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AN EXPERIMENT AND FINITE ELEMENT ANALYSIS OF THE STATIC 

DEFORMATION OF WOOD SAWDUST-POLYPROPYLENE COMPOSITE 

PALLET 

ABSTRACT 

In this research work, a conventional stringer-class natural fiber-composite 

pallet model was generated using SolidWorks modeler and its load bearing capabilities 

and structural strength were investigated using finite element analysis software (FEA), 

Cosmos/works. Among several natural fibers, namely wood fiber and wood sawdust 

(WSD)-polypropylene (PP) composite materials, wood sawdust (particle size 100μm) 

with 30% filler content and 70% PP matrix composite was selected with mechanical 

properties, tensile modulus of 2.7564 GPa and ultimate tensile strength of 14.95 MPa 

respectively. Besides, fastening study was carried out to determine a suitable fastening 

method and avoid premature damage caused by excessive drilling / fastening torque 

and unsuitable nominal size of fastener. The findings from fastening study show that 

smaller nominal size screws can be driven closer to the edge compared to larger one 

and minimum spacing between two screws is increased if the nominal size of screw 

increased. Besides, an appropriate nominal screw size and length for both full size and 

one-fifth scaled pallet model was determined in this fastening investigation. Lastly, the 

shadow moiré technique was applied to measure the deformation profile of one-fifth 

scale model of WSD-PP composite pallet under static load and the experimental 

results are compared with data obtained from FE analysis. Shadow moiré technique 

was initially verified using known cylinder profile and this verification showed a 

measurement error of less than 5%. In another verification study, the deflection of a 

6061-aluminum plate was measured under static load. The experimental result of 

deflection at the centre of 6061-aluminum plate was 2.16 mm while 1.64 mm deflection 

obtained from FEA results. The comparative study of deflection profile of wood based 

composite pallet between experimental and modeling showed close agreement at the 
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centre of the pallet model. The deformation difference was found to be large except at 

the center deck board of the pallet model. The difference between experimental and 

FEA results are mainly due to the assumptions made in FEA where all the joints of the 

pallet is considered as bonded and it may due to not totally well mixed between the 

fillers and polypropylene. This research shows that the structural strength of such 

complex natural fiber-composite structure such as a pallet can be analyzed using FEA 

and verified using the shadow moiré method. 
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‘EKSPERIMEN DAN ANALISIS UNSUR TERHINGGA UNTUK UBAH-

BENTUK STATIK DALAM PALET KOMPOSIT GENTIAN KAYU’ 

ABSTRAK 

Dalam penyelidikan ini, satu jenis bentuk traditional palet komposit gentian 

kayu telah direkabentuk dengan menggunakan perisisan ‘SolidWorks’ dan sifat 

ketahan-bebanan bagi palet ini dianalisis dengan menggunakan perisian unsur 

terhingga iaitu ‘Cosmos/work’. Antara beberapa jenis gentian semulajadi yang 

dibandingkan, komposit gentian kayu dengan komposisi kandungan 30% gentian kayu 

(saiz 100μm) dengan 70% plastik (polypropylene) dipilih disebabkan komposit ini 

mempunyai sifat mekanikal yang diingini seperti modulus kekenyalan yang bernilai 

2.7564 GPa dan kekuatan tegangan muktamat yang bernilai 14.95 MPa. Sifat 

mekanikal adalah penting disebabkan eksperimen akan dijalankan untuk mengukur 

nilai statik ubah-bentuk palet komposit ini. Di samping itu, kajian ke atas kaedah 

pemasangan komponen-komponen palet yang sesuai untuk mengelakkan sebarang 

kerosakkan ke atas palet yang disebabkan oleh penggunaan kalis yang terlampau dan 

pemilihan skrew yang tidak sesuai. Rumusan dari kajian ke atas pemasangan skrew 

adalah skrew yang berdiameter kecil dapat dipasang dengan lebih dekat ke tepi atau 

hujung bahan yang dipasang berbanding dengan skrew berdiameter besar. Di samping 

itu, ruangan di antara dua skrew akan meningkat bergantung kepada saiz skrew yang 

dipilih. Selain itu, panjang dan diameter skrew yang sesuai juga ditentukan masing-

masing untuk palet saiz sebenar atau palet di mana saiz menjadi 1/5 daripada model 

asal. Akhir sekali, teknik bayangan moiré telah digunakan untuk mengukur profil ubah-

bentuk palet komposit gentian kayu yang bersaiz satu perlima daripada model asal di 

bawah keadaan beban statik. Hasil daripada eksperimen akan dibandingkan dengan 

keputusan dari analisa unsur terhingga. Teknik bayangan ‘moiré’ perlu disahkan 

dengan menggunakan paip silinder di mana jejari diketahui dan keputusan dari kajian 

ini menunjukkan sisihan pengukuran adalah kurang daripada 5%. Satu lagi kes 



 xvi

verifikasi di mana ubah-bentuk bagi kepingan aluminium berkod 6061 diukur di bawah 

