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PENCIRIAN ASAS TEMPURUNG KELAPA SAWIT SEBAGAI MEDIUM PAYA 
BINAAN DAN KESAN PEMBENTUKAN BIOFILM TERHADAP 

PENJERAPAN KUPRUM (II) PADA MEDIUM 
 
 

ABSTRAK 

 

Kajian ini dilakukan untuk menilai potensi tempurung kelapa sawit sebagai medium 

paya binaan dan menyelidik kesan pembentukan biofilm pada medium ini terhadap 

penjerapan kuprum (II).  Mikrokosm berasaskan tempurung kelapa sawit ditanam dengan 

anak Typha angustifolia dan dibiarkan terdedah pada iklim tropika bersama-sama dengan 

mikrokosm-mikrokosm berasaskan medium lain.  Kesemua mikrokosm ini dipantau selama 

satu setengah tahun.  Didapati mikrokosm berasaskan tempurung kelapa sawit adalah 

superior dari segi tumbesaran ketinggian, penjanaan pucuk dan pertambahan berat kering 

pokok.  Tempurung-tempurung kelapa sawit tanpa biofilm dan berbiofilm kemudiannya 

dikaji menerusi siri ujikaji kelompok dan turus.  Data ujikaji mematuhi model Langmuir; 

kapasiti penjerapan maksimum tempurung kelapa sawit tanpa biofilm dan berbiofilm 

masing-masing adalah 5.29 mg/g dan 4.88 mg/g.  Kedua-dua medium ini memberikan 

pekali regresi melebihi 0.98 apabila data ujikaji masing-masing diaplikasikan ke dalam 

persamaan tertib pseudo-kedua, mencadangkan lebih daripada satu parameter kawalan 

terlibat dalam proses penjerapan.  Keupayaan penjerapan medium ini boleh dijana semula 

menerusi proses pengelusian mudah dengan menggunakan 0.1 M HNO3 sebagai 

pengelusi, menunjukkan kebolehpanjangan jangka hayat medium penjerap ini dan potensi 

perolehan semula logam yang terjerap.  Walau bagaimanapun, biofilm yang terbentuk pada 

tempurung kelapa sawit secara amnya telah merendahkan prestasi penjerapan dan 

dapatan ini diterangkan dengan mencadangkan disebabkan oleh kesan halangan.  

Berdasarkan parameter-parameter yang dikaji, tempurung kelapa sawit didapati sesuai 

untuk kegunaan paya binaan.  Namun demikian, kesan sampingan sementara yang 

dibincangkan perlu diambilkira sebelum menggunakan medium ini dalam sistem paya 

binaan untuk rawatan air sisa berskala penuh. 
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BASIC CHARACTERISATION OF OIL PALM SHELL AS CONSTRUCTED 
WETLAND MEDIA AND THE EFFECT OF BIOFILM FORMATION 

ON ITS ADSORPTION OF COPPER (II) 
 
 

ABSTRACT 

 

This study was conducted to assess the potential of oil palm shell as 

constructed wetland media and to investigate the effect of biofilm formation on the oil 

palm shell on its adsorption of copper (II).  The oil palm shell-based microcosm was 

planted with Typha angustifolia plantlets and left outdoor in tropical environment 

together with other media-based microcosms.  These microcosms were monitored for a 

period of one and a half years.  The oil palm shell-based microcosm was found to be 

superior in terms of plant height growth, shoot generation rate and dry biomass gain.  

The non-biofilmed and biofilmed oil palm shell were then experimented via a series of 

batch and column experiments.  The experimental results obeyed the Langmuir model; 

the non-biofilmed and biofilmed oil palm shell were found to have the maximum 

adsorption capacity of 5.29 mg/g and 4.88 mg/g, respectively.  Both these media gave 

the regression coefficients over 0.98 when their experimental results were applied to 

the pseudo-second order equation, suggesting that more than one rate controlling step 

were involved in their adsorption processes.  Their adsorption capabilities can be 

regenerated upon exhaustion via a simple elution process utilising 0.1 M HNO3 as the 

eluent, indicating the extendable lifespan of these sorbents as well as the potential 

recovery of the metal adsorbed.  However, the biofilmed formed on the oil palm shell 

has generally caused its adsorption performance to reduce and this was explained by 

proposing the barrier effect.  Based on the parameters studied, the oil palm shell is 

concluded to be suitable for constructed wetland application; nonetheless, the 

temporary impacts discussed must be taken into consideration before utilising it in a full 

scale constructed wetland system for wastewater treatment. 



 

 

CHAPTER 1 

 

INTRODUCTION 

 

This research is intended to support the theme sustainable development and 

green technology (UNCED, 1992; WCED, 1987).  It is hoped to deliver some 

contribution to academia in these fields as well.  The local situation in Sabah, where 

the researcher did his early tertiary educations and currently working in, has aroused 

and propelled the initial ideas.  Further ideas were developed and experimented in 

Universiti Sains Malaysia (USM), Penang. 

 

 

1.1 The Birth of Idea 
 

The series of field trips dated back to 1998 (when the researcher was in his 

second undergrad year) has given birth to the initial ideas in this work where the series 

of environmental issues and observations were merged together to form a possible 

win-win solution. 

