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INTEGRATED LAND USE CHANGE ANALYSIS FOR SOIL EROSION STUDY 
IN ULU KINTA CATCHMENT 

 
 

ABSTRACT 
 
 

Ulu Kinta catchment has experienced rapid changes in land use and land cover 

from 1991 to 2004. These changes have resulted in increased upland erosion and 

higher concentrations of suspended sediment within the catchment. The goal of this 

research was to investigate the application of integrated satellite remote sensing and 

Geographic Information Systems (GIS) techniques to assess land cover changes 

and the estimation of soil erosion in the water catchment. Inherent in this research 

was the interpretation of multi-sensor data collected by several satellite systems, 

evaluation of the quality of the resulting change information, application of remotely 

sensing and other ancillary data as input in GIS–based RUSLE model to analyse soil 

erosion process induced by different land cover changes. Change detection was 

performed using post-classification comparison method which produced acceptable 

results, overall accuracy 61.4 % and kappa = 56 %. The study revealed that while the 

estimated mean annual soil loss rate was approximately 16.2 tons/ha/yr and 52 

tons/ha/yr for 1991 and 2004 respectively, soil loss rate as high as 172.0 tons/hr/yr 

were found on sloping lands from Ulu Kinta catchment. A good correlation of r2 = 

0.9169 was obtained between modeled annual average soil loss estimation and 

annual average sediment loads obtained at site.  Results of the study indicate that land 

use changes in the study area have produced environmental problems such as water 

pollution and soil erosion. In this research, a comprehensive methodology was 

developed to collect representative data quickly and simply, showing that in a GIS 

environment the RUSLE model can be applied to determine field-scale soil loss 

quantitatively and spatially, to predict erosion hazard over given watershed. The study 

indicates that the RUSLE-GIS model is useful tool for resource management and soil 

conservation planning. 
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Analysis Perubahan Guna Tanah Secara Bersepadu untuk Kajian Hakisan Tanah 
di Kawasan Tadahan Ulu Kinta 

 
 
 

ABSTRAK 
 

 
 

Kawasan tadahan Ulu Kinta telah mengalami perubahan yang ketara di dalam 

penggunaan tanah dan liputan tanah dari tahun 1991 hingga 2004. Perubahan ini telah 

meningkatkan hakisan tanah dan meninggikan kepekatan bahan asing yang terampai 

di dalam kawasan tadahan. Tujuan kajian ini adalah untuk mengkaji penggunaan 

bersama teknik penderiaan jauh satelit dan Sistem Maklumat Geografi (GIS) untuk 

menilai perubahan litupan bumi dan anggaran penghakisan tanah untuk kawasan 

tadahan air. Kajian ini juga menggunakan data pelbagai satelit untuk mengkaji kualiti 

maklumat perubahan guna tanah, pengunaan data penderiaan jauh dan data rujukan 

lain sebagai input dalam model RUSLE yang berdasarkan GIS untuk menganalisa 

proses penghakisan tanah yang disebabkan oleh perubahan litupan bumi yang 

berbeza. Pengenalpastian perubahan telah dilakukan dengan menggunakan kaedah 

perbandingan pasca pengkelasan yang telah menghasilkan keputusan yang boleh 

diterima, iaitu ketepatan keseluruhan 61.4% dan kappa = 56%. Kajian telah 

menunjukkan purata kadar kehilangan tanah yang dijangka adalah lebih kurang 16.2 

ton/hektar/tahun dan 52 ton/hektar/tahun pada tahun 1991 dan 2004, kadar kehilangan 

tanah setinggi 172.0 ton/hektar/tahun telah dikesan pada tanah cerun di kawasan 

tadahan Ulu Kinta. Perbandingan yang baik diperolehi, iaitu r2 = 0.9169 telah diperolehi 

daripada keputusan model purata tahunan kehilangan tanah dengan data purata 

tahunan beban endapan di tapak. Keputusan daripada kajian menunjukkan perubahan 

penggunaan tanah dalam kawasan kajian telah menyebabkan masalah persekitaran 

seperti pencemaran air dan hakisan tanah. Dalam kajian ini, satu metodologi yang 

komprehensif telah dibangunkan untuk mengumpul data perwakilan secara cepat dan 

mudah, menunjukkan bahawa dalam persekitaran GIS model RUSLE boleh digunakan 

untuk menentukan kehilangan tanah pada skala kawasan secara kuantitatif dan ruang. 

Kajian ini boleh menjangkakan bahaya kehakisan pada kawasan tadahan air yang 

diberi. Kajian juga menunjukkan model RUSLE-GIS sebagai satu alat yang berguna 

untuk pengurusan sumber dan pelan pemuliharaan tanah. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

Soil erosion is the major threat, among others, to the conservation of the soil 

and water resources. Even though soil erosion can be caused by geomorphological 

processes, anthropological or accelerated erosion, which is mainly favored by human 

activities, is the major trigger factor for the loss of soil and water resources. Soil erosion 

has accelerated on most of the world, especially in developing countries, due to 

different socio-economic, demographic factors and limited resources (Ni and Li, 2003). 