keadaan statik telah dijalankan Keputusan menunjukkan bahawa ubah-bentuk di 

tengah-tengah kepingan aluminium adalah 2.16 mm dan 1.64 mm antara eksperimen 

dan analisa unsur terhingga. Eksperimen terakhir melibatkan kajian ubah-bentuk ke 

atas palet komposit gentian kayu dan perbezaan adalah kecil antara keputusan 

eksperimen dengan analisa unsur terhingga semasa ukuran dibuat ke atas tengah-

tengah ‘deck board’ palet komposit Walaupun begitu, perbezaan menjadi besar dan 

sukar diramal selain dari tengah-tengah ‘deck board’ palet komposit. Perbezaan yang 

besar mungkin disebabkan oleh sifat tidak homogen bagi bahan yang digunakan 

ataupun disebabkan juga oleh anggapan yang tidak sama dibuat seperti kesemua 

pemasangan mekanikal antara palet dianggap lekat bersama (‘bond’) semasa dalam 

analisa unsur terhingga.  
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.0      Introduction 
 

Pallets are widely used in most industries for material handling. Various designs 

and types of pallet are fabricated mainly due to different load bearing requirements. For 

instance, there are stringer-class pallets, block-class pallets, panel deck pallets, grocery 

industry four-way pallets and so on. The pallets are designed so that products/goods can 

be easily retrieved and delivered using lift truck such as forklift or pallet jack. Most of the 

pallets are made of wood (see Figure 1.1) and nearly 400 million wood pallets are 

produced annually, accounting for 86 percent of all pallets sold (McCoy, 2003). However, 

wooden pallets have some disadvantages although they are cheap compared to non-wood 

pallets such as plastic pallets. Among these are: (i) wood can undergo degradation due to 

environment factors such as heat, moisture and fungal infection especially when used in 

the open space, (ii) the method of fastening various members of the wooden pallet usually 

by nailing or screwing, does not guarantee a reliable performance of the pallet over a 

period of time and (iii) excessive use of wood in production of pallets require a lot of trees, 

causing forest depletion and thus leading to environment problems such as landslide and 

flood (Moore et al., 2002) . 

  

In view of this, some pallet manufacturers worldwide used metals, such as steel, 

aluminum and plastics in place of wood (see Figure 1.2(a)-(b)).The plastic pallets which 

are lightweight, high strength and durability are increasingly used instead of conventional 

wooden pallets (Ohanesian, 2002). However, the non-wooden pallets are more expensive 

compared to the wooden pallets. Plastic pallets are more expensive than the wood pallets 

by three to five times but this cost can be offset by the number of trips and shipments that 
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can be achieved with plastic pallets compared to wooden pallets (William, 2002). One 

main disadvantage of using plastic pallets is that non-biodegradable plastic is hazardous 

to human and environment when disposed by burning. 

 

 

 

  

 
  (a) Single face, flush stringer, 4-way entry    (b) Double face, reversible, stringer-  
        wood pallet                                                    class wood pallet 
                                                                                
 
 
 
 
 
 
 
 
 
(c) Single face, flush stringer, 2-way entry       (d) Double face, non-reversible, 4-way 
      wood pallet                                                       notched wood pallet 
 

Figure 1.1: Various designs and types of wooden pallets. Resource: Larson pallet company. 
http://www.larsonpallet.com (2002). 
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                                            (a) Block-class plastic pallets 
 
 
 
 
 
 
 
 
 
                                          (b) Sheet steel and aluminum pallets 
 
Figure 1.2: Various designs and types of non-wooden pallets. Resources: Plastic pallet and 
container, Inc. http//www.pp-c.com and Metal Pallet Corporation. http://www.metalpallet.com. 
(2000). 
 
 

The interest in using natural fibers, such as sisal, oil-palm empty fruit bunch fibers, 

coconut husk fibers, jute fibers and wood fiber as reinforcement in plastics has increased 

dramatically for the past few years, and undoubtedly, environmental concern is one of the 

driving forces (Oksman et al., 2002 ;Bledzki et al., 1999; Bledzki et al., 2001; McHenry, 

2003). Natural fibers have some advantages compared to man-made fibers. For instance, 

natural fibers are easily available, have low density, and are bio-degradable. They are 

renewable raw materials and have relatively high strength-to-weight ratio (Oksman et al., 

2002 ;Bledzki et al., 1999; Bledzki et al., 2001; McHenry, 2003). Although the natural fiber-

reinforced composite pallets could also undergo degradation due to attack by micro-

organisms, the resistance to microbiological degradation can be improved by means of 

chemical modification (Hill and Khalil, 2001). With the current emphasis on recycling and 

environmentally friendly approaches to manufacturing, composite pallets made from waste 

fibers and recycled plastic (polypropylene) have significant potential for use as raw 

material in the fabrication of pallets for the material handling industry.  
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According to Stokes (1989), joining of plastic or plastic composites is becoming 

important because the composites are increasing used in structural assemblies. Besides, 

applications of polymeric materials and composites require structural joints that must 

withstand static and fatigue loads. Unlike joining of metal structures, only mechanical 

fastening and adhesive bonding can be used for polymer matrix composites (Vinson, 

1989; Stokes, 1989). Mechanical fasteners such as wood screws and tapping screws are 

used in the fabrication of the composite pallet in this research. The advantage of 

mechanical fasteners is that, despite their design simplicity, they provide high clamping 

forces and the structure can be disassembled easily for maintenance (Mackerle, 2003). 