 

There was this Lohan tailing’s dam which is famous among the local residents 

of Lohan-Ranau area where there were rumours about environmental heavy metal 

pollution inflicted by copper mining activity.  Since the tailings were transported via 

pipeline from Mamut copper mine to Lohan tailing’s dam; water were used to ease the 

flow and this resulted in diluted effluent which comply to the Environmental Quality Act 

(EQA) 1974 (LRB, 2004) requirement.  The effluent was discharged directly via the 

overflow of the tailing’s retention dam into Lohan River without any treatment then. 



 2

 

The Lohan River is a high flowing river throughout the year, thus the 

environmental pollution was masked.  Fortunately today, the mine has ceased its 

operation.  The Mamut open pit mine is now a lake and the Lohan tailing’s dam is now 

a dumpsite planted with Typha spp. mimicking a freshwater wetland.  Although this 

local issue is not a tragedy like what has happened at Minamata Bay but it is still a long 

term micro-dose exposure of heavy metal to the local environment, especially the 

residual copper, which could have been prevented (Chen et al., 1996). 

 

In 1999, new copper prospects were discovered next to Mamut.  There is no 

mining until today; however, there is no warranty that it would not happen in future 

when the copper price is attractive enough to lure miner.  If mining took place one day, 

it would be good to retain the micro-dose of heavy metal before discharging the effluent 

into any river.  The most economical way is to use cheap biosorbent and/or heavy 

metal precipitation inducing medium and let the environment fix itself naturally. 

 

In search of biosorbent, the cheapest would be the unwanted material.  

Coincidently, there is a lot of oil palm waste available in Malaysia.  Empty fruit bunch 

(EFB), palm shell and mesocarp fibre are normally utilised as fuel to generate electricity 

via mill’s boiler.  Although the oil palm mesocarp fibre yields less heat then the shell, it 

is normally the first to be burnt as it will be a nuisance if wind blows it around.  As a 

result, excessive oil palm shell remained, some are used for road surfacing in the mill 

and it’s surrounding while some often caught fire.  By common sense, the oil palm shell 

contains fatty products and should adsorb heavy metal.  If anyone were to remove low 

dose of heavy metal by utilising oil palm shell, the operation must be economical 

otherwise it would not be feasible. 

 



 3

Any economical operation must be energy and man power saving, and low 

maintenance (self organising).  A design that mimics a column or filter bed to contain 

the biosorbent and the heavy metal laden water in it simultaneously is needed in order 

to enable adsorption process to take place.  Coincidently again, there is a sizeable lake 

behind the School of Science and Technology, Universiti Malaysia Sabah (UMS).  

Although this lake was created to trap silts during heavy down pour, it functions as 

freshwater wetland most of the time purifying water in it and provides habitats for small 

wildlife as the wetlands in Putrajaya.  And thus, the idea of experimenting oil palm shell 

as constructed wetland media to adsorb the copper was born. 

 

 

1.2 Constructed Wetland 
 

1.2.1 Definition 
 

A constructed wetland is a designed and man-made complex of saturated 

substrate, emergent and/or submergent vegetation, animal life and water that simulate 

natural wetlands for human use and benefits (Ho, 2002).  There are many other 

versions of definition available today; however, it is generally agreed that constructed 

wetland is an artificial engineered piece of “land” which is saturated with water, 

developed to mimic the natural wetland for various purpose of mankind such as water 

treatment and landscaping. 

 

Among the scientific community, constructed wetland could be vegetated or 

unvegetated (Artsanti, 2005; Huett et al., 2005; Karathanasis et al., 2003; Tong and 

Sikora, 1995) and terms such as microcosm (Yang et al., 2001; Gillespie et al., 1999; 

Ingersoll and Baker, 1998), mesocosm (Ahn et al., 2001; McBride and Tanner, 2000) 

and macrocosm (Bachand and Horne, 2000) refer to the small scale experimental units 
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of the constructed wetland system (normally vegetated) which simply mean micro, 

meso and macro ecosystem, respectively. 

 

 

1.2.2 Basic components 
 

At the very minimum, constructed wetland must consist of at least substrate and 

water.  The substrate refers to the medium that provides physical support for the plants 

and microbial attachments.  Throughout this thesis, the word “media” and “sorbent” are 

used interchangeably with “substrate”.  The second component is water which 

contributes its “wetness”.  Because constructed wetland is a non-sterile environment 

which exposed to air.  Microbial growths in the media-water phase which form the 

biofilm is unavoidable; thus, the third component (Artsanti, 2005).  The unvegetated 

constructed wetland is also known as filter bed. 

 

Typically, constructed wetland is vegetated with aquatic plant.  In constructed 

wetland research, it is normally agreed that the basic components of a constructed 

wetland are the media, waterbody and plant, which in turn became the adjustable 

parameters for the research such as the type of media used (Drizo et al., 2006; 

Prochaska and Zouboulis, 2006; García et al., 2003; Scholz and Xu, 2002a; Brooks et 

al., 2000; Gray et al., 2000), type of wastewater fed (Dunne et al., 2005; Ahmad et al., 

2003; Mays and Edwards, 2001) and other hydraulic properties (Tao et al., 2006; 

Jenkins and Greenway, 2005; García et al., 2003), and type of plant used (Gottschall et 

al., 2007; Akratos et al., 2007; Iamchaturapatr et al., 2007; Bragato et al., 2006; 

Karathanasis et al., 2003).  There are various experimental mathematical simulation 

models that derived from these adjustable parameters available for specific purposes 

today (Stein et al., 2006; Mayo and Bigambo, 2005; Marsili-Libelli and Checchi, 2005; 
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Wynn and Liehr, 2001; McBride and Tanner, 2000; Kadlec, 2000; Werner and Kadlec, 

2000; Mitsch and Wise, 1998). 

