPARγ2, respectively.   
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 The PPARγ1 is encoded by 8 exons whereas PPARγ2 is encoded by 7 

exons (Figure 1.4). Consistent with the production of two PPARγ mRNAs, 

there are two PPARγ promoters, each with a specific and distinctive 

expression pattern (Zhu et al., 1995). The two PPARγ transcripts differ in their 

5’end. PPARγ1 mRNA codes for one protein, while PPARγ2 codes for a 

different protein containing 28 additional amino acids at the N-terminus to the 

start codon of PPARγ1 for human (Sundvold et al., 1997) and 30 additional 

amino acids for mouse (Zhu et al., 1995).  

 In PPARγ1, the two most upstream exons A1 and A2 comprise the 5’ 

untranslated region (UTR) and are spliced to the six most 3’ proximal exons 

(Kliewer et al., 1992) which encompass the common coding region shared by 

the two isoforms. The 5’ untranslated region (UTR) of PPARγ2 plus the 

additional 30 N-terminal amino acids specific to PPARγ2 are encoded by exon 

B, located between exon A2 and exon 1 (Zhu et al., 1995).  

Thus, exons A1 and A2 are spliced with exon 1 to 6 to give rise to 

PPARγ1 mRNA. PPARγ2 mRNA is generated by splicing of exon B to exon 1 

to 6. Each of the two zinc fingers of the DNA-binding domains of mPPARγ is 

encoded by a separate exon (exon 2 and 3, respectively). The ligand-binding 

domain is encoded by two exons which are exons 5 and 6.    
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1.3.2 Tissue distribution and expression patterns of PPARγ 

 PPARγ mRNA is expressed in a tissue-specific manner. A comparison 

of the tissue-distribution of PPARγ transcripts among different species shows 

PPARγ mRNAs are specifically expressed at high levels in mammalian 

adipose tissue, large intestine and hematopoietic cells (Tontonoz et al., 

1994b) and variable, but generally at lower levels in other tissues like kidney, 

liver and small intestine  (Aperlo et al., 1995). Interestingly, PPARγ is barely 

detectable in muscle (Fajas et al., 1997; Auboeuf et al., 1997).  

Analysis of the tissue distribution of the two PPARγ isoforms revealed 

that PPARγ1 shows rather ubiquitous distribution, whereas PPARγ2 had a 

more restricted distribution. PPARγ2 is much less abundant in all tissues 

analyzed compared to PPARγ1, the predominant PPARγ isoform. The only 

tissue expressing significant amounts of PPARγ2 is adipose tissue, where its 

mRNA makes up about 20% of total PPARγ mRNA (Fajas et al., 1997; 

Auboeuf et al., 1997).  

Previous research showed that the expression of PPARγ2 mRNA is 

markedly increased very early during adipocyte differentiation (Chawla et al., 

1994; Tontonoz et al., 1994b; Tontonoz et al., 1994c). Early induction of 

PPARγ2 expression during adipocyte differentiation and its adipose tissue 

selectivity suggesting its pivotal role in the regulation of adipocyte 

differentiation.  
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In addition to the role in adipocyte differentiation, PPARγ has also been 

shown to play a pivotal role in monocytes differentiation. It was reported that 

PPARγ is expressed in cells of the monocyte/macrophage lineage (Tontonoz 

et al., 1998; Greene et al., 1995; Ricote et al., 1998b; Jiang et al., 1998; 

Chinetti et al., 1998; Marx et al., 1998b) suggesting that PPARγ is involved in 

the development of monocyte along the macrophage lineage, in particular in 

the conversion of monocytes to foam cell in the development of 

atherosclerosis (Tontonoz et al., 1998).  

PPARγ is also found expressed in several carcinomas, suggesting a 

role in the differentiation of cancer cell lines and in cell cycle regulation 

(Tontonoz et al., 1997; Altiok et al., 1997; Kubota et al., 1998; Mueller et al., 

1998; DuBois et al., 1998). 

 

1.3.3 Natural and synthetic ligands of PPARγ 

 PPARγ is a ligand-activated transcription factor. The binding of ligands 

to the receptor greatly increases its transcriptional activity. The ligand binding 

domain (LBD) of PPARγ consist of 13 α helices and a small four-stranded β 

sheet forming a large Y-shaped hydrophobic pocket (Figure 1.5). This pocket 

represents the ligand binding cavity and has a volume of approximately 1300 

Å3, which is about twice that of the other nuclear receptors (Wagner et al., 

1995). 

 

 

 
 



 13

 

 

 

 

 

 

 
Figure 1.5 Three-dimensional structure of ligand binding domains of 

PPARγ. An X-ray crystal structure of PPARγ (yellow ribbon) is shown. PPARγ 

is shown associated to LXXLL peptides (blue ribbons), the signature motif of 

the receptor coactivators. The solvent-accessible ligand binding pocket is 

displayed as an off-white surface (from Xu et al., 2001). 
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The PPARγ ligands occupy ~30 –40% of the pocket, in contrast to the 

thyroid hormone receptor, where the ligand fills around 90% of the pocket 

(Wagner et al., 1995). Besides its large size, another characteristic feature of 

the PPARγ ligand binding pocket is that its bottom portion is sealed by helix 2’, 

which is absent in other nuclear receptors. This particular helix may increase 

the size of the pocket, and possibly participates in an entry channel for the 

ligand.  