Fasteners are designed and selected for specific applications so that each connection can 

transmit forces adequately and provide satisfactory performance for the life of the structure 

(Committee of ASCE, 1997). With this reason, fastening study was carried out in order to 

ensure joining of various components of the composite pallet will not causing cracking and 

failure of the pallet while it is performing its intended function.  

 
The load bearing capabilities of the natural fiber composite pallet need proper and 

careful design before turning into end-user products and this can be done using computer 

simulation (Lim et al., 2003; Qiao et al., 1998; Wang & Lam, 1997; Wu et al., 2003). The 

pallet can be generated using 3-dimensional solid modeler such as SolidWorks and 

ProEngineer while structural analysis of the product can be done using finite element 

analysis such as Cosmos/Works in this case. This can reduce the fabrication of actual 

prototype in field testing, thus saving overall cost and time involved in product design. 

Besides, for materials such as wood fillers composite material, comparative study between 

the experimental and FEA should be carried out to ensure the agreement between these 

results.  
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In a closely related research carried out by Lim Jiunn Hsuh (MSc.Thesis, 2002) 

from School of Mechanical Engineering (USM), comparative study of the static 

deformation of oil palm fiber composite pallet between experimental and FE analysis was 

done.  Lim designed and modeled one type of oil palm composite pallet and use phase 

shift shadow moiré method in optical measurement. Small rig was fabricated in order to 

applied point load at the centre of the pallet. The difference between Lim’s work and the 

work carried out in this research are explained in the next section. 

 

1.1       Research Problems 

  Wood fiber composites have potential of replacing man-made fiber composite such 

as glass fiber composites in load bearing applications mainly due to its low cost and 

availability (Hattotuwa et al., 2002; Hill & Abdul Khalil, 2000). The utilization of agro-waste 

material such as wood sawdust and oil palm empty fruit bunch fiber instead of glass and 

carbon fibers can reduce the cost of the composite material significantly. Besides, studies 

carried out in this field have shown that stiffness, hardness and dimensional stability of 

plastics could be improved by the incorporation of these types of fillers (Hattotuwa et al., 

2002; Ismail & Jaffri, 1999).  

 

Use of such composite material in load bearing applications usually requires a 

careful study and design of the component or product to be made. This can be achieved 

using numerical modeling software such as finite element analysis (FEA) software (Lim et 

al., 2003; Wu et al., 2003). However, the accuracy of the input parameters such as 

mechanical and physical properties of material, loading and constraint conditions plays an 

important role in the correct prediction of the structural behaviour of the composite from 

numerical analysis. Mechanical testing is usually carried out in order to determine the 
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mechanical property of the composite but this may not be representative of the whole 

structure due to non-homogeneity of the material and sometimes due to the presence of 

internal flaws like moisture and delaminations within the material. Ambiguous mechanical 

property may affect the prediction of structural behaviour from FEA and this could result in 

failure of the structure under service.  

 

 The predictions of FEA can be verified by experimental means, that is, by direct 

measurement of deformation. In the conventional point-wise surface measurement using 

instruments like digital calipers and strain gages, where the measurement was carried out 

point-by-point or line-by-line basis, the collection of many data points sometimes may 

cause errors like missed data points, including the highly stressed or deformed areas of 

the structure. Besides, direct contact with measuring equipment may influence the 

deformation resulting in erroneous data. With these reasons, a non-contact measurement 

technique is needed for surface measurement. There are several techniques available for 

measuring deformation such as the moiré method, electronic speckle pattern 

interferometry (ESPI), holography and shearography interferometry (Chen et al., 2000). 

This subsequently raises the issue of how to analyze the data in a highly accurate manner 

and perform local and global coordinate transformation.  

 

 Moiré method was selected in this research due to its simplicity in implementation 

and is most cost effective compared to the other techniques. Besides, this method is 

suitable for measuring large deformation that is outside the range of the interferometric 

methods, for instance in the order of millimeter. However, the main drawback of the 

shadow moiré technique is that it is not sensitive enough for practical applications and 

requires a reference grating larger than the size of the object. 
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 This research project aims at a comparative study of the experimental and FEA 

deformation result of a wood filler composite structure under static loading. The shadow 

moiré technique was applied to measure the static deformation of the wood filler 

composite pallet. The composite pallet was modeled and analyzed using FEA. A one-fifth 

scale pallet model was fabricated and assembled using mechanical fasteners. The pallet 

model was used in the measurement. The difference between the optical measurement 

and FEA results was investigated. 

 

1.2      Research Objectives 
 
 The main objective of this project is to compare the deformation profile from the 

optical measurement and FEA for static loaded wood fillers composite pallet with the aim 

of understanding the capability and limitation of using FEA in designing products made 

from the composite material. 