 

 

1.2.3 Design 
 

Constructed wetland designs include horizontal surface and sub-surface flow, 

vertical flow, floating raft and batch system (Ragusa et al., 2004; Shutes et al., 2002).  

Surface flow (SF) wetland is similar to the natural marsh and is normally planted with 

macrophytes.  In sub-surface flow (SSF) wetland, wastewater flows horizontally or 

vertically through the substrates.  The SSF system is more effective than the SF 

system at removing pollutants at high application rates (Shutes et al., 2002); which also 

explain why most wastewater treatment research experimental designs are of SSF 

system.  Nonetheless, the batch system is gaining popularity in small scale research as 

it is relatively easier and cheaper to operate (Stein et al., 2006; Grove and Stein, 2005; 

Ragusa et al., 2004; Nelson et al., 1999).  Various flow-designs of constructed wetland 

system may be combined (hybrid system) in order to achieve higher treatment effect, 

especially for nitrogen removal (Vymazal, 2005; Pastor et al., 2003). 

 

The technical aspects of system design and treatment efficiency rely mostly on 

the hydraulic behaviour.  The easiest way to optimise a constructed wetland 

wastewater treatment system is to maximise the hydraulic flow path by manipulating its 

inlet-outlet position (Suliman et al., 2006; Somes and Wong, 1997).  Another typical 

method is to optimise the contact time and/or contact surface area between the media 

(including biofilm), plant rooting matrix and wastewater.  This type of optimisation is 

normally done by adjusting the aspect ratio of the constructed wetland system, 

hydraulic loading rate (HLR), media size, and water or media depth (Maloszewski et al., 

2006; García et al., 2005; García et al., 2004; Pastor et al., 2003).  To further exploit 
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the hydraulic flow path, one can actually adopt different strategies of filling the media 

into the constructed wetland (Suliman et al., 2007). 

 

The bed depth of the constructed wetland system varies depending on the 

design and purpose of the intended treatment or study which could be 15 cm (Manyin 

et al., 1997), 20 cm (Wild et al., 2001), 27 cm (García et al., 2005), 30 cm (Ingersoll 

and Baker, 1998), 35 – 40 cm (Groudeva et al., 2001), 40 cm (Ahn et al., 2001), 45 cm 

(Akratos and Tsihrintzis, 2007; Yang et al., 2001), 50 cm (Price and Probert, 1997; 

Tong and Sikora, 1995), 60 cm (Peverly et al., 1995) etc.  Nonetheless, Shutes et al. 

(1997) recommended the minimum bed depth of 60 cm for full scale SSF system. 

 

 

1.2.4 General applications 
 

Constructed wetland was initially developed to exploit and improve the 

biodegradation ability of plants.  Constructed wetland wastewater treatment technology 

may be relatively slow compared to conventional wastewater treatment technology; 

however, it offers low construction and operating cost, and is appropriate both for small 

communities and as a final stage treatment in large municipal systems (Shutes et al., 

2002; Kivaisi, 2001).  The role of constructed wetland in sustainable development 

(Price and Probert, 1997) as well as its challenges (Bavor et al., 1995), advantages 

and disadvantages (Gopal, 1999; Verhoeven and Meuleman, 1999; Brix, 1999) have 

been discussed by numerous authors. 

 

The performance of constructed wetland system is normally influenced by its 

area, length to width ratio, water depth, HLR and hydraulic retention time (HRT).  

Efficiency above 90% is normally achieved for the removal of pathogenic 

microorganisms, an expectable 80% for the removal of organic materials and 
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suspended solids; however, nutrient removal efficiency is normally below 60% (Shutes, 

2001).  Heavy metal removal is often above 70% (Lim et al., 2003b). 

 

Over the years, constructed wetland technology has been utilised in many parts 

of the world.  As tabulated in Table 1.1, researches on constructed wetland wastewater 

treatment systems are gaining interest in many areas of water pollution control.  Due to 

its versatility, it is common to treat more than a pollutant simultaneously; this is 

especially true with the advancement of the hybrid design (Vymazal, 2005). 

 

Table 1.1: Examples of various pollutants treated utilising constructed wetland wastewater 
treatment system 

 
Pollutants Selected references 
Oxygen demand 
 

Caselles-Osorio and García, 2006; Karathanasis et al., 2003; Lim et al., 
2003a; Ji et al., 2002; Lim et al., 2001 

Solids Ansola et al., 2003; Braskerud, 2003; Karathanasis et al., 2003 

Nutrient Gottschall et al., 2007; Akratos and Tsihrintzis, 2007; Vymazal, 2007; 
Koottatep and Polprasert, 1997 

Heavy metal Maine et al., 2006; Ahmad et al., 2003; Lim et al., 2003b; Scholz and Xu, 
2002b; Lim et al., 2001; Groudeva et al., 2001 

Organic Davies et al., 2006; Grove and Stein, 2005; Runes et al., 2003; Groudeva 
et al., 2001; Pinney et al., 2000 