For instance, De Roo (1996) mentioned that increasing population, deforestation, land 

cultivation, uncontrolled grazing and higher demand for fire often cause soil erosion. 

 

Change produced by human action on the landscape can have a strong impact 

upon water resources both in terms of their quantity and their quality. These 

hydrological changes may influence overland flow, soil erosion, streamflow and 

sediment transport. A lot of recent research in these hydrological processes had shown 

that it is now possible to model the process change resulting from the impacts of land 

use. Results indicate that some parts of the watershed are more sensitive to a 

particular type of land use change than others (Mo and Zhou, 2000). In particular it is 

thought that the 'contributing' areas closest to fluvial zones are extremely sensitive and 

that, if left undisturbed, these areas can act as a barrier to hydrological impact 

(Famiglietti and Wood, 1991). 

 

The impact on land use and land cover changes, especially in terms of changes 

from forest cover to other land cover, has been one of the important issues on land 

use change research. In primitive times when there was little human population and 

low level of economic activity, deforestation was not a problem because the 
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natural regeneration of forest was adequate to cover for any loss of forest by the 

human beings. 

 

In Malaysia, land use has undergone many changes particularly after the 

country achieved its independence. Land use changes were driven by a number of 

economical, socio-political and biophysical factors. Over the last two decades, the 

evolution of land use became drastic in the urban and rural areas. Especially, more 

land areas have been displaced or converted to non-agricultural activities 

particularly for industry, housing and commercial activities (Hashim et al., 1995). 

Land use and land cover are continuously changing, both under the influence of 

human activities and nature resulting in various kinds of impacts on the ecosystem. 

In fact, FAO (2003) noted that land use impacts have the potential to significantly 

affect the sustainability of the agricultural and forest systems.  

 

Digital land use and land cover change detection is the process of determining 

and/or describing changes in land-cover and land-use properties based on co-

registered multi-temporal remote sensing data. The basic premise in using remote 

sensing data for change detection is that the process can identify change between two 

(or more) dates that is uncharacteristic of normal variation. To be effective, change 

detection approaches must maximize inter-date variance in both spectral and spatial 

domains (i.e. using vegetation indices and texture variables). Numerous researchers 

have addressed the problem of accurately monitoring land-cover and land-use change 

in a wide variety of environments with a high degree of success (Muchoney and Haack, 

1994; Chan et al., 2001). 

 

The simplest taxonomy separates land-cover and land-use changes that are 

categorical versus those that are continuous (Abuelgasim et al., 1999). Categorical 

changes in time, also known as post-classification comparison, occur between a suite 
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of thematic land-cover and land-use categories (e.g. urban, developed, grassland, 

forest). Post-classification change detection techniques, however, have significant 

limitations because the comparison of land-cover classifications for different dates does 

not allow the detection of subtle changes within land-cover categories (Macloed and 

Congalton, 1998). Further, the change-map product of two classifications often exhibits 

accuracies similar to the product of multiplying the accuracies of each individual 

classification (Mas, 1999). 

 

The second category of change is continuous, known also as pre-classification 

enhancement, where changes occur in the amount or concentration of some attribute 

of the urban/suburban or natural landscape that can be continuously measured 

(Coppin and Bauer, 1996). The goal of change detection in a continuous context, 

therefore, is to measure the degree of change in an amount or concentration of a 

variable such as vegetative or urban cover, through time.  

 

Once the choice of change detection taxonomy is determined, decisions on the 

data processing requirements can be made. Requirements include 

geometric/radiometric corrections, data normalization, change enhancement, image 

classification and accuracy assessment (Lunetta and Elvidge, 1998).  

 

1.2 Main Focus Areas of this Study 

 The main aim of this research is to investigate the application of an integrated 

land use change for soil erosion. Different techniques for analyzing remotely sensed 

data acquired by different optical sensors, specifically focusing on their application to 

land use and lands cover change and soil erosion.  

 

During the last three decades, a large number of change detection 

methods have evolved that differ widely in refinement, robustness, and 
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complexity. However many of these methods rely upon the evaluation of combined 

datasets derived from multiple epochs. These include principal component analysis 

(PCA), tasselled-cap analysis, combined classification techniques and image 

differencing techniques (Jensen, 1996). The basis of these approaches is the 

consistent spatial, spectral and radiometric qualities of the data resulting from 

sensing with an instrument of similar specification. Where dissimilar sensors are 

utilised, substantial differences-exist in all sensor specifications, in particular spatial and 

spectral resolution and the above combined approaches are no longer appropriate 

(Campbell, 2002). 