The structural alignment of the ligand binding cavities of PPARγ 

showed that the ligand selectivity depends on the identity of a single amino 

acid histidine in helix 5. This selectivity seems to be conserved between 

different ligand classes and corresponds to an intrinsic property of the 

receptors (Xu et al., 2001). The characteristics of the PPARγ LBD give insight 

into the propensity of PPARγ to interact with a variety of natural and synthetic 

compounds (Xu et al., 1999; Nolte et al., 1998).  

 A broad spectrum of synthetic and naturally occurring substances can 

serve as PPARγ ligands, including pharmacological molecules, as well as fatty 

acids and fatty acid-derived products. PPARγ is bound and activated by 

naturally occurring arachidonic acid metabolites derived from cycloxygenase 

and lipoxygenase pathways, such as 15-deoxy-Δ12,14-prostaglandin J2 (15-

dPGJ2), 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-hydroxyeicosa-

tetraenoic acid (15-HETE) (Forman et al., 1995; Kliewer et al., 1995; Nagy et 

al., 1998; Huang et al., 1999) (Figure 1.6). 
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Figure 1.6 Natural ligands of PPARγ. PPARγ is activated by natural 

activators derived from fatty acids through the cycloxygenase and 

lipoxygenase pathways such as 15-dPGJ2, 12-HETE, 15-HETE, 9-HODE and 

13-HODE. 
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In addition, other eicosanoids and unsaturated fatty acids are also 

reported to bind and activated PPARγ. This has been shown for the ω-3 

polyunsaturated fatty acids, α-linolenic acid, eicosapentaenoic acid and 

docohexanoic acid (Krey et al., 1997; Kliewer et al., 1997). It was also shown 

that two eicosanoids present in oxidized low density lipoproteins (oxLDL) i.e. 

9-hydroxyoctadecadienoic acid (9-HODE) and 13-hydroxyoctadecadienoic 

acid (13-HODE) are potent endogenous PPARγ ligands (Nagy et al., 1998) 

(Figures 1.6 and 1.7). 

The synthetic compounds, thiazolidinediones (TZDs) or “glitazones” 

which include troglitazone, pioglitazone and rosiglitazone (Figure 1.8) are the 

first compounds reported as high-affinity PPARγ agonists (Lehmann et al., 

1995). TZDs are currently being used for the treatment of insulin resistance 

and type II diabetes mellitus. TZD treatment results in a concomitant fall in 

glucose and insulin levels, through its insulin-enhancing action (Schwartz et 

al., 1998).  

Non-TZDs such as isoxazolidinedione JTT-501 (Shibata et al., 1999) 

and the tyrosine-based GW-7845 (Figure 1.8) have PPARγ activation 

properties with significant anti-diabetic and anti-carcinogenic activities in 

rodents (Cobb et al., 1998; Suh et al., 1999). 

Certain non-steroidal anti-inflammatory drugs (NSAIDs), including 

indomethacin and ibuprofen, had been shown to bind and activate PPARγ at 

high micromolar concentrations (Lehmann et al., 1997). Several other 

NSAIDs, including fenoprofen and flufenamic acid, were also shown to be 

weak PPARγ agonists (Lehmann et al., 1997). 
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Figure 1.7 Structure of natural ligands of PPARγ. 15-deoxy-Δ12,14-

prostaglandin J2 (15-dPGJ2), eicosapentaenoic acid (EPA), 9-hydroxy-

octadecadienoic acid (9-HODE) and 13-hydroxyoctadecadienoic acid (13-

HODE) are potent PPARγ ligands. 
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Figure 1.8 Structure of synthetic agonists and antagonists of PPARγ. 

Troglitazone, pioglitazone, rosiglitazone, JTT-501, GW-7845 and CDDO are 

agonists of PPARγ; BADGE and LG-100641 are antagonists of PPARγ.   
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Novel PPARγ partial agonists and antagonists have been recently 

identified. Triterpenoid 2-cyano-3, 12-dioxooleana-1,9-dien-28-oic acid 

(CDDO) (Figure 1.8) is a partial agonist with anti-inflammatory properties 

(Wang et al., 2000). Bisphenol diglycidyl ether (BADGE) and LG-100641 

(Figure 1.8) are recently identified PPARγ antagonists (Wright et al., 2000; 

Mukherjee et al., 2000). Although these compounds have less clinical 

significance, they may be useful in understanding PPARγ physiology and the 

identification of new ligands. 

In addition to synthetic chemical methods, research in natural products 

has also yielded potent PPARγ agonists from several medicinal plants. 