Pathogen Wand et al., 2007; Keffala and Ghrabi, 2005; Karim et al., 2004; Mayo, 
2004; García et al., 2003; Cheng et al., 2002a 

Landfill leachate Ahmad et al., 2006a; Ahmad et al., 2006b; Bulc, 2006; Ahmad et al., 2003 
Urban run off Shutes et al., 1997 
Explosives Best et al., 1999 

 
 

 

1.2.5 Treatment of heavy metal 
 

Heavy metal toxicity is a function of both concentration and form (Murray-Gulde 

et al., 2005).  Natural wetland is an effective sink for heavy metal and so do 

constructed wetland (Dunbabin and Bowmer, 1992).  There are results of 16 years 

monitoring that show that constructed wetland is efficient and stable in purifying heavy 

metal contaminated wastewater (Yang et al., 2006).  Other evidences on heavy metal 



 8

removal (in special reference to lead, Pb) utilising wetland technology is available in the 

literature by Odum (2000). 

 

Unlike the removal of heavy metal in conventional wastewater treatment 

system, the mechanism of heavy metal removal in wetland system is much more 

complicated and it involves at least six mechanisms that happen simultaneously as 

described in the paragraphs hereafter.  Conceptual models for predicting heavy metal 

removal performance in a constructed wetland system have been presented by at least 

two teams of researchers (Lee and Scholz, 2006; Flanagan et al., 1994). 

 

The moment heavy metal laden wastewater enters a constructed wetland 

system; it is subjected to physical filtration.  The plant and media slow the flow of water 

through the system, allowing fine particles to settle out.  Emergent plants as well as the 

substrate may trap and retain sediments, and prevent turbulent resuspension.  

Therefore, it is common to find that heavy metal concentration in wetland substrate 

decrease along the course of treatment with its highest concentration at the inlet’s 

surrounding (Cheng et al., 2002b; Obarska-Pempkowiak and Klimkowska, 1999). 

 

Because the wetland substrate is most likely to contain humic substance, 

complexation of heavy metal ion-humic substance will occur.  At the same time, due to 

the presence of microbes; microbial mediation reactions will take place with the heavy 

metal ion via oxidation, reduction and biosorption.  These two mechanisms eventually 

lead to the precipitation of insoluble heavy metal sulphides where oxygen is low at the 

bottom of the substrata (Hallberg and Johnson, 2005a and 2005b; Walker and Hurl, 

2002; Groudeva et al., 2001; Groudev et al., 1999; Sobolewski, 1996). 

 

The simplest way of treating heavy metal laden water is via adsorption; it is 

sometimes known as biosorption when a biological entity or mass is the sorbent.  In 
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wetland system, heavy metal ion is attracted to the negative charge of the organic 

material as well as the biofilm (Wood and Shelley, 1999; Machemer and Wildeman, 

1992).  However, adsorption plays a small overall role in the removal of heavy metal in 

wetland system unless at the initial stage where the organic and microbial abundance 

is low.  Therefore, it is not necessary to employ expensive high sorptive media as a 

constructed wetland media (Scholz, 2003). 

 

The last, but not less important, mechanism of removal is plant uptake.  Over 

the years, researchers have proven the ability of macrophytes in uptaking heavy metal 

from wastewater.  However, the heavy metal uptake by plant contributes only a small 

part of heavy metal removal in constructed wetland system with the highest uptake 

occurs in the root zone where the plant is in direct contact with the heavy metal laden 

wastewater (Bragato et al., 2006; Fritioff and Greger, 2006; Mays and Edwards, 2001; 

Scholes et al., 1998; Mungur et al., 1995).  Manios et al. (2003) found that the heavy 

metal accumulated in the plant does not exhibit any toxic effect to the plant itself.  

When the plant dies, it provides organic material to the system, thus providing carbon 

source to the microbial community as well as organic adsorption site for further heavy 

metal adsorption (Batty and Younger, 2007). 

 

 

1.3 Malaysia Oil Palm Scenario 
 

Indigenous to Africa, the oil palm (Elaeis guineensis) has been domesticated 

from the wilderness and transformed to become a plantation-based industry (SUSSC, 

2001).  Its commercial value lies mainly in the oil that can be obtained from the 

mesocarp of the fruit (palm oil) and the kernel of the nut (palm kernel oil).  Palm oil is 

used mainly for cooking (cooking oil, margarine etc.) and has non-food (soap, 

detergent, cosmetics etc.) applications. 
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The first commercial oil palm estate in Malaysia was set up in 1917 at 

Tennamaran Estate, Selangor (SUSSC, 2001).  The growth of the industry has been 

phenomenal and Malaysia is now the largest producer and exporter of palm oil in the 

world, accounting more than half of the world’s production with the total cultivated land 

area of approximately 3,800,000 ha (UMS, 2006). 