Due to considerable differences in the spectral, spatial and radiometric 

characteristics of the data, analysis must involve separate interpretation of each 

dataset. Within this context, post-classification analysis is appropriate for evaluation of 

land cover changes from data of different sources. 

Rectification process of multi-date data has been identified as essential for all 

change detection purposes. Registration errors directly affect any assessment of land 

cover change and result in many areas of false change recorded in change detection 

statistics. Comparison of multiple remote sensing data further complicates the process 

because each dataset contains errors of location inherent to the sensing system. 

Classification errors contributed by the interpretation approach and spatial errors due 

to the spatial resolution of the sensor and the sampling interval adopted during 

rectification are also important. Modelling and evaluation of these errors is necessary in 

order to assess the reliability of change detection statistics derived from multiple 

satellite data (Richards, 1994). 

The use of remotely sensed data in the study of environmental changes is 

substantial. Remotely sensed data can be used to develop comprehensive digital 
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databases for any target area to study different environmental issues and parameterize 

environmental models (Foody and Curran, 1994). One of the most destructive  

processes, steadily increasing as a result of human activity in these areas, is soil 

erosion (Lal, 1988). This raises many concerns regarding the potentially damaging 

impacts of contemporary land use in relation to the often weak or non-existent land 

management initiatives. Malaysia is one country suffering heavily from land 

degradation due to increasing anthropogenic pressure on its natural resources (Roslan 

et al., 1997). As economic activity and population increased, in many parts of Malaysia 

agriculture, built-up areas and infrastructure development spread rapidly to the 

uplands. Consequently, the problem of soil erosion and degradation, sedimentation 

and river pollution increased (Hashim et al., 1995; Bawahidi et al., 2004).  

 The research also covers most important aspects of remote sensing and GIS 

techniques. Given multi-source remotely sensed data, there is an increasing need for 

improved techniques to extract variety of information from the data. Moreover, new 

satellite sensors are now providing a huge amount of time series data for 

environmental monitoring.  

 

Major issues involved in change detection using remote sensing data including 

geometric correction, radiometric correction or normalization, change enhancement 

and detection, and classification for land-cover and land-use monitoring, catchment 

characterization and soil erosion estimation. 

 

From the discussion above, it is believed that the recent advances in remote 

sensing data acquisition and management of spatial geographic data would benefit 

catchment charactersation and soil erosion models that use spatial data inputs. 

Therefore, the principal aim of this research would be to evaluate the value of 
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incorporation of remote sensing and GIS techniques in estimating land use change and 

soil erosion and its impact to water resources.  

 

1.3 Main Research Objectives 

 In this research the spatial properties of land use/ land cover and soil 

parameters were investigated where their contribution to soil loss can be appraised. To 

evaluate the value of this contribution the following research objectives were 

determined: 

• To examine the main problems in land-cover classification of using pixel-based 

classifiers based on multi-source data, and provide potential solutions to these 

problems, using pixel-based classifiers, and evaluate their effectiveness. 

• To investigate the application of change detection techniques to multi-source 

remote sensing data. Spectral and spatial properties of the data are 

investigated in order to evaluate the potential of change detection using 

different satellite sensors. The classification accuracy of each sensor is 

evaluated against known land cover distributions derived from land cover maps 

of Kinta District. The contribution of thematic and spatial errors caused by 

sensor sampling and geometric registration is also evaluated. An analysis of 

the thematic and spatial accuracy of the final land cover change detection 

image is also completed. 

• To develop a methodology that combines remote sensing data and GIS with 

Revised Universal Soil Loss Equation (RUSLE) to estimate the spatial 

distribution of soil erosion at catchment scale. 

 

1.4  Methodology and Main Research Tasks 

The current study was carried out for Ulu Kinta carchment and designed to 

investigate the potential to utilise remotely sensed data from sensors with different 

spatial and spectral resolutions for temporal assessment of land cover changes and its 
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effects on soil erosion in the Ulu Kinta catchment.  An assessment of the suitability of 

the approach is based upon an evaluation of the classification accuracy and 

consistency of the data derived from various sensors, and the contribution to the 

results of the geometric properties of the sensor and the geocoding method applied. 

The sources of satellite information used for this research are Landsat TM, SPOT HRV 

multi-spectral data and SPOT panchromatic data. The datasets are utilised for thematic 

classification, geometric assessment, derivation of catchment characteristics and 

topographic parameters for soil erosion modeling. 

 

In this research the following tasks will be implemented: 

(i) Review the use of remote sensing for information extraction applied to 

temporal assessment, focusing on the spectral and spatial resolutions of 

satellite sensors and how these affect image interpretation. Classification 

accuracy and change detection reporting will also be evaluated; 

(ii) Compile relevant Landsat TM, SPOT HRV and SPOT panchromatic 

satellite data for the study area in a format suitable for analysis. 