 

 In order to achieve the main objective, the following sub-objectives were identified: 

1. To design natural fiber reinforced composite pallet using computer modeling 

and investigate the load capability and study the strength characteristic of 

various composite pallet using finite element analysis (FEA). The materials 

used are such as: 

(i) Oil palm empty fruit bunch + Acrylonitrile-Butadiene-Styrene (ABS); 

(ii) Oil palm empty fruit bunch + Polypropylene (PP); 

(iii) Oil palm pulp fiber + Polypropylene (PP); 

(iv) Coarse wood sawdust + polypropylene (PP); 

(v) Wood flour + polypropylene (PP); 

(vi) Polypropylene plastic 
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2. To optimize several dimensions of the parts such as thickness of stringer and 

width of the deck board of the pallet for raw material saving purpose. 

3. To study the effect of screws size and types, pilot hole size, spacing distance 

between two screw, edge and end distance of screw to the fastening members 

during pallet assembly. 

 

 

There are a few important points that differentiate between this research work and 

previous work done by Lim Jiunn Hsuh. First of all, thermoplastic to be used in this 

research is a recycled polypropylene from industrial waste plastics whereas Lim used 

thermoset resin as the matrix. Besides, wood fillers were used in this research while oil 

palm empty fruit bunch fiber was used in previous work. Secondly, several designs are be 

made under the same load conditions and analyzed under two support conditions, namely 

‘stacked one unit load high’ and ‘racked across width’, so that the condition of the pallets 

under racking system in a warehouse is taken into consideration. Besides, study of the 

strength characteristic of various composite pallets, as well as optimization study for cost 

saving purpose was done unlike previous where only one type of natural fiber-reinforced 

composites pallet was designed and no attempt to optimize the design was made. The 

new experimental rig for deformation measurement on the composite pallet was designed 

and built. The deflection profile of an aluminum plate was studied as verification between 

optical measurement data and FEA results. An additional piece of study carried out in this 

research that was not attempted in the previous work was the study on the fastening of the 

composite material.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.0      Introduction 

 This literature study focuses on the review of using composite materials in complex 

product design such as a composite pallet. Comparative studies on finite element analysis 

(FEA) and experimental work on the behaviour of the product, as well as products 

composed of composite materials carried out worldwide by other researchers are 

reviewed. Besides, literature studies on the application of non-destructive and non-contact 

whole field optical measurements methods are reviewed as well. The optical techniques 

such as shadow moiré, projection moiré, holographic interferometry and shearography 

techniques used to measure deformation in composite materials are reviewed and a 

suitable technique for the experiment was selected for this research is proposed. Literature 

study on fastening method on composite materials is done in order to aid in assembly of 

pallet model.  

 

2.1      Agricultural Waste Composites 

 Strict enforcement of government regulations and a growing environmental 

awareness throughout the world have lead to increase of interest in using biomass / 

agricultural waste incorporate with thermoplastic matrices to make composite product 

instead of using wood alone. Utilization of these agro-wastes as reinforcing fillers with 

thermoplastic is believed to replace the use of traditional reinforcing materials such as 

glass fiber and carbon fiber to reduce the cost of composite product while maintaining their 

desired properties (Hanafi et al., 1996; Hattotuwa et al., 2002; Karnani et al., 1997; Bledzki 
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et al, 1999; Tomoyuki & Qin, 2002). Furthermore, one of the main disadvantages of using 

glass fiber is the occurrence of health problem when handling glass fiber. Examples of 

agricultural waste fibers are sisal fibers, kenaf fibers, jute fibers, wood fibers, oil palm 

empty fruit bunch fibers and coir which offer several advantages like biodegradability, 

recycle-ability, low density, high toughness and acceptable specific strength properties 

(Bledzki et al, 1999; Karnani et al., 1997; Wollerdorfer & Bader, 1998; Hill & Abdul Khalil, 

2000).  

 

 Many studies carried out in this field have shown that stiffness, hardness, 

dimensional stability of plastic could be improved by using of the natural fibers or fillers. 

For instance, Hattotuwa et al. (2002) on compared the mechanical properties of rice husk 

powder filled polypropylene composite with talc filled polypropylene composite and Hanafi 

et al.’ s work (1999) concerns on determining the mechanical properties of oil palm wood 

flour filled with natural rubbers. Research works on determining mechanical properties of 

sisal-epoxy composites (Oksman et al., 2001), natural fiber reinforced polyurethane 

microfoams (Bledzki et al., 2001), treatments and mechanical properties of wood flour-

polypropylene composites (Ichazo et al., 2001) are reviewed. All of these works revealed 

that polymer matrices can be reinforced using natural fibers or fillers as reinforcing agent. 

In other words, enhancement in mechanical properties of the composite occurs if the 

compatibility / interaction between natural fillers and thermoplastic and dispersions of the 

fillers in the polymeric matrices were achieved. Incompatibility between natural fillers and 

polymeric matrices usually result in weak interfacial adhesion, and thus leads to inferior 

mechanical properties. 
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 The researchers believe that if the interaction can be improved, the composite 

could be given better mechanical properties and better particle dispersion. They pointed 

out that the efficiency of a fiber reinforced composite depends on the fiber-matrix interface 

and the ability to transfer stress from the matrix to the fiber. This stress transfer efficiency 

plays a dominant role in determining the mechanical properties of the composite. Based 

on this hypothesis, many approaches have been carried out, such as the use of several 

kinds of compatibilizers and modifications with maleic anhydride (MA) (Coutinho & Costa, 

1999; Karnani et al., 1997; Kazayawoko & Balatinecz, 1997; Oksman, 1996), chemical 

modification by acetylation (Hill & Abdul Khalil, 2000) and silane or titanate as coupling 

agents (Hill & Abdul Khalil, 2000; Kokta et al., 1990).  