 

Exactly a decade ago, the Malaysian palm oil production was around 9,000,000 

ton (FOS, 2006); this figure has escalated to an average of 15,600,000 ton throughout 

the 2001 – 2005 seasons, and the production volume was 15,700,000 ton in 2006 

(Zaidi and Ooi, 2006).  Figure 1.1 illustrates these production figures over the period of 

2001 – 2006.  The Malaysian government is expanding production in eastern Malaysia, 

in special reference to the state of Sabah, as the growing importance of the crop is 

boosted by the need for palm oil-derived biodiesel (FOS, 2006). 
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Figure 1.1: Malaysia’s palm oil highlights (Zaidi and Ooi, 2006) 

 

The expansion of oil palm estate has caused changes in landuse (McMorrow 

and Mustapa, 2001).  It sometimes may have directly or indirectly caused human-

wildlife conflict where original forest land is cleared for oil palm planting.  In such case, 

habitat is destroyed, migration patterns may be hindered and travel corridors may be 
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blocked (CSPI, 2005).  This implication is less if the land were previously already a 

rubber or cocoa plantation. 

 

The main by-products and wastes produced from the processing of oil palm are 

EFB, palm oil mill effluent (POME), sterilizer condensate, mesocarp fibre and shell.  

Both EFB and POME have been used extensively as organic fertiliser in oil palm estate 

while the mesocarp fibre and shell are used as fuel, making the mill self-sufficient in 

energy (Mahlia et al., 2001).  The shell has also been used for road surfacing in estate. 

 

 

1.3.1 Sabah oil palm sector 
 

The state of Sabah, situated in North Borneo, is the biggest planter of oil palm 

in Malaysia with a planted land area of 1,209,368 ha as in 2005 (Hisamuddin, 2006) 

and it is setting itself to become the leading palm oil-based biodiesel player in the world 

when the Palm Oil Industrial Cluster (POIC) goes into full swing (Chris, 2006).  Lahad 

Datu has been identified as the palm oil industry hub of Sabah and Sarawak, and the 

Malaysian Oil Palm Training Centre (PLASMA – Pusat Latihan Sawit Malaysia) is 

established here as the government’s effort to assist in the development of the oil palm 

industry in Sabah and Sarawak via human capital development (MPOB, 2006). 

 

 

1.4 Copper 
 

Copper (Cu) is an essential nutrient to all higher plants and animals.  In 

humans, it is found primarily in the bloodstream as a cofactor in various enzymes and 

in Cu-based pigments.  However, the United States Environmental Protection Agency 

(EPA, 2006) has found Cu to potentially cause the following health effects when people 

are exposed to it at levels above the Maximum Contaminant Level Goals (MCLG).  
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Short periods of exposure can cause gastrointestinal disturbance, including nausea 

and vomiting.  Use of water that exceeds the MCLG over many years could cause liver 

or kidney damage.  The MCLG for Cu has been set at 1.3 mg/L.  In Malaysia, the 

Environmental Quality Act (EQA) 1974 (Act 127) has set the levels of 0.2 mg/L and 1.0 

mg/L for Standard A and Standard B effluents, respectively (LRB, 2004). 

 

This particular metal, Cu, has found a wide range of applications and is in high 

market demand.  Its price has quintupled since 1999, rising from USD 0.60/lb in June 

1999 to USD 3.75/lb in May 2006 where it began to drop steadily, most recently 

dropping below USD 3.00/lb in December 2006 (MetalSpotPrice.com, 2007). 

 

 

1.4.1 Mamut copper mine 
 

Mamut copper mine, the largest open pit mine in Malaysian history is located at 

northwest of Sabah about 68 km east of Kota Kinabalu, which is an equivalent of 

approximately 120 km by road.  The open pit and its facilities are located at the 

southeast of Mount Kinabalu, at the elevation of 1300 – 1600 m above sea level 

(Mohd. Azizli et al., 1995). 

 

 Mamut was a medium size porphyry copper-gold (Cu-Au) deposit with the pre-

mining reserve of 130,000,000 ton at a grade of 0.52% Cu and 0.56 g/ton of gold (Au).  

Other porphyry copper mining operations in South East Asia include Grasberg in Irian 

Jaya, Batu Hijau in Indonesia and Padcal in the Philippines (Perilya, 2006). 

 

 The Mamut was mined at a rate of 6,000,000 ton annually in a 24 years 

operation that ended in October 1999 to produce 580,000 ton of Cu, 300 ton of silver 
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(Ag) and 1,400,000 oz of Au (Perilya, 2006).  Throughout the operation it has earned 

more than RM 3 billion in export revenue for Malaysia (Tan, 2006). 

 

 Nonetheless, a common environmental issue associated with the mineral 

industries is the disposal and management of enormous masses of tailings from their 

processing operations.  In this case, the Lohan tailing’s dam has a total site area of 

about 400 ha and is located 15 km east of the mine (Mohd. Azizli et al., 1995).  

Indigenous residents in 17 villages throughout the Lohan area charged that the mine 

has hurt the fertility of their land, polluted their rivers and water supplies, and 

endangered their health (Weissman, 1994). 

 

 Mining activities ceased in October 1999 and environmental protection 

measures has been carried out to safeguard the interest of the surrounding residents.  

The state government claimed that there is no problem with the quality of water for 

consumption and it has invited investor to develop the abandoned 4800 ac mine site 

into a resort development project.  Local university campus was also proposed to be 

erected at the Lohan tailing’s dam site (Sabah government, 2001). 