Prepare topographic, land use, soil maps for use as reference data and 

for developing digital elevation model ; 

(iii) Adapt land use and land cover classification system suitable for the 

study area based upon a standard classification system for Peninsular 

Malaysia and considering the spectral and spatial resolutions of the 

satellite data. Assess the accuracy of each classification of remotely 

sensed imagery; 

(iv) Define the land cover changes and evaluate change representation for the 

satellite data by analysing the change matrices and their accuracy parameters; 

(v) Develop an appropriate and up-to-date catchment database which includes 

spatial and attribute data and integrated use of digital elevation data for 

modeling and management of natural resources; 



 8

(vi) Model the spatial distribution of soil erosion using Revised Universal Soil 

Loss Equation (RUSLE) in a GIS with multi-source data. 

 

A typical implementation procedure for remote sensing data processing and 

extraction of RUSLE factors is shown in Fig.1.1 and Fig.1.2.  

 

1.5  Significance and Potential Contribution 

This study provides an image processing and change assessment approach that 

can be applied to land cover change analysis using multi-source satellite data. 

Evaluation of the reliability of the multi-source approach to change detection provides 

future users with an alternative to the standard temporal assessment methods, and 

enables digital data from different sensors to be interpreted for derivation of land 

cover change statistics. This will overcome limitations on the assessment of change 

caused by current approaches, which rely upon analysis of digital data from the same 

remote sensing system. The flexibility afforded will enable users to access a 

combination of data sources, especially where weather conditions and reception 

facilities may restrict access to regular monitoring information. 
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Fig. 1.1 A flowchart of procedure for deriving land use/land cover data and change 
detection from remotely sensed data. 
 

The main contributions of this research are to better understand the complex 

interplay of land-use changes and their effects on soil loss rates in a water catchment 

and contribute to current knowledge of the effects of land-use and land cover changes 

on soil erosion. It would also demonstrate the effectiveness of the integrated approach 

in predicting the long-term impacts of future land use changes. 
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Fig.1.2 The procedure for extraction of RUSLE factors from remote sensing and 
ancillary data. 
  

 

1.6  Organization of Thesis 

In Chapter 2, a general review of land use and land cover change detection 

using remotely sensed data is presented. The chapter considers also the importance 

of soil erosion under distinct land use/ land cover conditions. The role of remote 

sensing and GIS approach integrated with soil erosion models is outlined.     
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Chapter 3 presents the study area and describes the physical characteristics of the 

area to be analysed. This Chapter also provides a detailed description of the remotely 

sensed data used, namely Landsat TM data, SPOT multispectral (SPOT XS) data, and 

SPOT panchromatic data, along with the important characteristics of the sensors 

which are relevant to change detection analysis. Preprocessing of the data prior to 

analysis is also outlined. 

 

Satellite image preprocessing, rectification and resampling are detailed in Chapter 

4. This Chapter describes the available techniques for image rectification and outlines 

relevant factors to be considered in ground control point (GCP) selection. Resampling 

schemes are also considered and discussed with respect to establishing a common 

spatial resolution for the Landsat TM and SPOT data and maintenance of a 

spectrally coherent dataset. The spatial effects of image resampling are investigated 

and the precision of the rectified images is evaluated. Land use classification 

strategies in the context of their application to multi-source analysis are reviewed in 

this Chapter also. The process of image classification is described and applied to the 

study area for each data set. Detailed analysis of the spectral separability of land cover 

is performed. Results of the classification of each image using supervised and 

unsupervised classification techniques are presented. The role of the DEM and textural 

data in improving spectral classification is considered. 

  

Chapter 5 reviews thematic mapping accuracy assessment methods and 

assessment made of the classification performance for each resolution of satellite 

data. Overall Classification Accuracy and Kappa Coefficient statistics are derived, and 

the optimum classification approach for each level of classification and for each image 

dataset is determined. Land use change detection techniques are reviewed in 

Chapter 5 also. The post-classification comparison approach is used to derive 

land cover change maps between 1991 and 2004. Summary statistics of change are 
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produced using change matrices and the land cover changes between dates are 

investigated. The effectiveness of change detection techniques using different data 

is evaluated and the concept of change reporting as a means of measuring and 

communicating changes identified using remote sensing is considered. 

 

Detailed approaches to study Ulu Kinta catchment is presented in Chapter 6. 

The general and current approaches for the integration of remote sensing and GIS for 

the catchment are presented. The Chapter reviews the entire process of developing 

catchment database using different spatial data and derive GIS coverages needed for 

estimating soil erosion. The temporal results of spatial distribution of soil loss change 

from 1991 to 2004 are presented and analysed.   