 

 In Karnani et al.’s research work (1997), mechanical testing was carried out on 

kenarf fibers with polypropylene (PP) composite. Kenaf fibers were surface-grafted with 

siloxane chains using silane solution in water while maleic anhydride modification of 

polypropylene powder was used as matrix. A fixed percentage of maleated polypropylene 

(MAPP) as compatibilizer was mixed with polypropylene in the composite. Results showed 

that addition of kenaf fibers to the polymer matrix caused a significant increase in the 

tensile modulus or stiffness of the composite. The compatibilized PP-kenaf composites 

exhibit greater tensile strength than the uncompatibilized composites or just PP. This may 

be due to the enhanced of interfacial adhesion resulting from the presence of a matrix with 

increased of polarity that may react or interact with the hydroxyl group on the fiber surface. 

Evidence provided from Scanning Electron Microscopy (SEM) micrograph of the fracture 

surface of notched Izod specimens showed a significant improvement bonding with 

addition of the MAPP, where the fiber has pulled out from the matrix but a fair amount of 

polymer residue remains on the fiber explained by Karnani et al. (1997). Similar results 
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were obtained from Kazayawoko & Balatinecz (1997) who investigate the effect of ester 

linkages on the mechanical properties of wood fiber-polypropylene composites. They 

prove that compounding of wood fiber under surface modification with maleated 

polypropylene and polypropylene matrix has improved the mechanical properties with 

explanation that the treatment of wood fibers with maleated polypropylene reduces the 

formation of agglomerates and wood fibers are dispersed more uniformly. The dispersion 

of fiber was analyzed using the Confocal Imaging System.  

 

 Hill & Abdul Khalil (2000) has investigated the effect of chemical fiber treatments 

on mechanical properties of coir or oil palm fiber reinforced polyester composites. The coir 

fibers and oil palm fibers with chemical modifcation by acetylation were used in the 

experiment. Comparison was done between fibers without treatment, acetylated fibers and 

fibers treated with silane and titanate coupling agents. The results showed that acetylation 

of fibers increases the interfacial shear strength (ISS) in all cases compared to the 

unmodified fibers. They used ANOVA test to show that there was no significant differences 

in ISS between coir and oil palm fiber, but there was a different between modified and 

unmodified fibers. These results indicate that acetylation of the fibers has improved the 

compatibility between the fibers and matrix in both cases as mentioned above. In addition, 

slight increase in the tensile strength, tensile modulus and impact strength of composites 

reinforced with modified fibers are noted. However, treatment of fibers with silane or 

titanate coupling agents does not result in significant changes of the composite formed.     

 

 A lot of work was done in the past on determining the mechanical properties of 

various composite material using natural fibers/fillers as reinforcing agent. Improvement of 

the mechanical properties of the composite was achieved with proper use of 
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compatibilizers and chemical treatments. From the reviewed work, most existing products 

made of natural fiber reinforced composites were restricted to low-load or even load free 

applications such as automotive interior substrates, partition boards, fencing and window 

frame. With the abundant of agro-wastes and recycled polypropylene in Malaysia, it has 

great potential to use the composite material in high load bearing applications like material 

handling pallets. 

 

2.2      Finite Element Analysis 

The finite element concept is derived from the stiffness matrix for the triangular 

element based on the displacement and this triangular element is named as mesh (Martin 

& Carey, 1973). The development of FEA was greatly aided by developments in the 

computer industry, provides larger storage capacities for larger problem to run and 

modeling more accurate physical situation. It is not reasonable to expect designers to 

calculate those complex interactions and solutions using manual methods.  

 

There are many journal papers worldwide using of FE analysis to predict the 

behavior of the products they are going to design, such as Qiao et al. (1998) using of finite 

element model to predict the response of the composite reinforced wood crosstie; Mahdi et 

al. (2002) using of FEA modeling to predict the mechanical performance of repaired 

stiffened panels. However, in this paper, the failure displacement from modeling was 

calculated to be 28% lower than experiment, they explained that the current finite element 

(FE) model which do not take into account the interaction of the repair plugs and the wall 

of the cut-out, and lead to the poor prediction when compared to experimental results. 

Besides, finite element analysis of impact damage response of composite motorcycle 
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safety helmets was done (Kostopoulos et al., 2002). In this paper, they presented a basic 

shell structure comprising of a woven fabric and a glass mat ply with three different woven 

fabric reinforcement materials and the shell structure were analyzed using FE simulation of 

drop tests. This is one of the advantages from finite element analysis where various 

composites can be used in computer modeling without involving fabrication of many 

different prototypes, hence reducing the total cost and time saving in testing and 

manufacturing of new products.  