 

 On the other hand, there are new copper prospects discovered in early 1999 at 

Bongkud, Junction and Napong (which collectively known as Tampang Project) close 

to the township of Ranau.  These prospects consist of coincident Cu-Au in soil and 

geophysical anomalies that occurs to be associated with intrusive stocks along the 5 

km west-northwest trending Tampang trend structural corridor which situated in an area 

of granodiorite intrusion, collectively referred to as the Kinabalu Magmatic Zone 

(Perilya, 2006). 
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1.5 Biofilm 
 

1.5.1 Definition 
 

Most microorganisms live and grow in aggregates such as biofilm, floc 

(“planktonic biofilms”) and sludge.  This form of microbial life is described by the 

somewhat inexact but generally accepted term “biofilm” (Flemming et al., 2000).  

Earlier researchers have used other terms such as microbial or biological film, wall 

growth and microbial slimes instead of biofilm (Bryers, 2000a).  Throughout this thesis, 

the term biofilm is defined according to Characklis and Marshall (1990) as a surface 

accumulation, which is not necessarily uniform in time or space that comprises cells 

immobilised at a substratum and frequently embedded in an organic polymer matrix of 

microbial origin. 

 

 

1.5.2 Formation 
 

Although biofilm can occur in the form of floating mats on liquid surfaces, it is 

normally found on solid substrates submerged in or exposed to some aqueous 

solution.  In a favourable condition, biofilm will quickly grow to be macroscopic.  But 

before that, how does biofilm formed? 

 

Initially, the substratum is conditioned and microbial cells attach reversibly, then 

irreversibly.  The attached cells grow, reproduce and secrete insoluble extracellular 

polysaccharidic material to form a layer of biofilm.  As the biofilm matures, biofilm 

detachment and growth process come into balance, such that the total amount of 

biomass on the surface remains approximately constant in time (Bryers, 2000b).  

Details on structural determinants in biofilm formation are available in the written work 

of Wimpenny (2000). 
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Figure 1.2 graphically represents the processes governing biofilm formation and 

persistence which include the following steps. 

1. Biasing or preconditioning of the substratum either by macromolecules present in 

the bulk liquid or intentionally coated on to the substratum. 

2. Transport of planktonic cells from the bulk liquid to the substratum. 

3. Adsorption of cells at the substratum for a finite time followed by, 

4. Desorption (release) of reversibly adsorbed cells. 

5. Irreversible adsorption of bacterial cells at a surface. 

6. Transport of substrates to and within the biofilm. 

7. Substrate metabolism by the biofilm-bound cells and transport of products out of 

the biofilm.  These processes are accompanied by cellular growth, replication, and 

extracellular polymer production. 

8. Biofilm removal (detachment or sloughing). 

 

 

Figure 1.2: Processes governing biofilm formation (Bryers, 2000b) 

 

According to Tao et al. (2006), it took 1 – 6 weeks or less for maturation of the 

biofilm on submerged plant surfaces and the sedimentary microbial community in a 

constructed wetland system. 
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1.5.3 Conceptual models 
 

According to Lewandowski (2000), traditional conceptual of biofilm was that 

microorganisms are uniformly distributed in a continuous matrix of extracellular 

polymer.  Unfortunately, this model could not interpret the collections of microscale 

experimental results.  As a result, new conceptual model of heterogeneous biofilm has 

been suggested, that biofilm consists of microcolonies separated by interstitial voids 

(Figure 1.3). 

 

 

Figure 1.3: Diagrammatic representation of the structure of the hypothetical bacterial 
biofilm drawn from confocal scanning laser microscopy (CSLM) 
examination of a large number of mono- and mixed-species biofilms.  
The discrete microcolonies of microorganisms are surrounded by a 
network of interstitial voids filled with water.  The arrows indicate 
convective flow within the water channels (Lewandowski et al., 1995) 

 
 

 

1.5.4 Extracellular polymeric substances 
 

Apart from biochemical and biological, biofilm also display physical and physico-

chemical properties which are chiefly caused by the extracellular polymeric substances 

(EPS, also known as exopolysaccharide) that fill the space between the cells and 

account for a considerable proportion of the biofilm’s organic carbon content.  The EPS 

consist of polysaccharides and considerable amounts of protein, nucleic acids and 
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lipids.  Importantly, the EPS provide a matrix which allows the cells to maintain their 

position for a much longer period of time compared to planktonic mode; thus it forms 

the morphology and internal structure of biofilm.  The binding forces that contribute to 

the mechanical stability in biofilm are summarised in Figure 1.4.  A detailed 

documentation on EPS is available in the writing of Flemming et al., (2000). 

 

 

Figure 1.4: Proposed model for dominating intermolecular interactions which contribute to 
mechanical stability in a biofilm.  Five different phenomena are considered. 1 
= repulsive electrostatic interactions between ionic residues; 2 = attractive 
electrostatic forces, typically in the presence of divalent cations; 3 = hydrogen 
bonds; 4 = other electrostatic interactions, e.g. between dipoles; 5 = London 
(dispersion) interactions (Flemming et al., 2000) 

 
 

 

1.5.5 Persistency 
 

Biofilm is ubiquitous.  Nearly every species of microorganism has mechanisms 

by which they can adhere to surfaces and to each other.  Biofilm exist almost 

everywhere, as long as there is the presence of moisture or water, and it is highly 
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hydrated with a ratio of 1 – 2% to 98% (w/w) water is common (Christensen and 

Characklis, 1990). 