 

Results of the whole research study carried out in Ulu Kinta River Basin are 

presented in Chapter 7 

 

In Chapter 8 the conclusions and recommendations for future research 

regarding land use change detection and soil loss issues are given. 
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CHAPTER TWO 

LITERATURE REVIEW: THEORETICAL BACKGROUND 

 

2.1 Introduction 

Remote sensing is defined as the science of obtaining information about an 

object, area, or phenomenon through the analysis of data acquired by  a device that is 

not in contact with the object, area, or phenomenon under investigation (Lillesand et 

al., 2004). Since the launch of Landsat-1 – the first Earth resource satellite in 1972, 

remote sensing has become an increasingly important tool for the inventory, 

monitoring, and management of earth resources. The increasing availability of 

information products generated from satellite imagery data has added greatly to our 

ability to understand the patterns and dynamics of the earth resource systems at all 

scales of inquiry.  

 

A particularly important application of remote sensing is the generation of land 

use/ land-cover maps from satellite imagery. Compared to more traditional mapping 

approaches such as terrestrial survey and basic aerial photo-interpretation, land-use 

mapping using satellite imagery has the advantages of low cost, large area coverage, 

repetitively, and computability (Franklin, 2001). Consequently, land-use information 

products obtained from satellite imagery such as land-use maps, data and GIS layers 

have become an essential tool in many operational programs involving land resource 

management. 

 

The prospect for the use of satellite imagery data in land-use management and 

planning is an extremely promising one. As a result of the recent development of 

sensor technology, the quality of satellite imagery available for land-use mapping is 

improving rapidly. Particularly noteworthy in this regard is the improved spatial and 

spectral resolution of the imagery captured by new satellite sensors. The use of 
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imagery from high-resolution sensors on satellites such as IKONOS and QuickBird has 

proved that data from space-borne sensors can provide a viable alternative to aerial 

photography in many applications including detailed land cover mapping, water 

resources assessment, irrigation management and, crop and yield mapping 

(Shamshad et al., 2004; Lillesand et al., 2004; Mesev et al., Trietz and Rogan, 2004). 

 

The increasing availability of satellite imagery with significantly improved 

spectral and spatial resolution has offered greater potential for more detailed land-use 

mapping. It was predicted that in the near future, more than 50 percent of the current 

aerial photo market will be replaced by high-resolution satellite imagery (Fritz, 1996). At 

the same time, rapid advances in the computer science as well as other information 

technology (IT) fields have offered more powerful tools for satellite image processing 

and analysis. Image processing software and hardware are becoming more efficient 

and less expensive. Access to faster and more capable computer platforms has aided 

our ability to store and process larger and more detailed image and attributes data 

sets.  

  

Digital image processing involves manipulation and interpretation digital images 

with the aid of computer technology. Recently, digital image processing is central to 

efficient use of satellite imagery in land-use studies. A key task of satellite image 

processing is to develop image data analysis approaches appropriate to a particular 

resource management application (Treitz and Rogan, 2004). The extraction and 

classification of land-cover types from satellite imagery is probably the most important 

objective of digital image analysis in the geoscience. Conventional image classification 

techniques are based on the spectral response patterns of terrain features captured in 

satellite imagery (Taib, 1997). While conventional spectral classifiers are widely used 

and have achieved a fairly large amount of success, the resulting classification maps 

are often very noisy.  
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The enhanced information content of high-resolution satellite imagery and the 

long-term desire of land-use planners to obtain detailed land-use maps highlight the 

need for more powerful tools for analyzing multi-spectral data. As a result in recent 

years it was seen a multiplicity of approaches to satellite image classification had 

developed. A main thrust in this development is that, in addition to making better use of 

enhanced spectral information of imagery data, increasing attention is being given to 

the spatial and semantical characteristics of terrain features (Dorren, 2003). Recent 

studies demonstrated that the higher information content of imagery data combined 

with the improvements in image processing power result in significant improvement in 

classification accuracy (Liu and Zhou, 2004; Munchney and Strahler, 2002; Cihlar and 

Jansen, 2001; Congalton and Green, 1999) 

 

2.2  Remote Sensing in Land Use/ Land Cover Change 

Land cover as defined by Barnsley et al, (2001) is "the physical materials on the 

surface of a given parcel of land (e.g. grass, concrete, tarmac, water)," and land use as 

"the human activity that takes place on, or makes use of that land (e.g. residential, 

commercial, industrial)". Land use can consist of varied land covers, (i.e. a mosaic of 

biogeophysical materials found on the land surface). For instance, a single-family 

residential area consists of a pattern of land-cover materials (e.g. grass, pavement, 

shingled rooftops, trees, etc.). The aggregate of these surfaces and their prescribed 

designations (e.g. park) determines land-use (Anderson et al., 1976).  

 

Land-use is an abstract concept, constituting a mix of social, cultural, economic 

and policy factors, which have little physical importance with respect to reflectance 

properties, and hence has a limited relationship to remote sensing. Remote sensing 

data record the spectral properties of surface materials, and hence, are more closely 

related to land-cover. In short, land use cannot be measured directly by remote 

sensing, but rather requires visual interpretation or sophisticated image processing and 
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spatial pattern analyses to derive land use from aggregate land-cover information and 

other ancillary data (Cihlar and Jansen, 2001). Integrated analyses within a spatial 

database framework (i.e. GIS) are often required to assign land cover to appropriate 

land-use designations (Noordin, 1997).  