 

According to Wu et al. (2002), use of finite element method to predict the 

performance of the fiber reinforced polymer (FRP) sandwich composite could lower cost 

and have accurate prediction of structural behavior of FRP. However, several assumptions 

were made in the model in order to achieve an agreement with finite element, such as that 

the material is homogeneous and linearly elastic in each layer and displacement in z-

direction is small and interfacial layer is under anti-plane shear and shear stress 

throughout the plate thickness is uniform. Experimental work done by Lim et al. (2003) in 

experimental and finite element analysis of the static deformation of natural fiber-

reinforced composite beam had revealed the assumptions like plastic and reinforcing 

agent are acted together and the matrices and fiber are equally mixed and the composite 

is obeying Hooke’s law. He also revealed that many heterogeneous composite materials 

are having non-linear and anisotropic material properties and these materials sometime 

have to be treated as homogeneous as well in order to simplify the analysis.  

 

In another work carried out by Van Paepegem et al. (2001) to investigate the 

fatigue behaviour of reinforced composite materials, FEA simulation was used to compare 

against the results of fatigue experiments on plain-woven glass / epoxy specimens with a 
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[#45°] stacking sequence. They established a FE model that is incorporated in commercial 

FEA code which is able to deal with two conflicting demands: The first one is that the 

continuous stress redistribution requires the simulation to follow the complete path of 

damage states and simulation should be fast and efficient in order to save time in the 

stage of composite components designing.  

 

2.3      Joining Methods for Plastics and Plastic Composites 

According to Vinson, J.R. (1989), for structures composed of polymer and polymer-

matrix composite materials, the components must be joined so that the overall structure 

will retain its structural integrity while it performs its intended function including both 

mechanical loads (static or dynamic) and environmental loads (temperature and humidity). 

Joining of plastics and plastic composites is become more and more important because of 

increasingly used of these materials in complex structural assemblies while the emerging 

structural applications of polymeric materials require structural joints that must withstand 

static and fatigue loads (Stokes, 1989). 

 

There are various joining methods such as riveting, bolting, glueing, brazing, 

soldering as well as the welding method. Among these, adhesive bonding is preferred in 

use compared to mechanical fastening. This may due to a continuous connection that can 

be formed by using adhesive bonding. Besides, drilling holes for bolts or rivets induce to 

remove fiber or other reinforcements and thus leads to large stress concentrations at 

discrete fastener hole (Vinson, 1989).  
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 Two journal papers by Vinson (1989) and Stokes (1989) are just a review paper of 

the joining methods that being used for the past decades. However, there are no standard 

being developed to specify a suitable joining method for particular polymeric or polymer-

matrix composite. With this reason, fastening study is necessary to carry out to investigate 

the effect of the process parameters that are involved and affect the joint performance of 

the composite materials used in this research. Optimal joint designs for wood based 

composite hopefully can be developed from the fastening study. 

 

2.4      Optical Metrology  

Experimental studies are normally used to validate the results from numerical 

analysis and there are many experimental tools which can be divided into two categories: 

one with conventional destructive test and point wise contact measurements while the 

others are non-contact, non-destructive and whole field measurements (Cichocki & 

Thomason, 2002). Optical metrology is categorized as a non-destructive and non-contact 

measurement. Optical measurement is suitable in this research since optical techniques 

are non-contacting and they can detect surface displacement or deformation that result 

from the application of small load.  

 

Various optical techniques are available including holographic and shearography 

methods which are based on interferometric principles. According to Hung et al. (2000), 

full field optical methods for 3-dimensional shape measurement are basically divided into 

two categories: coherent light methods and incoherent light methods. The coherent light 

methods are as mentioned above while the incoherent light methods can be further 

classified to shadow moiré and projection moiré methods.  



 17

 

In general, holographic interferometry is suitable for both in-plane and out-of-plane 

stress and displacement measurements (Lim’s MSc. thesis, 2002). In contrast of this, 

shadow moiré and shearography techniques are more suitable for out-of-plane 

displacement and deformation, including surface profiling (Shang et al., 2000). Shadow 

moiré technique was selected in the research is due to its simplicity in experimental set-up 

and does not require expensive equipments in the experiment compared to shearography 

method. In addition, one of the attractive features of moiré is that the resolution of the 

fringe pattern can be controlled by varying the pitch value of the grating. Besides, laser 

scanning techniques are also available for non-contact measurement. However, they are 

not in the option because this method requires point-by-point or line-by-line basis.  

 

There are many journal papers in which moiré method for out-of-plane 

displacement or deformation are applied. For instance, Jin et al. (2000) used shadow 

moiré technique with integrated phase-shifting method in measuring the computer mouse. 

Quan et al. (1999) used the fringe projection technique for three-dimensional shape 

measurement of a hydroformed shell. A review paper of three-dimensional shape 

measurement using optical method was written by Chen et al. (2000). In this review paper, 

various three-dimensional optical measurements are reviewed. Besides these, there are 

other techniques, such as the time/ light in flight and photogrammetry. The time/ light in 

flight method for measuring shape is based on direct measurement of the time of flight of a 

laser or other light source pulse while photogrammetry employs the stereo technique to 

measure three-dimensional shape. Global and local coordinates translation and selection 

of camera model and system calibration are discussed in the review paper. Error in 

measuring or calculating the global and local coordinates will cause in low accuracy in final 
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results while calibration of optical system is required in order to avoid error due to 

misalignment of optical set-up.  