 

In our daily life, biofilm exist in our mouth as dental biofilm which causes dental 

decay.  The slimy substance (which typically invisible to naked eyes) on our fish tank 

wall as well as the rocks in the pool are all biofilm of their own kind.  Biofilm can also 

exist in hot spring (Chong, 2001).  In the industrial sector, biofilm is normally a set back 

as it decreases process efficiency and is costly to manage.  In the medical field, biofilm 

is often associated with disease and presister cell where it has caused some problems 

that antibiotic does not seems to work.  However, biofilm is useful in the process of 

water treatment to treat organic related pollutants. 

 

 

1.5.6 Notes on biofilm-heavy metal 
 

Biofilm is able to accumulates and binds heavy metal ions from the passing 

water due to the physico-chemical properties of its microbial molecules and microbial 

metabolism, which involve processes such as transport across the cell membrane, 

biosorption to cell walls and entrapment in extracellular capsules, metabolically-

induced precipitation, complexation and oxidation-reduction reactions (Alvarez et al., 

2006; Hallberg and Johnson, 2005b; Bremer and Geesey, 1993; Hughes and Poole, 

1989).  Anionic group such as carboxyl, phosphoryl and sulphate groups which offer 

cation exchange potential may presence in EPS.  This explains why a wide variety of 

metal ions are reportedly bound to EPS.  It is interesting to note that theoretical 

predictions of metal binding capacities are based on the estimated numbers of 

available carboxyl and hydroxyl groups (Flemming et al., 2000).  Metal uptake 

appeared to be predominantly a feature of the level of EPS production and attachment 

rather than metabolic sponsored activity (Scott et al., 1995). 
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 According to Dugan (1975 cited in Flemming et al., 2000), EPS have shown to 

accumulate up to 25% their weight as metal ions.  Adsorption densities as high as 22 

ng/mg have been reported for Cu (Kaplan et al., 1987) and an amazing 

bioconcentration factors between 102 to 6 × 104 for various heavy metals have been 

recorded for riverine biofilm (Friese et al., 1997).  Costley and Wallis (2001) discovered 

that the heavy metal accumulation in biofilm is extracellular and its adsorption capacity 

did not appear to be adversely affected by adsorption-desorption processes making it a 

tool to remove and recover heavy metal from wastewater. 

 

 In studies of freshwater lakes, biofilm under near-neutral pH scavenged metals 

up to 12 orders of magnitude higher than biofilm under lower pH conditions (Ferris et 

al., 1989).  Fuchs et al., (1997) have recommended a method utilising biofilm as a 

practical instrument for assessing heavy metal pollution in fresh water ecosystems.  

The recent advancement in biofilm research came in the work of Ragusa et al., (2004) 

where they managed to assess the biofilm growth by utilising its total protein, EPS, 

viable cells and p-Iodonitrotetrazolium Violet (INT) reduction rates as indicators. 

 

 

1.6 Research Objectives 
 

It is generally agreed that primary mechanisms of heavy metal removal in 

constructed wetland are via chemical precipitation (by formation of or co-precipitation 

with insoluble compounds) and adsorption (onto substrate and plant surfaces) while the 

secondary mechanism is via plant uptake (Stowell et al., 1981 cited in Lim and 

Polprasert, 1998).  Lim and Polprasert (1998) summarised that: 

• the removal efficiency is metal dependent; 
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• toxic heavy metals such as Cu, cadmium (Cd), zinc (Zn), nickel (Ni), cobalt (Co) 

and Pb can be readily removed via SF and SSF wetland systems; 

• water level rather than flow pattern in SF system affects the metal removal 

efficiency; and 

• the type of substrate in SSF system seems to influence the removal efficiency 

of metals. 

 

It is also important to realise that irrespective of the kinds of removal 

mechanism at work, the wetland systems always have a finite capacity for metal 

retention though the capacity can be enlarged through choice of substrates, plant 

species and better engineering design (Lim and Polprasert, 1998).  Also cited in their 

review was the works by Henrot and Wieder (1990), Wieder et al. (1990) and Henrot et 

al. (1989) where the dominant removal mechanism in special reference to iron (Fe) 

seems to be the microbial mediated metal-oxide precipitation. 

 

Because precipitation, adsorption, suspended biofilm (less misleading if known 

as flocs) and biofilm (the precise term for attached biofilm) co-exist in a wetland 

system, in order to study only adsorption as well as only the role of the attached 

biofilm, one need to isolate them from the wetland system.  Because live microbes will 

induce metal-oxide precipitation, the scope has been narrowed down to the role of 

dehydrated biofilm in the adsorption of Cu (II).  Therefore, it makes sense that the 

objectives of this work are: 

• to assess the potential of oil palm shell as an alternative medium; 

• to study the another primary removal mechanism, adsorption on substrate; and 

• to investigate the effect of the dehydrated biofilm in the adsorption of Cu (II). 
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1.6.1 Further descriptions on research objectives 
 

The immediate research objectives are summarised below: 

1. to prepare potential medium for constructed wetland application from wastes with 

no chemical modification; 

2. to provide first hand brief comparative adsorption capacity data of the oil palm shell 

and some of the prepared media; 

- although the interest was on Cu (II), other bivalent metals were experimented as 

well to fill up existing data gaps in reference to media purposely prepared for 

constructed wetland application.  The Cd (II), Zn (II) and Pb (II) were selected as 

these are the commonly selected model heavy metal of study (Fritioff and 

Greger, 2006; Cheng et al., 2002b; Scholes et al., 1998; Mungur et al., 1995); 

3. to study the growth of Typha angustifolia in the presence of different experimental 

media and different experimental constructed wetland designs; 

4. to study the biofilm formation on the oil palm shell in isolated systems; 

5. to investigate the effect of biofilm formation in the oil palm shell on its physico-

chemistry characteristics; 

6. to investigate the effect of various parameters on the adsorption of Cu (II) by the oil 

palm shell without and with the presence of dehydrated biofilm; and 

7. to understand the kinetics of adsorption involved. 