 

Success in land-cover and land-use change analysis using multi-temporal 

remote sensing data is dependent on accurate radiometric and geometric rectification 

(Schott et al., 1988; Dai and Khorram, 1999). These pre-processing requirements 

typically present the most challenging aspects of change detection studies and are the 

most often neglected, particularly with regard to accurate and precise radiometric and 

atmospheric correction (Chavez, 1996). For change to be identified with confidence 

between successive dates, a consistent atmosphere between dates must be modeled 

so that variations in atmospheric depth (i.e. visibility) do not influence surface 

reflectance to the extent that land-cover change is detected erroneously. This is 

particularly important in biophysical remote sensing where researchers attempt to 

estimate rates of primary productivity and change in total above ground biomass 

(Coppin and Bauer, 1996; Treitz and Howarth, 2000; Franklin, 2001; Peddle et al., 

2003). Where change is dramatic, (i.e. conversion of agricultural land to residential), 

the ‘change signal’ is generally large compared to the atmospheric signal. Here, the 

accuracy and precision of geometric registration influences the amount of spurious 

change identified. Where accurate and precise registration of one date to the other is 

achieved, identified surface changes can be confidently attributed to land conversion. 

Inaccuracy and imprecise co-registration can lead to systematic overestimation of 

change, although methods have been developed to compensate for these effects (e.g. 

spatial reduction filtering).  

 

Research continues to focus on the potential for digital image processing of 

high-resolution imagery for detecting, identifying and mapping areas of rapid change 
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(Longley et al., 2001). It has been noted that the utility of per-pixel classification of 

spectral reflectance for identifying areas of land modification, or land conversion is 

limited, as a result of various sources of error or uncertainty that are present in areas of 

significant landscape heterogeneity (e.g. rural–urban fringe, forest silvicultural thinning, 

etc.). For urban areas, the complex mosaic of reflectance creates significant confusion 

between land-use classes that possess reflectance characteristics similar to those of 

land-cover types. 

 

Typically, the quality (i.e. precision and accuracy) of automated per-pixel 

classifications in urban areas using remote sensing are poor, compared to non-urban 

areas. Also, urban areas present the problem of having logical correspondence 

between spectral classes and functional land-use classes (Treitz and Howarth, 2000). 

Improvements in traditional per-pixel classifications have been developed over the last 

decade and include (i) the extraction and use of a priori probabilities or a posteriori 

processing (Barnsley, 1999; Mesev et al., 2001); (ii) texture processing (Haralick, 1979; 

Barnsley et al., 2001); (iii) artificial neural networks (Abuelgasim et al., 1999); (iv) fuzzy 

set theory (Foody, 1996; Zang and Foody, 1998); (v) frequency-based contextual 

approaches (Gong et al., 1992); (vi) knowledge-based algorithms ( Wang and Zhang, 

2000; Mariamni, 1997; Huang and Jensen, 1997); (vii) image segmentation (Conners 

et al., 1984;  Bähr, 2001); and the incorporation of ancillary data (Harris and Ventura, 

1995; Treitz and Howarth, 2000). These approaches are necessary to accommodate 

the more complex spatial structures arising from heterogeneous spectral signatures, 

particularly in urban environments, but also for fragmented and heterogeneous 

canopies common in areas of secondary growth and human influence.  

 

Research into sophisticated spatial analytical methods for land-cover and land-

use classification continues through the integration of land-use morphology regarding 

configuration, syntax, structure, and function with the inherent characteristics of remote 
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sensing data (Curran et al., 1998; Barnsley, 1999; Longley et al., 2001). For urban 

areas, research has focused on (i) empirical/statistical kernel-based techniques 

(Wharton, 1987) (ii) knowledge-based texture models (i.e. relating spatial variations in 

detected spectral response to dominant land-use, using explicit spatial models of urban 

structure as opposed to empirical models) (Barnsley et al., 2001); and (iii) structural 

pattern-recognition techniques (Barnsley, 1999). It remains difficult to map point and 

linear features, particularly digitally, due to the fact that they are not always 

recognizable at the spatial resolution of the data, nor are they represented at their ‘true’ 

location due to sensor and panoramic distortions inherent in satellite data collection. 

 

 It has also proven difficult to digitally separate linear features such as road 

networks from surrounding land-cover and land-use or mixed vegetation in high 

mountainous areas (Wang and Zhang, 2000). This is largely due to the complexity of 

pattern recognition procedures required for tracing specific cultural edge features. In a 

previous study at mapping of land use and land cover on mountainous area, Baban 

and Yusof (2001), utilized Landsat TM bands TM3, TM4, and TM5 incorporated with 

ancillary topographic data as input to maximum likelihood classifier to produce land 

cover map of hilly area in Langkawi Island. The overall accuracy of output image was 

90% and individual class accuracies ranged from 74% to 100%. Their results highlight 

the important of incorporation of topographic data and indicate that the topography is 

the main control on spatial distribution of land use/ land cover types in the study area.  