 

Most of the past research in optical metrology focused on measurement and 

generation of three-dimensional model except Lim et al. (2004) who applied phase-shifting 

shadow moiré method in measuring static deformation of composite pallet and compared 

the measurement with the prediction of FEA.  

 

2.5      Summary 

From the reviewed work on natural fiber reinforced composite (NFRC), most 

existing products made of NFRC were restricted to load free applications. With the 

abundant of agricultural wastes and recycled PP in Malaysia, it has great potential to use 

the composite material in high load application like material handling pallets. The 

literatures about the application of FEA in natural fiber reinforced composite are reviewed. 

Good understanding on mechanical behaviour of the products is needed to aid in 

designing and analyzing such a complex product. For the experimental techniques, the 

discussions are focused on the non-contact and non-destructive optical measurements. 

There was no literature about the application of optical metrology in wood based 

composite materials. From the literature on the optical metrology, shadow moiré was used 

due to its simplicity in experimental set-up and does not require expensive equipments in 

the experiment. 
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CHAPTER 3 

SOLID MODELING AND FEA ANALYSIS OF COMPOSITE PALLETS 

 
3.0 Introduction 

Proper and careful designs of the structures made from these composite 

materials are required in order to ensure success in applications. The load bearing 

capabilities of the natural fiber composite pallets must be investigated before turning 

into end user products and this can be done using computer simulation (Lim et al., 

2003; Qiao et al., 1998; Wu et al., 2003). The pallet model can be generated using 

three-dimensional solid modeler such as SolidWorks and Ideas while structural 

strength analysis of the product can be done using finite element analysis (FEA) 

software like Cosmos/works and Ansys. Besides designing and analyzing the pallets, 

the product design can be optimized using computer modeling. These indirectly reduce 

overall cost and time spent in the fabrication and testing of the prototype.  

 

This chapter presents the modeling of stringer-class and block-class pallet 

using Solidworks modeler using dimensions given by an example of Pallet Design 

System (PDS) software (http://www.nwpca.com/PDS/PalletDesignSystem.htm, 2003). 

Simulations of the load bearing capabilities of various natural fiber composite pallets 

were carried out under two support conditions using finite element analysis (FEA) 

software. Material properties of various natural fiber composite materials were obtained 

from Shanaz et al. (2003). Lastly, optimization of several parts of the pallet was carried 

out and dimensions of full size pallet that would be used for the later research work 

were finalized. The purpose of pallet optimization is to reduce the use of raw materials 

in pallet fabrication while maintaining its load bearing requirement. 
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3.1 Methodology 

3.1.1    Introduction of Pallet Terminology 

A pallet is a standard platform on which material is placed for storage and 

movement. These are platforms with an upper and lower flat surface with space in-

between for easy lifting by the fork of an industrial lift truck such as forklift and pallet 

jack. Generally, the pallet is an assembly of deck boards, which are the boards that 

make up the faces of a pallet and either carry or rest upon the goods packed; stringers 

are the runners to which the deck boards are fastened and which serve as a spacer 

between the top and bottom decks to permit the entry of mechanical handling devices. 

For block-class pallet, blocks are square or rectangular parts employed on some four 

entry pallets in place of stringers and which serve the same purpose as runners 

(Kulweic, 1985). 

 

United States began to use pallet standards in 1953 under the auspices of the 

organization now known as the American National Standards Institute (ANSI). The 

committee has responsibility for developing standards for pallets, slip sheets and other 

bases for unit loads. The first standard was published in 1959, revised in 1965 and 

subdivided into 3 standards: 

 
MH1.1.2-1978 Pallet Definitions and Terminology; 

MH1.4-1977 Procedures for Testing Pallets; 

MH1.2.2-1975 Pallet sizes (12 standard sizes with dimensions stated in 

imperial inches and comparable hard and soft metric dimensions as shown in Table 

3.1). 
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    Table 3.1: Standard pallet dimensions. Resource: Kulweic, 1985. 
Imperial (inches) Hard metric 

(inches) 
Hard metric 
(millimeters) 

Soft metric 
(millimeters) 

24×32 23.64×31.52 600×800 609×812 
32×40 31.52×39.40 800×1000 812×1016 
32×48 31.52×47.28 800×1200 812×1219 
36×42 35.46×41.75 900×1060 914×1066 
36×48 35.46×47.28 1060×1200 1066×1219 
40×48 39.40×47.58 1000×1200 1016×1219 
42×54 41.75×53.96 1060×1370 1066×1371 
48×60 47.28×59.10 1200×1500 1219×1523 
48×72 47.28×70.90 1200×1800 1219×1828 
36×36 35.46×35.46 900×900 914×914 
42×42 41.75×41.75 1060×1060 1066×1066 
48×48 47.28×47.28 1200×1200 1219×1219 

 

 Besides, others standardized method for testing pallets are such as ASTM 

D1085-1973 provided by the American Society for Testing and Materials and ISO 

8611-1991 by International Standard Organization. 