Saurufuran A from Saururus chinensis (Saururaceae) (Hwang et al., 2002), 

flavonoids such as chrysin, apigenin and kampferol (Liang et al., 2001) and 

phenolic compounds from Glycyrrhiza uralensis (Fabaceae) (Kuroda et al., 

2003) are recently identified PPARγ agonists. 
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1.3.4 Cofactors for the PPARγ 

Cofactors have been shown to play an important part in the 

transcriptional control of PPARγ. They act as coactivators or corepressors that 

mediate the ability of PPARγ to initiate or suppress the transcription process. 

They interact with nuclear receptors in a ligand-dependent manner 

(Lemberger et al., 1996). 

Initially, it was thought that the cofactors simply bridge PPARγ with the 

basic transcriptional machinery. However, it has become clear that these 

cofactors also carried several enzymatic activities, suggesting that they could 

control gene expression by specifically modifying chromatin and DNA 

structure (Glass et al., 1997; Pazin & Kadonaga, 1997; Moras & Gronemeyer, 

1998). It is suggested that in the absence of any ligand, PPARγ may bind to 

corepressors which extinguish its transcriptional activity by the recruitment of 

histone deacetylases. Histone hypoacetylation is associated with condensed 

nucleosomes and thereby transcriptionally silent (Glass et al., 1997; Pazin & 

Kadonaga, 1997; Moras & Gronemeyer, 1998).  

Ligand binding induces a conformational change in the receptor that 

results in the dissociation of corepressors and removal of histone 

deacetylases from DNA with subsequent recruitment of coactivator complexes 

that contain proteins with histone acetyltransferase activity. Acetylation is 

associated with changes of nucleosome conformation which modulates 

accessibility of promoter regions and facilitates transcription, thereby 

increases the transcription of target gene (Glass et al., 1997; Pazin & 

Kadonaga, 1997; Moras & Gronemeyer, 1998) (Figure 1.9).  
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   Inactive state       Active state 
 

Figure 1.9 Transcriptional activation of nuclear receptors. Transcriptional 

activation of nuclear receptors requires, in general, the release of corepressor 

(CoR) complexes, which contain histone deacetylase activity (HDAC), and the 

recruitment of coactivators (CoA), which target histone acetyl transferases 

(HAT) to the promoter. The differential docking of cofactors is facilitated by 

structural changes brought about by ligand-binding or receptor 

phosphorylation. 
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Some of these cofactors include members of two families of histone 

acetylases, i. e. CBP/p300 and steroid receptor coactivator (SRC)-1, as well 

as PPAR binding protein (PBP), PPAR gamma coactivator (PGC)-1 and 

silencing mediator for retinoid and thyroid hormone receptors (SMRT).  

CBP and p300 were originally identified as CREB (cAMP-responsive 

binding protein) and E1 A interacting factors (Chrivia et al., 1993; Eckner et 

al., 1994; Janknecht & Hunter, 1996a; Janknecht & Hunter, 1996b). 

CBP/p300 are widely expressed (Misiti et al., 1998) and coactivate numerous 

transcription factors including several nuclear receptors (Chakravarti et al., 

1996; Hanstein et al., 1996; Kamei et al., 1996; Smith et al., 1996; Dowell et 

al., 1997; Kraus & Kadonaga, 1998). CBP/p300 interacts with PPARγ through 

multiple domains in each protein (Gelman et al., 1999). Most notably, the NH2-

terminal region of PPARγ can dimerize with CBP/p300 in the absence of 

ligand and this association enhances its constitutive AF-1 transcriptional 

activity (Gelman et al., 1999). The constitutive presence of CBP/p300 could 

enhance the basal ligand-independent transcriptional activity of PPARγ in vivo 

and could thereby explain the high level of basal activity of PPARγ. 
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1.4 Atherosclerosis  

Atherosclerosis is a complex vascular disease initiated by 

accumulation and oxidation of plasma low-density lipoprotein (LDL) in the 

sub-endothelial space of the vessels. The development of atherosclerosis, 

however, is a complex long term process which involves recruitment and 

activation of different cell types, including monocytes/macrophages, 

endothelial cells, smooth muscle cells and T-lymphocytes in the intima of the 

arteries, thus leading to a local inflammatory response (Ross, 1999).  

The trapped monocytes differentiate into macrophages that take up 

oxidized low-density lipoproteins (OxLDL) through scavenger receptors (SR), 

thus forming foam cells. Activated smooth muscle cells (SMC) proliferate and 

migrate from the media thus leading to neo-intima formation. Activation of 

these cells leads to the release of pro-inflammatory cytokines, which 

combined with the secretion of metalloproteases and expression of pro-

coagulant factors, results in chronic inflammation and plaque instability. This 

can further evolve to plaque rupture and acute occlusion by thrombosis, 

resulting in myocardial infarction and stroke (Figure 1.10) [Ross, 1993; Ross, 

1995; Ross, 1999; Lusis, 2000].  

PPARγ has been reported to play an important role in the development 

of atherosclerosis. Interestingly, there are contradicting reports on the role of 

PPARγ in atherogenesis having demonstrated to produce pro-atherogenic 

effects in some contexts but anti-atherogenic effects in others.    
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Figure 1.10 The atherosclerosis process. (from Lusis, 2000). 
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