 

2.3   GIS in Watershed and Soil Erosion Research 

 Spatially distributed models of watershed hydrological processes have been 

developed to incorporate the spatial patterns of terrain, soils, and vegetation as 

estimated with the use of remote sensing and geographic information systems (GIS) 

(Band, 1986; Noordin, 1994; Famiglietti and Wood, 1991 and 1994; Moore et al., 1988; 

Moore et al., 1991). This approach makes use of various algorithms to extract and 
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represent watershed structure from digital elevation data. Land surfaces attributes are 

mapped into the watershed structure as estimated directly from remote sensing 

imagery (e.g. canopy leaf area index), digital terrain data (slope, aspect, contributing 

drainage area) or from digitized soil maps, such as soil texture or hydraulic conductivity 

assigned by soil series. 

 

2.4  Digital Elevation Models (DEM) 

A digital elevation model (DEM) is a type of spatial data set, which describes 

the elevation of the land surface. The height and form of terrain have a fundamental 

influence on most environmental phenomena. Consequently, DEMs are widely used in 

environmental applications of GIS (Moore et al., 1991). Information about the terrain 

surface plays a key role in nearly all environmental research including hydrology, 

geomorphology, ecology and other disciplines (Garbrecht  and Martz, 1993). Therefore 

a DEM is a fundamental requirement for many GIS applications, both directly due to 

the influence of elevation on many environmental phenomena and indirectly due to the 

influence of variables derived from a DEM such as gradient and aspect on 

environmental phenomena and processes (Fahsi et al., 2000).  

 

2.4.1    Data Sources for Generating DEM 

Data for DEMs should be observations of the elevation and the shape of terrain 

surface with particular attention to surface discontinuities and special locations 

(passes, pits, peaks, ridges etc.). These data can be acquired using different methods:  

ground survey, photogrammetry using aerial photographs or satellite imagery, digitizing 

the contour lines on topographic maps (Martz and Garbrecht, 1998).  

 

2.4.2.1 Ground Surveys 

Ground surveys can provide a very accurate DEM data because surveyors 

usually tend to capture the elevation of discontinuities and special location that are 
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characteristic for the area under observation. However, it is relatively time consuming 

and therefore is usually applied to specific projects which involve small study areas. 

The advent and widespread use of Global Positioning System (GPS) provides many 

new and affordable opportunities for the collection of large numbers of special-purpose 

elevation data sets (Blaschke and Stroble, 2001). 

 

2.4.2.2  Photogrammetric Data Capture  

 These sources rely on the stereoscopic interpretation of aerial photographs or 

satellite imagery using manual or automatic stereoplotters (Campbell, 2002).  Using 

stereoscopic aerial photographs or stereoscopic SPOT images and suitable equipment, 

it is possible to collect elevation data using different sampling methods. 

 

2.4.2.3 Digitizing existing maps 

Digitization of contour lines on topographic maps is an adequate method for 

DEM creation in areas of very rough terrain (Martz and Garbrecht, 1998). Once the 

point surface has been created, an interpolation algorithm is applied to interpolate 

elevation values for unknown or unsampled areas based on the "known" elevation 

values.  The accuracy of DEM generated from data captured using such techniques 

depends on the quality and scale of original source maps (Singh and Fiorentino, 1996) 

 

Over the past decade numerous approaches have been developed for 

automated extraction of watershed structure from grid digital elevation models (e.g. 

Mark et al., 1984; O’ Callagham and Mark, 1984; Band, 1986; Jenson and Dominque, 

1988; Moore and Burch, 1986; Martz and Garbrecht, 1993; Garbrecht and Martz, 

1993). O’ Callagham and Mark (1984) define a digital elevation model (DEM) as any 

numerical representation of the elevation of all or part of a planetary surface, given as a 

function of geographic location. The most widely used method for the extraction of 

stream networks that has emerged is to accumulate the contributing area upslope of 
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each pixel through a tree or network of cell to cell drainage paths and then prune the 

tree to a finite extent based on a threshold drainage area required to define a channel 

or to seek local morphological evidence in the terrain model that a channel or valley 

exists (Moore and Burch, 1986). 

 

In more recent studies important efforts were made to implement digital satellite 

data have utilized higher spatial, spectral, and radiometric resolution Landsat Thematic 

Mapper (TM) data with much more powerful computer hardware and software 

(Setiawan et al., 2004; Omar et al., 2004). These studies have shown that the higher 

information content of TM data combined with the improvements in image processing 

power result in significant improvements in image processing power resulting in 

significant enhancement in classification accuracy for more distinctive classes.  