 

  According to Kulweic (1985), dimensions of pallets should be always stated in 

inches and parameter ‘Length’ should be designated before ‘Width’. The ‘Width’ should 

always be the dimension parallel to the top of deck board. Besides, no deck boards 

shall be less than a nominal size of 4 inches (101.6 mm) board wide and not more than 

a nominal size of 8 inches (203.2 mm) board. Nevertheless, the thickness of the 

stringer must always be more than 3.25 inches (83.0 mm) because the thickness of the 

fork tine for the pallet jack is approximately 83.0mm. With this reason, deck board 

width, deck board spacing and thickness of stringer become important parameters that 

need to be considered properly during pallet design in order to produce a usable pallet. 

All pallets should not have less than the following number of blocks or stringers as 

shown in Table 3.2. For deck board lengths over 48 inches, it is recommended that 

additional stringers or blocks be used. 
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Table 3.2: Information of numbers of stringers or blocks required for different deck 
board length. Resource: Kulweic, 1985. 

Deck board Length Number of Stringers Number of Blocks 
Not exceeding 24 inches 

(609.6mm) 2 6 

25- 48 inches 3 9 
Over 48 inches 3 9 

 

On the other hand, styles and types of the pallet also have to be noticed during 

pallet design so that pallet fabrication retain its structural integrity while saving material 

in fabrication, and hence, reducing cost for pallet production. There are two-way and 

four-way pallets which permit the entry of mechanical handling device from two sides 

and four sides respectively. Besides, there are many types of pallet with combination of 

style and construction such as: (1) single-face, non-reversible pallet; (2) double-face, 

flush stringer or block, non-reversible pallet; (3) double-face, flush stringer or block, 

reversible pallet; (4) double-face, single wing, non-reversible pallet and etc (Refer to 

Figures 1.1 and 1.2). Each type of the pallet will serve its own function in carrying 

goods or storage (Kulweic, 1985).  

 

3.1.2   Solid Modeling of Full Size Pallet 

            Solid modeler software, SolidWorks is mechanical design automation software 

that takes advantage of the familiar Microsoft® Windows® graphical user interface. This 

easy-to-learn tool makes it possible for mechanical designers to quickly sketch out 

ideas, experiment with features and dimensions and produce models and detailed 

drawings. Several advantages of this software are such as creating 3-dimensional 

parts and using these 3-dimensional parts to create 2-dimensional drawings and 3-

dimensional assemblies and vice versa. SolidWorks is a dimension driven system 

which specifies dimensions and geometric relationships between elements and 

changing dimensions will change the size and shape of the part while preserving its 

design intent and so on (SolidWorks user guide, 2001). Due to the advantages 

aforementioned, SolidWorks was chosen in this project. 
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A 3-dimensional pallet model with 48” (L) × 40” (W) × 5” (H) was built using 

Solidworks modeler. This pallet model is a conventional stringer-class, double face and 

non-reversible pallet (Figure 3.1) and the detailed dimensions of its parts were referred 

to one of the examples provided in Pallet Design System (PDS) software 

(http://www.nwpca.com/PDS/PalletDesignSystem.htm, 2003). This software was used 

by many pallet manufacturers worldwide as an aid in pallet design and analysis. This 

pallet model is an assembly of two different dimensions of top deck and bottom deck 

boards and stringers that serve as runners. The detailed dimensions are given in Table 

3.3. The important factor during pallet modeling is calculation of the spacing between 

deck boards and distance between the stringers. With known quantities and 

dimensions of the parts required in pallet modeling, the spacing or distance between 

them can be calculated without difficulty. For instance, with known information of total 

length of the pallet, 48”, and width of the deck board, 4.5” with quantity 7, the spacing 

distance can be calculated by {48”- (4.5”×7)}/6, that is 2.75” between two deck boards. 

It is encouraged to draw a simplified side view and end view of the pallet (Figure 

3.2(a)-(b)) during modeling while determining spacing and distance between deck 

boards or stringers because these drawings would be very helpful in later assembly of 

full size pallet.   
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                       Figure 3.1: Solid modeling of conventional stringer-class pallet. 
 
 
Table 3.3: The detailed information of quantities and dimensions of the parts that used 
in fabrication of stringer-class pallet. Resources: http://www.nwpca.com/. 

Name of part Quantity Dimensions, inches (.in) 
Top deck board 1 2 40.0” (L) × 5.75” (W) × 0.625” (H) 
Top deck board 2 5 40.0” (L) × 3.75” (W) × 0.625” (H) 

Bottom deck board 1 2 40.0” (L) × 5.75” (W) × 0.625” (H) 
Bottom deck board 2 3 40.0” (L) × 3.75” (W) × 0.625” (H) 

Stringer 3 48.0” (L) × 1.375” (W) × 3.75” (H) 
 
 
 
 
 
 
 
 
 

Bottom deck boards
Stringers 

Top deck boards 
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