 

In practice, the oil palm shell sample contents some mesocarp fibre 

(approximately 0.5% v/v) as the mill’s separation machinery is not perfect though it 

exhibit a high level of efficiency.  Therefore, the oil palm fibre was experimented in 

some selected experiments in parallel with the oil palm shell to provide additional 

supplementary data for future use or reference shall there be a need in future.  Other 

selected media were characterised as well to provide comparisons and evidence to 

support the thesis discussion. 



 

 

CHAPTER 2 

 

MATERIALS AND METHODS 

 

2.1 Reagents 
 

 All the major chemicals used throughout this research were of A.R. grade and 

as specified in Table 2.1.  Aqueous solutions were prepared by diluting these 

chemicals with ultrapure water.  The ultrapure water was prepared by a series of SG 

euRO 6A (which produced reversed osmosis water) and SG ultra CLEAR (which 

eventually produced ultrapure water of 18.18 MΩ) water purifying machines. 

 

Table 2.1: Chemicals used in this study 

Name Formula Relative molecular mass 
(g/mol) Source 

Copper nitrate trihydrate Cu(NO3)2.3H2O 241.60 Systerm 
Cadmium nitrate tetrahydrate Cd(NO3)2.4H2O 308.47 Fluka 
Zinc nitrate-6-hydrate Zn(NO3)2.6H2O 297.48 Riedel-de Haën 
Lead (II) nitrate Pb(NO3)2 331.20 R & M 
Nitric acid 65% (w/w) HNO3 63.01 Merck 
Sodium hydroxide NaOH 40.00 Merck 

 
 

 The experimental stock solutions of each heavy metal were prepared by diluting 

exactly 3.80 g Cu(NO3)2.3H2O, 2.74 g Cd(NO3)2.4H2O, 4.55 g Zn(NO3)2.6H2O and 1.60 

g Pb(NO3)2 with ultrapure water to exactly 1 L in order to produce stock solutions of 

1000 mg/L of Cu (II), Cd (II), Zn (II) and Pb (II), respectively.  These stock solutions 

were then acidified with three drops of HNO3 65% (w/w) each, to attain pH 3.  It is 

interesting to note that changes in each heavy metal ion concentration resulted in 

changes in pH (Figure 2.1).  Experiments were normally conducted at pH 4.2 ± 0.2 

which do not require any further pH adjustment for heavy metal ion in the 
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concentrations range of 40 – 50 mg/L.  For experiments that required heavy metal ion 

concentration out of this range, the respective 1000 mg/L ion stock solution was not 

been pre-acidified but been diluted to required concentration then only been adjusted 

to pH 4.2 ± 0.2 with HNO3.  The purpose of adapting this technique is to avoid or 

minimise the usage of NaOH. 
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Figure 2.1: The pH of the heavy metal solutions at various concentrations 

 

 

2.2 Sewage 
 

The sewage used sourced from the university’s Desa Aman sewage treatment 

plant and was filtered through nylon cloth filter to remove suspended particles such as 

floc, hair etc. before being utilised in designated experiments. 

 

 

2.3 Preparation of Media 
 

All the media used were obtained in the state of Penang where the main 

campus and the engineering campus of USM are located.  In general, these media 
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were carefully washed with water, dried and processed to required sizes.  As a matter 

of fact, these media were hardly round but granular at their roundest form. 

 

These media, as tabulated in Table 2.2, were categorised into three groups 

namely, reference media (which serve as low-, carbon based high- and mineral based 

high-sorptive media), agricultural waste and construction material.  Detailed step by 

step preparations of these media are described in Sections 2.3.1 – 2.3.8 hereafter. 

 

Table 2.2: Categorisation of media 

Media Group 
Pea gravel 
Granular activated carbon 
Zeolite (Clinoptilolite) 

Reference 

Oil palm shell 
Oil palm mesocarp fibre 
Coconut shell 
Coconut mesocarp fibre 
Sugarcane fibre 
Rice hull 

Agricultural waste 

Coarse sand 
Fine sand 
Wood shave 

Construction material 

 
 

 

2.3.1 Preparation of pea gravel 
 

Pea gravel was purchased via local supplier.  Five random picked samples of 

50 g pea gravel soaked overnight in 100 mL HNO3 10% (w/w) did not give any 

detection of Cu (II), Cd (II), Zn (II) and Pb (II) when analysed.  Therefore, acid washing 

on this medium was not necessary.  The pea gravel was sieved to the size range of 0.5 

< Ø ≤ 1, 1 < Ø ≤ 4 and 4 < Ø ≤ 5 mm.  Samples were then washed thoroughly, soaked 

overnight and rinsed with water before being dried at 55 oC for 48 h in the oven.  The 

processed pea gravel was then labelled G. 
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