 

2.5    Soil Erosion in Malaysia 

Similar to most of the other developing countries, Malaysia is characterised by a 

rapid pace of development over the last three decades in agriculture, industry, tourism, 

building of highways and dams. All these activities resulted in clearing of large forest 

areas, destruction of water resources and destabilization of hill slopes which lead to 

other environmental hazards such as soil loss and landslides (Omar et al., 2004).   

 

The major changes in land use have been instigated by the desire to meet the 

food requirements of the population, to provide large quantities of raw materials for 

export and to support the agro-based industries. Being a country with vast natural 

resources, Malaysia has presently opted for the exploitation and export of natural 

resource products to meet the demands for better lifestyle and the challenges of 

exponential population growth (Maene and Suliman, 1986; Hashim et al., 1995). 
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A significant amount of effort has been made in the past to quantify the erosion 

risk, and rate of soil erosion, of catchment areas exhibiting different land uses changes 

and the sedimentation/siltation rate of rivers draining forested, agricultural dominated 

and urbanizing catchments. Both direct and indirect methods of prediction have been 

applied. Direct measurements of erosion rates have been carried out on relatively 

small agricultural plots; and on specific construction sites including road development 

areas. These have been conducted in Malaysia as well as in other countries; 

especially in the United States of America (Lal, 1988).  

 

In Peninsular Malaysia, numerous instances of soil erosion have been 

documented, mainly in association with timber extraction, mining activities, agricultural 

and urban expansion. However, few quantitative measurements of soil erosion have 

been made and most data available are derived from studies of sediment concentration 

in rivers (Maene and Suliman, 1986).  Morgan pointed out that much of the sediment 

removed from hillsides is deposited before it reaches   the rivers and therefore, data on 

sediment concentration in rivers almost certainly underestimate the rates of soil loss. 

 

In the recent years there is a general awareness of soil erosion as an 

environmental problem in Malaysia. The literature documented some researches 

toward the analysis and estimating of soil loss rates using integrated remote sensing 

and GIS approaches with USLE. These include the soil erosion study of the Bakun 

Dam project (Samad and Abdul Patah, 1997) and soil erosion risk assessment for 

Genting Highlands (Jusoff and Chew, 1998). Other studies were directed to estimate 

the soil loss using different modeling approaches. In a study conducted in the east 

coast of Peninsular Malaysia using the process-based model GUEST (Griffith 

University Erosion System Template). Hashim et al. (1995) showed that soil loss and 

runoff were particularly high where the pathways were very pronounced. There results 

show that the major factors effecting soil erosion are surface cover management, 
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amount of runoff generated, its rate and, the condition of the soil surface. Ramli et al. 

(2004) used open source (GRASS) to assess the erosion hazard in Langkawi Island. 

This study demonstrates the effectiveness of the GRASS in generating quantitative 

information on soil erosion studies. The results predicted that about 98 percent of the 

Langkawi has very low to low erosion risk and only 2 percent of the island is of 

moderate to high erosion risk. 

 

Soil erosion models can be used for farm planning, site-specific assessment, 

project evaluation and planning, policy decisions or as research tools to study 

processes and the behavior of hydrologic and erosion systems. There have been 

numerous models (both empirical and process-based) developed in the past to predict 

both runoff and soil loss at a field or catchment level. The models vary from very 

complex procedures requiring a range of input parameters (e.g., water erosion 

prediction project (WEPP), European soil erosion model (EUROSEM) and aerial non-

point source watershed environment response simulation (ANSWERS), to reasonably 

simple requiring only a few key parameters (e.g., Morgan, 1986), productivity erosion 

runoff functions to evaluate conservation techniques (PERFECT), universal soil loss 

equation (USLE) and revised universal soil loss equation (RUSLE) to predict runoff and 

soil loss (Morgan, 1974; Morgan, 1986; Renard et al., 1997). Some models, in spite of 

their strong theoretical base, may not be very suitable in the context of developing 

country situations such as those in Indonesia since the detailed rainfall, topographic 

and other input data required to run them are often not available or difficult to collect 

due to resource constraints.  

 

Soil erosion models can play a critical role in addressing problems associated 

with land management and conservation, particularly in selecting appropriate 

conservation measures for a given field or catchment. They can also assist 

governmental agencies in developing suitable policies and regulations for agricultural 
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and forestry practices. Two important considerations in selecting an appropriate model 

for field use are input data availability or whether data can be obtained within the 

constraints of the field resources available, and the prediction accuracy of the models. 

Therefore, an evaluation of potentially suitable models that can be used with readily 

available input data is an important step in using them for practical applications 

(Renard et al., 1997).  

 

Despite many efforts made to quantify the extent of soil loss in Malaysia, the 

available information at this stage is inadequate as it was mainly based on results 

obtained from selected regions. Therefore more detailed and extensive work is 

required to assess the spatial variability and extent of soil erosion within given region.    
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